author | paulson <lp15@cam.ac.uk> |
Wed, 28 Sep 2016 17:01:01 +0100 | |
changeset 63952 | 354808e9f44b |
parent 63653 | 4453cfb745e5 |
child 66364 | fa3247e6ee4b |
permissions | -rw-r--r-- |
63653 | 1 |
(* Title: HOL/Equiv_Relations.thy |
2 |
Author: Lawrence C Paulson, 1996 Cambridge University Computer Laboratory |
|
15300 | 3 |
*) |
4 |
||
60758 | 5 |
section \<open>Equivalence Relations in Higher-Order Set Theory\<close> |
15300 | 6 |
|
7 |
theory Equiv_Relations |
|
63653 | 8 |
imports Groups_Big Relation |
15300 | 9 |
begin |
10 |
||
60758 | 11 |
subsection \<open>Equivalence relations -- set version\<close> |
15300 | 12 |
|
63653 | 13 |
definition equiv :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" |
14 |
where "equiv A r \<longleftrightarrow> refl_on A r \<and> sym r \<and> trans r" |
|
15300 | 15 |
|
63653 | 16 |
lemma equivI: "refl_on A r \<Longrightarrow> sym r \<Longrightarrow> trans r \<Longrightarrow> equiv A r" |
40815 | 17 |
by (simp add: equiv_def) |
18 |
||
19 |
lemma equivE: |
|
20 |
assumes "equiv A r" |
|
21 |
obtains "refl_on A r" and "sym r" and "trans r" |
|
22 |
using assms by (simp add: equiv_def) |
|
23 |
||
60758 | 24 |
text \<open> |
63653 | 25 |
Suppes, Theorem 70: \<open>r\<close> is an equiv relation iff \<open>r\<inverse> O r = r\<close>. |
15300 | 26 |
|
63653 | 27 |
First half: \<open>equiv A r \<Longrightarrow> r\<inverse> O r = r\<close>. |
60758 | 28 |
\<close> |
15300 | 29 |
|
63653 | 30 |
lemma sym_trans_comp_subset: "sym r \<Longrightarrow> trans r \<Longrightarrow> r\<inverse> O r \<subseteq> r" |
31 |
unfolding trans_def sym_def converse_unfold by blast |
|
15300 | 32 |
|
63653 | 33 |
lemma refl_on_comp_subset: "refl_on A r \<Longrightarrow> r \<subseteq> r\<inverse> O r" |
34 |
unfolding refl_on_def by blast |
|
15300 | 35 |
|
63653 | 36 |
lemma equiv_comp_eq: "equiv A r \<Longrightarrow> r\<inverse> O r = r" |
15300 | 37 |
apply (unfold equiv_def) |
38 |
apply clarify |
|
39 |
apply (rule equalityI) |
|
30198 | 40 |
apply (iprover intro: sym_trans_comp_subset refl_on_comp_subset)+ |
15300 | 41 |
done |
42 |
||
60758 | 43 |
text \<open>Second half.\<close> |
15300 | 44 |
|
63653 | 45 |
lemma comp_equivI: "r\<inverse> O r = r \<Longrightarrow> Domain r = A \<Longrightarrow> equiv A r" |
30198 | 46 |
apply (unfold equiv_def refl_on_def sym_def trans_def) |
15300 | 47 |
apply (erule equalityE) |
63653 | 48 |
apply (subgoal_tac "\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r") |
15300 | 49 |
apply fast |
50 |
apply fast |
|
51 |
done |
|
52 |
||
53 |
||
60758 | 54 |
subsection \<open>Equivalence classes\<close> |
15300 | 55 |
|
63653 | 56 |
lemma equiv_class_subset: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} \<subseteq> r``{b}" |
61799 | 57 |
\<comment> \<open>lemma for the next result\<close> |
63653 | 58 |
unfolding equiv_def trans_def sym_def by blast |
15300 | 59 |
|
63653 | 60 |
theorem equiv_class_eq: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} = r``{b}" |
15300 | 61 |
apply (assumption | rule equalityI equiv_class_subset)+ |
62 |
apply (unfold equiv_def sym_def) |
|
63 |
apply blast |
|
64 |
done |
|
65 |
||
63653 | 66 |
