author | paulson <lp15@cam.ac.uk> |
Wed, 28 Sep 2016 17:01:01 +0100 | |
changeset 63952 | 354808e9f44b |
parent 63882 | 018998c00003 |
child 64267 | b9a1486e79be |
permissions | -rw-r--r-- |
47613 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
theory Abs_Int0 |
|
4 |
imports Abs_Int_init |
|
5 |
begin |
|
6 |
||
7 |
subsection "Orderings" |
|
8 |
||
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52504
diff
changeset
|
9 |
text{* The basic type classes @{class order}, @{class semilattice_sup} and @{class order_top} are |
51625 | 10 |
defined in @{theory Main}, more precisely in theories @{theory Orderings} and @{theory Lattices}. |
11 |
If you view this theory with jedit, just click on the names to get there. *} |
|
47613 | 12 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52504
diff
changeset
|
13 |
class semilattice_sup_top = semilattice_sup + order_top |
47613 | 14 |
|
15 |
||
51826 | 16 |
instance "fun" :: (type, semilattice_sup_top) semilattice_sup_top .. |
47613 | 17 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
18 |
instantiation option :: (order)order |
47613 | 19 |
begin |
20 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
21 |
fun less_eq_option where |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
22 |
"Some x \<le> Some y = (x \<le> y)" | |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
23 |
"None \<le> y = True" | |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
24 |
"Some _ \<le> None = False" |
47613 | 25 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
26 |
definition less_option where "x < (y::'a option) = (x \<le> y \<and> \<not> y \<le> x)" |
47613 | 27 |
|
51628 | 28 |
lemma le_None[simp]: "(x \<le> None) = (x = None)" |
47613 | 29 |
by (cases x) simp_all |
30 |
||
51628 | 31 |
lemma Some_le[simp]: "(Some x \<le> u) = (\<exists>y. u = Some y \<and> x \<le> y)" |
47613 | 32 |
by (cases u) auto |
33 |
||
61179 | 34 |
instance |
35 |
proof (standard, goal_cases) |
|
36 |
case 1 show ?case by(rule less_option_def) |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
37 |
next |
61179 | 38 |
case (2 x) show ?case by(cases x, simp_all) |
47613 | 39 |
next |
61179 | 40 |
case (3 x y z) thus ?case by(cases z, simp, cases y, simp, cases x, auto) |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
41 |
next |
61179 | 42 |
case (4 x y) thus ?case by(cases y, simp, cases x, auto) |
47613 | 43 |
qed |
44 |
||
45 |
end |
|
46 |
||
51389 | 47 |
instantiation option :: (sup)sup |
47613 | 48 |
begin |
49 |
||
51389 | 50 |
fun sup_option where |
47613 | 51 |
"Some x \<squnion> Some y = Some(x \<squnion> y)" | |
52 |
"None \<squnion> y = y" | |
|
53 |
"x \<squnion> None = x" |
|
54 |
||
51389 | 55 |
lemma sup_None2[simp]: "x \<squnion> None = x" |
47613 | 56 |
by (cases x) simp_all |
57 |
||
58 |
instance .. |
|
59 |
||
60 |
end |
|
61 |
||
51826 | 62 |
instantiation option :: (semilattice_sup_top)semilattice_sup_top |
47613 | 63 |
begin |
64 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
65 |
definition top_option where "\<top> = Some \<top>" |
47613 | 66 |
|
61179 | 67 |
instance |
68 |
proof (standard, goal_cases) |
|
69 |
case (4 a) show ?case by(cases a, simp_all add: top_option_def) |
|
47613 | 70 |
next |
61179 | 71 |
case (1 x y) thus ?case by(cases x, simp, cases y, simp_all) |
47613 | 72 |
next |
61179 | 73 |
case (2 x y) thus ?case by(cases y, simp, cases x, simp_all) |
47613 | 74 |
next |
61179 | 75 |
case (3 x y z) thus ?case by(cases z, simp, cases y, simp, cases x, simp_all) |
47613 | 76 |
qed |
77 |
||
78 |
end |
|
79 |
||
51390 | 80 |
lemma [simp]: "(Some x < Some y) = (x < y)" |
81 |
by(auto simp: less_le) |
|
82 |
||
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52504
diff
changeset
|
83 |
instantiation option :: (order)order_bot |
47613 | 84 |
begin |
85 |
||
49396 | 86 |
definition bot_option :: "'a option" where |
47613 | 87 |
"\<bottom> = None" |
88 |
||
89 |
instance |
|
61179 | 90 |
proof (standard, goal_cases) |
91 |
case 1 thus ?case by(auto simp: bot_option_def) |
|
47613 | 92 |
qed |
93 |
||
94 |
end |
|
95 |
||
96 |
||
97 |
