| 
1478
 | 
     1  | 
(*  Title:      ZF/univ.thy
  | 
| 
0
 | 
     2  | 
    ID:         $Id$
  | 
| 
1478
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
0
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
The cumulative hierarchy and a small universe for recursive types
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Standard notation for Vset(i) is V(i), but users might want V for a variable
  | 
| 
516
 | 
     9  | 
  | 
| 
 | 
    10  | 
NOTE: univ(A) could be a translation; would simplify many proofs!
  | 
| 
 | 
    11  | 
  But Ind_Syntax.univ refers to the constant "univ"
  | 
| 
0
 | 
    12  | 
*)
  | 
| 
 | 
    13  | 
  | 
| 
2469
 | 
    14  | 
Univ = Arith + Sum + Finite + mono +
  | 
| 
3923
 | 
    15  | 
  | 
| 
 | 
    16  | 
global
  | 
| 
 | 
    17  | 
  | 
| 
0
 | 
    18  | 
consts
  | 
| 
1401
 | 
    19  | 
    Vfrom       :: [i,i]=>i
  | 
| 
 | 
    20  | 
    Vset        :: i=>i
  | 
| 
 | 
    21  | 
    Vrec        :: [i, [i,i]=>i] =>i
  | 
| 
 | 
    22  | 
    univ        :: i=>i
  | 
| 
0
 | 
    23  | 
  | 
| 
 | 
    24  | 
translations
  | 
| 
1478
 | 
    25  | 
    "Vset(x)"   ==      "Vfrom(0,x)"
  | 
| 
0
 | 
    26  | 
  | 
| 
3940
 | 
    27  | 
local
  | 
| 
3923
 | 
    28  | 
  | 
| 
753
 | 
    29  | 
defs
  | 
| 
0
 | 
    30  | 
    Vfrom_def   "Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))"
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
    Vrec_def
  | 
| 
1478
 | 
    33  | 
        "Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).      
  | 
| 
1155
 | 
    34  | 
                             H(z, lam w:Vset(x). g`rank(w)`w)) ` a"
  | 
| 
0
 | 
    35  | 
  | 
| 
 | 
    36  | 
    univ_def    "univ(A) == Vfrom(A,nat)"
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
end
  |