lemma equiv_class_self: "equiv A r \<Longrightarrow> a \<in> A \<Longrightarrow> a \<in> r``{a}" |
67 |
unfolding equiv_def refl_on_def by blast |
|
15300 | 68 |
|
63653 | 69 |
lemma subset_equiv_class: "equiv A r \<Longrightarrow> r``{b} \<subseteq> r``{a} \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r" |
61799 | 70 |
\<comment> \<open>lemma for the next result\<close> |
63653 | 71 |
unfolding equiv_def refl_on_def by blast |
15300 | 72 |
|
63653 | 73 |
lemma eq_equiv_class: "r``{a} = r``{b} \<Longrightarrow> equiv A r \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r" |
17589 | 74 |
by (iprover intro: equalityD2 subset_equiv_class) |
15300 | 75 |
|
63653 | 76 |
lemma equiv_class_nondisjoint: "equiv A r \<Longrightarrow> x \<in> (r``{a} \<inter> r``{b}) \<Longrightarrow> (a, b) \<in> r" |
77 |
unfolding equiv_def trans_def sym_def by blast |
|
15300 | 78 |
|
63653 | 79 |
lemma equiv_type: "equiv A r \<Longrightarrow> r \<subseteq> A \<times> A" |
80 |
unfolding equiv_def refl_on_def by blast |
|
15300 | 81 |
|
63653 | 82 |
lemma equiv_class_eq_iff: "equiv A r \<Longrightarrow> (x, y) \<in> r \<longleftrightarrow> r``{x} = r``{y} \<and> x \<in> A \<and> y \<in> A" |
15300 | 83 |
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) |
84 |
||
63653 | 85 |
lemma eq_equiv_class_iff: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> r``{x} = r``{y} \<longleftrightarrow> (x, y) \<in> r" |
15300 | 86 |
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) |
87 |
||
88 |
||
60758 | 89 |
subsection \<open>Quotients\<close> |
15300 | 90 |
|
63653 | 91 |
definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set" (infixl "'/'/" 90) |
92 |
where "A//r = (\<Union>x \<in> A. {r``{x}})" \<comment> \<open>set of equiv classes\<close> |
|
15300 | 93 |
|
94 |
lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r" |
|
63653 | 95 |
unfolding quotient_def by blast |
15300 | 96 |
|
63653 | 97 |
lemma quotientE: "X \<in> A//r \<Longrightarrow> (\<And>x. X = r``{x} \<Longrightarrow> x \<in> A \<Longrightarrow> P) \<Longrightarrow> P" |
98 |
unfolding quotient_def by blast |
|
15300 | 99 |
|
63653 | 100 |
lemma Union_quotient: "equiv A r \<Longrightarrow> \<Union>(A//r) = A" |
101 |
unfolding equiv_def refl_on_def quotient_def by blast |
|
15300 | 102 |
|
63653 | 103 |
lemma quotient_disj: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> X = Y \<or> X \<inter> Y = {}" |
15300 | 104 |
apply (unfold quotient_def) |
105 |
apply clarify |
|
106 |
apply (rule equiv_class_eq) |
|
107 |
apply assumption |
|
108 |
apply (unfold equiv_def trans_def sym_def) |
|
109 |
apply blast |
|
110 |
done |
|
111 |
||
112 |
lemma quotient_eqI: |
|
63653 | 113 |
"equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> X = Y" |
15300 | 114 |
apply (clarify elim!: quotientE) |
63653 | 115 |
apply (rule equiv_class_eq) |
116 |
apply assumption |
|
117 |
apply (unfold equiv_def sym_def trans_def) |
|
118 |
apply blast |
|
15300 | 119 |
done |
120 |
||
121 |
lemma quotient_eq_iff: |
|
63653 | 122 |
"equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> X = Y \<longleftrightarrow> (x, y) \<in> r" |
123 |
apply (rule iffI) |
|
124 |
prefer 2 |
|
125 |
apply (blast del: equalityI intro: quotient_eqI) |
|
15300 | 126 |