definition bot :: "com \<Rightarrow> 'a option acom" where |
|
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
98 |
"bot c = annotate (\<lambda>p. None) c" |
47613 | 99 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
100 |
lemma bot_least: "strip C = c \<Longrightarrow> bot c \<le> C" |
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
101 |
by(auto simp: bot_def less_eq_acom_def) |
47613 | 102 |
|
103 |
lemma strip_bot[simp]: "strip(bot c) = c" |
|
104 |
by(simp add: bot_def) |
|
105 |
||
106 |
||
51722 | 107 |
subsubsection "Pre-fixpoint iteration" |
47613 | 108 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
109 |
definition pfp :: "(('a::order) \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option" where |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
110 |
"pfp f = while_option (\<lambda>x. \<not> f x \<le> x) f" |
47613 | 111 |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
112 |
lemma pfp_pfp: assumes "pfp f x0 = Some x" shows "f x \<le> x" |
47613 | 113 |
using while_option_stop[OF assms[simplified pfp_def]] by simp |
114 |
||
49464 | 115 |
lemma while_least: |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
116 |
fixes q :: "'a::order" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
117 |
assumes "\<forall>x\<in>L.\<forall>y\<in>L. x \<le> y \<longrightarrow> f x \<le> f y" and "\<forall>x. x \<in> L \<longrightarrow> f x \<in> L" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
118 |
and "\<forall>x \<in> L. b \<le> x" and "b \<in> L" and "f q \<le> q" and "q \<in> L" |
49464 | 119 |
and "while_option P f b = Some p" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
120 |
shows "p \<le> q" |
49464 | 121 |
using while_option_rule[OF _ assms(7)[unfolded pfp_def], |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
122 |
where P = "%x. x \<in> L \<and> x \<le> q"] |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
123 |
by (metis assms(1-6) order_trans) |
47613 | 124 |
|
51710 | 125 |
lemma pfp_bot_least: |
126 |
assumes "\<forall>x\<in>{C. strip C = c}.\<forall>y\<in>{C. strip C = c}. x \<le> y \<longrightarrow> f x \<le> f y" |
|
127 |
and "\<forall>C. C \<in> {C. strip C = c} \<longrightarrow> f C \<in> {C. strip C = c}" |
|
128 |
and "f C' \<le> C'" "strip C' = c" "pfp f (bot c) = Some C" |
|
129 |
shows "C \<le> C'" |
|
130 |
by(rule while_least[OF assms(1,2) _ _ assms(3) _ assms(5)[unfolded pfp_def]]) |
|
131 |
(simp_all add: assms(4) bot_least) |
|
132 |
||
49464 | 133 |
lemma pfp_inv: |
134 |
"pfp f x = Some y \<Longrightarrow> (\<And>x. P x \<Longrightarrow> P(f x)) \<Longrightarrow> P x \<Longrightarrow> P y" |
|
58955 | 135 |
unfolding pfp_def by (blast intro: while_option_rule) |
47613 | 136 |
|
137 |
lemma strip_pfp: |
|
138 |
assumes "\<And>x. g(f x) = g x" and "pfp f x0 = Some x" shows "g x = g x0" |
|
49464 | 139 |
using pfp_inv[OF assms(2), where P = "%x. g x = g x0"] assms(1) by simp |
47613 | 140 |
|
141 |
||
142 |
subsection "Abstract Interpretation" |
|
143 |
||
144 |
definition \<gamma>_fun :: "('a \<Rightarrow> 'b set) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> ('c \<Rightarrow> 'b)set" where |
|
145 |
"\<gamma>_fun \<gamma> F = {f. \<forall>x. f x \<in> \<gamma>(F x)}" |
|
146 |
||
147 |
fun \<gamma>_option :: "('a \<Rightarrow> 'b set) \<Rightarrow> 'a option \<Rightarrow> 'b set" where |
|
148 |
"\<gamma>_option \<gamma> None = {}" | |
|
149 |
"\<gamma>_option \<gamma> (Some a) = \<gamma> a" |
|
150 |
||
151 |
text{* The interface for abstract values: *} |
|
152 |
||
52504 | 153 |
locale Val_semilattice = |
51826 | 154 |
fixes \<gamma> :: "'av::semilattice_sup_top \<Rightarrow> val set" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
155 |
assumes mono_gamma: "a \<le> b \<Longrightarrow> \<gamma> a \<le> \<gamma> b" |
47613 | 156 |
and gamma_Top[simp]: "\<gamma> \<top> = UNIV" |
157 |
fixes num' :: "val \<Rightarrow> 'av" |
|
158 |
and plus' :: "'av \<Rightarrow> 'av \<Rightarrow> 'av" |
|
51036 | 159 |
assumes gamma_num': "i \<in> \<gamma>(num' i)" |
160 |
and gamma_plus': "i1 \<in> \<gamma> a1 \<Longrightarrow> i2 \<in> \<gamma> a2 \<Longrightarrow> i1+i2 \<in> \<gamma>(plus' a1 a2)" |