apply (clarify elim!: quotientE) |
63653 | 127 |
apply (unfold equiv_def sym_def trans_def) |
128 |
apply blast |
|
15300 | 129 |
done |
130 |
||
63653 | 131 |
lemma eq_equiv_class_iff2: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> {x}//r = {y}//r \<longleftrightarrow> (x, y) \<in> r" |
132 |
by (simp add: quotient_def eq_equiv_class_iff) |
|
15300 | 133 |
|
134 |
lemma quotient_empty [simp]: "{}//r = {}" |
|
63653 | 135 |
by (simp add: quotient_def) |
15300 | 136 |
|
63653 | 137 |
lemma quotient_is_empty [iff]: "A//r = {} \<longleftrightarrow> A = {}" |
138 |
by (simp add: quotient_def) |
|
15300 | 139 |
|
63653 | 140 |
lemma quotient_is_empty2 [iff]: "{} = A//r \<longleftrightarrow> A = {}" |
141 |
by (simp add: quotient_def) |
|
15300 | 142 |
|
15302 | 143 |
lemma singleton_quotient: "{x}//r = {r `` {x}}" |
63653 | 144 |
by (simp add: quotient_def) |
15302 | 145 |
|
63653 | 146 |
lemma quotient_diff1: "inj_on (\<lambda>a. {a}//r) A \<Longrightarrow> a \<in> A \<Longrightarrow> (A - {a})//r = A//r - {a}//r" |
147 |
unfolding quotient_def inj_on_def by blast |
|
148 |
||
15302 | 149 |
|
60758 | 150 |
subsection \<open>Refinement of one equivalence relation WRT another\<close> |
59528
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
151 |
|
63653 | 152 |
lemma refines_equiv_class_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> R``(S``{a}) = S``{a}" |
59528
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
153 |
by (auto simp: equiv_class_eq_iff) |
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
154 |
|
63653 | 155 |
lemma refines_equiv_class_eq2: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> S``(R``{a}) = S``{a}" |
59528
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
156 |
by (auto simp: equiv_class_eq_iff) |
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
157 |
|
63653 | 158 |
lemma refines_equiv_image_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> (\<lambda>X. S``X) ` (A//R) = A//S" |
59528
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
159 |
by (auto simp: quotient_def image_UN refines_equiv_class_eq2) |
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
160 |
|
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
161 |
lemma finite_refines_finite: |
63653 | 162 |
"finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> finite (A//S)" |
163 |
by (erule finite_surj [where f = "\<lambda>X. S``X"]) (simp add: refines_equiv_image_eq) |
|
59528
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
164 |
|
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
165 |
lemma finite_refines_card_le: |
63653 | 166 |
"finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> card (A//S) \<le> card (A//R)" |
167 |
by (subst refines_equiv_image_eq [of R S A, symmetric]) |
|
168 |
(auto simp: card_image_le [where f = "\<lambda>X. S``X"]) |
|
59528
4862f3dc9540
new lemmas re refinement of one equivalence relation WRT another
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
169 |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
170 |
|
60758 | 171 |
subsection \<open>Defining unary operations upon equivalence classes\<close> |
15300 | 172 |
|
63653 | 173 |
text \<open>A congruence-preserving function.\<close> |
40816
19c492929756
replaced slightly odd locale congruent by plain definition
haftmann
parents:
40815
diff
changeset
|
174 |
|
63653 | 175 |
definition congruent :: "('a \<times> 'a) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" |
176 |
where "congruent r f \<longleftrightarrow> (\<forall>(y, z) \<in> r. f y = f z)" |
|
40816
19c492929756
replaced slightly odd locale congruent by plain definition
haftmann
parents:
40815
diff
changeset
|
177 |
|
63653 | 178 |
lemma congruentI: "(\<And>y z. (y, z) \<in> r \<Longrightarrow> f y = f z) \<Longrightarrow> congruent r f" |
40817
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
179 |
by (auto simp add: congruent_def) |
40816
19c492929756
replaced slightly odd locale congruent by plain definition
haftmann
parents:
40815
diff
changeset
|
180 |
|
63653 | 181 |
lemma congruentD: "congruent r f \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> f y = f z" |
40817
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
182 |
by (auto simp add: congruent_def) |
15300 | 183 |
|
63653 | 184 |
abbreviation RESPECTS :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infixr "respects" 80) |
185 |
where "f respects r \<equiv> congruent r f" |
|
15300 | 186 |
|
187 |
||
63653 | 188 |
lemma UN_constant_eq: "a \<in> A \<Longrightarrow> \<forall>y \<in> A. f y = c \<Longrightarrow> (\<Union>y \<in> A. f y) = c" |
61799 | 189 |
\<comment> \<open>lemma required to prove \<open>UN_equiv_class\<close>\<close> |
15300 | 190 |
by auto |
191 |
||
63653 | 192 |
lemma UN_equiv_class: "equiv A r \<Longrightarrow> f respects r \<Longrightarrow> a \<in> A \<Longrightarrow> (\<Union>x \<in> r``{a}. f x) = f a" |
61799 | 193 |
\<comment> \<open>Conversion rule\<close> |
63653 | 194 |
apply (rule equiv_class_self [THEN UN_constant_eq]) |
195 |
apply assumption |
|
196 |
apply assumption |
|
15300 | 197 |
apply (unfold equiv_def congruent_def sym_def) |
198 |
apply (blast del: equalityI) |
|
199 |
done |
|
200 |
||
201 |
lemma UN_equiv_class_type: |
|
63653 | 202 |
"equiv A r \<Longrightarrow> f respects r \<Longrightarrow> X \<in> A//r \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<Union>x \<in> X. f x) \<in> B" |
15300 | 203 |
apply (unfold quotient_def) |
204 |
apply clarify |
|
205 |
apply (subst UN_equiv_class) |
|
206 |
apply auto |
|
207 |
done |
|
208 |
||
60758 | 209 |
text \<open> |
15300 | 210 |
Sufficient conditions for injectiveness. Could weaken premises! |
63653 | 211 |
major premise could be an inclusion; \<open>bcong\<close> could be |
212 |
\<open>\<And>y. y \<in> A \<Longrightarrow> f y \<in> B\<close>. |
|
60758 | 213 |
\<close> |
15300 | 214 |
|
215 |
lemma UN_equiv_class_inject: |
|
63653 | 216 |
"equiv A r \<Longrightarrow> f respects r \<Longrightarrow> |
217 |
(\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) \<Longrightarrow> X \<in> A//r ==> Y \<in> A//r |
|
218 |
\<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> (x, y) \<in> r) |
|
219 |
\<Longrightarrow> X = Y" |
|
15300 | 220 |
apply (unfold quotient_def) |
221 |
apply clarify |
|
222 |
apply (rule equiv_class_eq) |
|
223 |
apply assumption |
|
224 |
apply (subgoal_tac "f x = f xa") |
|
225 |
apply blast |
|
226 |
apply (erule box_equals) |
|
227 |
apply (assumption | rule UN_equiv_class)+ |
|
228 |
done |
|
229 |
||
230 |
||
60758 | 231 |
subsection \<open>Defining binary operations upon equivalence classes\<close> |
15300 | 232 |
|
63653 | 233 |
text \<open>A congruence-preserving function of two arguments.\<close> |
40817
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
234 |
|
63653 | 235 |
definition congruent2 :: "('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> bool" |
236 |
where "congruent2 r1 r2 f \<longleftrightarrow> (\<forall>(y1, z1) \<in> r1. \<forall>(y2, z2) \<in> r2. f y1 y2 = f z1 z2)" |
|
40817
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
237 |
|
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
238 |
lemma congruent2I': |
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
239 |
assumes "\<And>y1 z1 y2 z2. (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" |
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
240 |
shows "congruent2 r1 r2 f" |
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
241 |
using assms by (auto simp add: congruent2_def) |
781da1e8808c
replaced slightly odd locale congruent2 by plain definition
haftmann
parents:
40816
diff
changeset
|
242 |
|
63653 | 243 |
lemma congruent2D: "congruent2 r1 r2 f \<Longrightarrow> (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" |
63092 | 244 |
by (auto simp add: congruent2_def) |
15300 | 245 |
|
63653 | 246 |
text \<open>Abbreviation for the common case where the relations are identical.\<close> |
247 |
abbreviation RESPECTS2:: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infixr "respects2" 80) |
|
248 |
where "f respects2 r \<equiv> congruent2 r r f" |
|
19979 | 249 |
|
15300 | 250 |
|
251 |
lemma congruent2_implies_congruent: |
|
63653 | 252 |
"equiv A r1 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A \<Longrightarrow> congruent r2 (f a)" |
253 |
unfolding congruent_def congruent2_def equiv_def refl_on_def by blast |
|
15300 | 254 |
|
255 |
lemma congruent2_implies_congruent_UN: |
|
63653 | 256 |
"equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A2 \<Longrightarrow> |
15300 | 257 |
congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)" |
258 |
apply (unfold congruent_def) |
|
259 |
apply clarify |
|
260 |
apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+) |
|
261 |
apply (simp add: UN_equiv_class congruent2_implies_congruent) |
|
30198 | 262 |
apply (unfold congruent2_def equiv_def refl_on_def) |
15300 | 263 |
apply (blast del: equalityI) |
264 |
done |
|
265 |
||
266 |
lemma UN_equiv_class2: |
|
63653 | 267 |
"equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a1 \<in> A1 \<Longrightarrow> a2 \<in> A2 \<Longrightarrow> |
268 |
(\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2" |
|
269 |
by (simp add: UN_equiv_class congruent2_implies_congruent congruent2_implies_congruent_UN) |
|
15300 | 270 |
|
271 |
lemma UN_equiv_class_type2: |
|
63653 | 272 |
"equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f |
273 |
\<Longrightarrow> X1 \<in> A1//r1 \<Longrightarrow> X2 \<in> A2//r2 |
|
274 |
\<Longrightarrow> (\<And>x1 x2. x1 \<in> A1 \<Longrightarrow> x2 \<in> A2 \<Longrightarrow> f x1 x2 \<in> B) |
|
275 |
\<Longrightarrow> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" |
|
15300 | 276 |
apply (unfold quotient_def) |
277 |
apply clarify |
|
278 |
apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN |
|
63653 | 279 |
congruent2_implies_congruent quotientI) |
15300 | 280 |
done |
281 |
||
282 |
lemma UN_UN_split_split_eq: |
|
283 |
"(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = |
|
284 |
(\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" |
|
61799 | 285 |
\<comment> \<open>Allows a natural expression of binary operators,\<close> |
286 |
\<comment> \<open>without explicit calls to \<open>split\<close>\<close> |
|
15300 | 287 |
by auto |
288 |
||
289 |
lemma congruent2I: |
|
63653 | 290 |
"equiv A1 r1 \<Longrightarrow> equiv A2 r2 |
291 |
\<Longrightarrow> (\<And>y z w. w \<in> A2 \<Longrightarrow> (y,z) \<in> r1 \<Longrightarrow> f y w = f z w) |
|
292 |
\<Longrightarrow> (\<And>y z w. w \<in> A1 \<Longrightarrow> (y,z) \<in> r2 \<Longrightarrow> f w y = f w z) |
|
293 |
\<Longrightarrow> congruent2 r1 r2 f" |
|
61799 | 294 |
\<comment> \<open>Suggested by John Harrison -- the two subproofs may be\<close> |
63653 | 295 |
\<comment> \<open>\<^emph>\<open>much\<close> simpler than the direct proof.\<close> |
30198 | 296 |
apply (unfold congruent2_def equiv_def refl_on_def) |
15300 | 297 |
apply clarify |
298 |
apply (blast intro: trans) |
|
299 |
done |
|
300 |
||
301 |
lemma congruent2_commuteI: |
|
302 |
assumes equivA: "equiv A r" |
|
63653 | 303 |
and commute: "\<And>y z. y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> f y z = f z y" |
304 |
and congt: "\<And>y z w. w \<in> A \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> f w y = f w z" |
|
15300 | 305 |
shows "f respects2 r" |
306 |
apply (rule congruent2I [OF equivA equivA]) |
|
307 |
apply (rule commute [THEN trans]) |
|
308 |
apply (rule_tac [3] commute [THEN trans, symmetric]) |
|
309 |
apply (rule_tac [5] sym) |
|
25482 | 310 |
apply (rule congt | assumption | |
15300 | 311 |
erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+ |
312 |
done |
|
313 |
||
24728 | 314 |
|
60758 | 315 |
subsection \<open>Quotients and finiteness\<close> |
24728 | 316 |
|
60758 | 317 |
text \<open>Suggested by Florian Kammüller\<close> |
24728 | 318 |
|
63653 | 319 |
lemma finite_quotient: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> finite (A//r)" |
61799 | 320 |
\<comment> \<open>recall @{thm equiv_type}\<close> |
24728 | 321 |
apply (rule finite_subset) |
322 |
apply (erule_tac [2] finite_Pow_iff [THEN iffD2]) |
|
323 |
apply (unfold quotient_def) |
|
324 |
apply blast |
|
325 |
done |
|
326 |
||
63653 | 327 |
lemma finite_equiv_class: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> X \<in> A//r \<Longrightarrow> finite X" |
24728 | 328 |
apply (unfold quotient_def) |
329 |
apply (rule finite_subset) |
|
330 |
prefer 2 apply assumption |
|
331 |
apply blast |
|
332 |
done |
|
333 |
||
63653 | 334 |
lemma equiv_imp_dvd_card: "finite A \<Longrightarrow> equiv A r \<Longrightarrow> \<forall>X \<in> A//r. k dvd card X \<Longrightarrow> k dvd card A" |
26791
3581a9c71909
Instantiated subst rule to avoid problems with HO unification.
berghofe
parents:
25482
diff
changeset
|
335 |
apply (rule Union_quotient [THEN subst [where P="\<lambda>A. k dvd card A"]]) |
24728 | 336 |
apply assumption |
337 |
apply (rule dvd_partition) |
|
63653 | 338 |
prefer 3 apply (blast dest: quotient_disj) |
339 |
apply (simp_all add: Union_quotient equiv_type) |
|
24728 | 340 |
done |
341 |
||
63653 | 342 |
lemma card_quotient_disjoint: "finite A \<Longrightarrow> inj_on (\<lambda>x. {x} // r) A \<Longrightarrow> card (A//r) = card A" |
343 |
apply (simp add:quotient_def) |
|
344 |
apply (subst card_UN_disjoint) |
|
345 |
apply assumption |
|
346 |
apply simp |
|
347 |
apply (fastforce simp add:inj_on_def) |
|
24728 | 348 |
apply simp |
63653 | 349 |
done |
24728 | 350 |
|
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
351 |
|
60758 | 352 |
subsection \<open>Projection\<close> |
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
353 |
|
63653 | 354 |
definition proj :: "('b \<times> 'a) set \<Rightarrow> 'b \<Rightarrow> 'a set" |
355 |
where "proj r x = r `` {x}" |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
356 |
|
63653 | 357 |
lemma proj_preserves: "x \<in> A \<Longrightarrow> proj r x \<in> A//r" |
358 |
unfolding proj_def by (rule quotientI) |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
359 |
|
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
360 |
lemma proj_in_iff: |
63653 | 361 |
assumes "equiv A r" |
362 |
shows "proj r x \<in> A//r \<longleftrightarrow> x \<in> A" |
|
363 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
364 |
proof |
|
365 |
assume ?rhs |
|
366 |
then show ?lhs by (simp add: proj_preserves) |
|
367 |
next |
|
368 |
assume ?lhs |
|
369 |
then show ?rhs |
|
370 |
unfolding proj_def quotient_def |
|
371 |
proof clarsimp |
|
372 |
fix y |
|
373 |
assume y: "y \<in> A" and "r `` {x} = r `` {y}" |
|
374 |
moreover have "y \<in> r `` {y}" |
|
375 |
using assms y unfolding equiv_def refl_on_def by blast |
|
376 |
ultimately have "(x, y) \<in> r" by blast |
|
377 |
then show "x \<in> A" |
|
378 |
using assms unfolding equiv_def refl_on_def by blast |
|
379 |
qed |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
380 |
qed |
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
381 |
|
63653 | 382 |
lemma proj_iff: "equiv A r \<Longrightarrow> {x, y} \<subseteq> A \<Longrightarrow> proj r x = proj r y \<longleftrightarrow> (x, y) \<in> r" |
383 |
by (simp add: proj_def eq_equiv_class_iff) |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
384 |
|
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
385 |
(* |
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
386 |
lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x" |
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
387 |
unfolding proj_def equiv_def refl_on_def by blast |
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
388 |
*) |
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
389 |
|
63653 | 390 |
lemma proj_image: "proj r ` A = A//r" |
391 |
unfolding proj_def[abs_def] quotient_def by blast |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
392 |
|
63653 | 393 |
lemma in_quotient_imp_non_empty: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<noteq> {}" |
394 |
unfolding quotient_def using equiv_class_self by fast |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
395 |
|
63653 | 396 |
lemma in_quotient_imp_in_rel: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> {x, y} \<subseteq> X \<Longrightarrow> (x, y) \<in> r" |
397 |
using quotient_eq_iff[THEN iffD1] by fastforce |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
398 |
|
63653 | 399 |
lemma in_quotient_imp_closed: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> X" |
400 |
unfolding quotient_def equiv_def trans_def by blast |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
401 |
|
63653 | 402 |
lemma in_quotient_imp_subset: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<subseteq> A" |
403 |
using in_quotient_imp_in_rel equiv_type by fastforce |
|
55022
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
404 |
|
eeba3ba73486
liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
blanchet
parents:
54744
diff
changeset
|
405 |
|
60758 | 406 |
subsection \<open>Equivalence relations -- predicate version\<close> |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
407 |
|
63653 | 408 |
text \<open>Partial equivalences.\<close> |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
409 |
|
63653 | 410 |
definition part_equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
411 |
where "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> (\<forall>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y)" |
|
61799 | 412 |
\<comment> \<open>John-Harrison-style characterization\<close> |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
413 |
|
63653 | 414 |
lemma part_equivpI: "\<exists>x. R x x \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> part_equivp R" |
45969 | 415 |
by (auto simp add: part_equivp_def) (auto elim: sympE transpE) |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
416 |
|
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
417 |
lemma part_equivpE: |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
418 |
assumes "part_equivp R" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
419 |
obtains x where "R x x" and "symp R" and "transp R" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
420 |
proof - |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
421 |
from assms have 1: "\<exists>x. R x x" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
422 |
and 2: "\<And>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y" |
63653 | 423 |
unfolding part_equivp_def by blast+ |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
424 |
from 1 obtain x where "R x x" .. |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
425 |
moreover have "symp R" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
426 |
proof (rule sympI) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
427 |
fix x y |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
428 |
assume "R x y" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
429 |
with 2 [of x y] show "R y x" by auto |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
430 |
qed |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
431 |
moreover have "transp R" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
432 |
proof (rule transpI) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
433 |
fix x y z |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
434 |
assume "R x y" and "R y z" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
435 |
with 2 [of x y] 2 [of y z] show "R x z" by auto |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
436 |
qed |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
437 |
ultimately show thesis by (rule that) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
438 |
qed |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
439 |
|
63653 | 440 |
lemma part_equivp_refl_symp_transp: "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> symp R \<and> transp R" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
441 |
by (auto intro: part_equivpI elim: part_equivpE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
442 |
|
63653 | 443 |
lemma part_equivp_symp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
444 |
by (erule part_equivpE, erule sympE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
445 |
|
63653 | 446 |
lemma part_equivp_transp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
447 |
by (erule part_equivpE, erule transpE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
448 |
|
63653 | 449 |
lemma part_equivp_typedef: "part_equivp R \<Longrightarrow> \<exists>d. d \<in> {c. \<exists>x. R x x \<and> c = Collect (R x)}" |
44204
3cdc4176638c
Quotient Package: make quotient_type work with separate set type
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
40945
diff
changeset
|
450 |
by (auto elim: part_equivpE) |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
451 |
|
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
452 |
|
63653 | 453 |
text \<open>Total equivalences.\<close> |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
454 |
|
63653 | 455 |
definition equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
456 |
where "equivp R \<longleftrightarrow> (\<forall>x y. R x y = (R x = R y))" \<comment> \<open>John-Harrison-style characterization\<close> |
|
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
457 |
|
63653 | 458 |
lemma equivpI: "reflp R \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> equivp R" |
45969 | 459 |
by (auto elim: reflpE sympE transpE simp add: equivp_def) |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
460 |
|
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
461 |
lemma equivpE: |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
462 |
assumes "equivp R" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
463 |
obtains "reflp R" and "symp R" and "transp R" |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
464 |
using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
465 |
|
63653 | 466 |
lemma equivp_implies_part_equivp: "equivp R \<Longrightarrow> part_equivp R" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
467 |
by (auto intro: part_equivpI elim: equivpE reflpE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
468 |
|
63653 | 469 |
lemma equivp_equiv: "equiv UNIV A \<longleftrightarrow> equivp (\<lambda>x y. (x, y) \<in> A)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
45969
diff
changeset
|
470 |
by (auto intro!: equivI equivpI [to_set] elim!: equivE equivpE [to_set]) |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
471 |
|
63653 | 472 |
lemma equivp_reflp_symp_transp: "equivp R \<longleftrightarrow> reflp R \<and> symp R \<and> transp R" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
473 |
by (auto intro: equivpI elim: equivpE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
474 |
|
63653 | 475 |
lemma identity_equivp: "equivp (op =)" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
476 |
by (auto intro: equivpI reflpI sympI transpI) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
477 |
|
63653 | 478 |
lemma equivp_reflp: "equivp R \<Longrightarrow> R x x" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
479 |
by (erule equivpE, erule reflpE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
480 |
|
63653 | 481 |
lemma equivp_symp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
482 |
by (erule equivpE, erule sympE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
483 |
|
63653 | 484 |
lemma equivp_transp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" |
40812
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
485 |
by (erule equivpE, erule transpE) |
ff16e22e8776
moved generic definitions about (partial) equivalence relations from Quotient to Equiv_Relations;
haftmann
parents:
37767
diff
changeset
|
486 |
|
55024 | 487 |
hide_const (open) proj |
488 |
||
15300 | 489 |
end |