|
47613 | 161 |
|
162 |
type_synonym 'av st = "(vname \<Rightarrow> 'av)" |
|
163 |
||
51826 | 164 |
text{* The for-clause (here and elsewhere) only serves the purpose of fixing |
165 |
the name of the type parameter @{typ 'av} which would otherwise be renamed to |
|
166 |
@{typ 'a}. *} |
|
167 |
||
52504 | 168 |
locale Abs_Int_fun = Val_semilattice where \<gamma>=\<gamma> |
51826 | 169 |
for \<gamma> :: "'av::semilattice_sup_top \<Rightarrow> val set" |
47613 | 170 |
begin |
171 |
||
172 |
fun aval' :: "aexp \<Rightarrow> 'av st \<Rightarrow> 'av" where |
|
50896 | 173 |
"aval' (N i) S = num' i" | |
47613 | 174 |
"aval' (V x) S = S x" | |
175 |
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)" |
|
176 |
||
51807 | 177 |
definition "asem x e S = (case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(S(x := aval' e S)))" |
51694 | 178 |
|
51807 | 179 |
definition "step' = Step asem (\<lambda>b S. S)" |
51389 | 180 |
|
51722 | 181 |
lemma strip_step'[simp]: "strip(step' S C) = strip C" |
182 |
by(simp add: step'_def) |
|
183 |
||
47613 | 184 |
definition AI :: "com \<Rightarrow> 'av st option acom option" where |
49464 | 185 |
"AI c = pfp (step' \<top>) (bot c)" |
47613 | 186 |
|
187 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
188 |
abbreviation \<gamma>\<^sub>s :: "'av st \<Rightarrow> state set" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
189 |
where "\<gamma>\<^sub>s == \<gamma>_fun \<gamma>" |
47613 | 190 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
191 |
abbreviation \<gamma>\<^sub>o :: "'av st option \<Rightarrow> state set" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
192 |
where "\<gamma>\<^sub>o == \<gamma>_option \<gamma>\<^sub>s" |
47613 | 193 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
194 |
abbreviation \<gamma>\<^sub>c :: "'av st option acom \<Rightarrow> state set acom" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
195 |
where "\<gamma>\<^sub>c == map_acom \<gamma>\<^sub>o" |
47613 | 196 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
197 |
lemma gamma_s_Top[simp]: "\<gamma>\<^sub>s \<top> = UNIV" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
198 |
by(simp add: top_fun_def \<gamma>_fun_def) |
47613 | 199 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
200 |
lemma gamma_o_Top[simp]: "\<gamma>\<^sub>o \<top> = UNIV" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
201 |
by (simp add: top_option_def) |
47613 | 202 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
203 |
lemma mono_gamma_s: "f1 \<le> f2 \<Longrightarrow> \<gamma>\<^sub>s f1 \<subseteq> \<gamma>\<^sub>s f2" |
47613 | 204 |
by(auto simp: le_fun_def \<gamma>_fun_def dest: mono_gamma) |
205 |
||
206 |
lemma mono_gamma_o: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
207 |
"S1 \<le> S2 \<Longrightarrow> \<gamma>\<^sub>o S1 \<subseteq> \<gamma>\<^sub>o S2" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
208 |
by(induction S1 S2 rule: less_eq_option.induct)(simp_all add: mono_gamma_s) |
47613 | 209 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
210 |
lemma mono_gamma_c: "C1 \<le> C2 \<Longrightarrow> \<gamma>\<^sub>c C1 \<le> \<gamma>\<^sub>c C2" |
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
211 |
by (simp add: less_eq_acom_def mono_gamma_o size_annos anno_map_acom size_annos_same[of C1 C2]) |
47613 | 212 |
|
51974 | 213 |
text{* Correctness: *} |
47613 | 214 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
215 |
lemma aval'_correct: "s : \<gamma>\<^sub>s S \<Longrightarrow> aval a s : \<gamma>(aval' a S)" |
47613 | 216 |
by (induct a) (auto simp: gamma_num' gamma_plus' \<gamma>_fun_def) |
217 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
218 |
lemma in_gamma_update: "\<lbrakk> s : \<gamma>\<^sub>s S; i : \<gamma> a \<rbrakk> \<Longrightarrow> s(x := i) : \<gamma>\<^sub>s(S(x := a))" |
47613 | 219 |
by(simp add: \<gamma>_fun_def) |
220 |
||
51390 | 221 |
lemma gamma_Step_subcomm: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
222 |
assumes "!!x e S. f1 x e (\<gamma>\<^sub>o S) \<subseteq> \<gamma>\<^sub>o (f2 x e S)" "!!b S. g1 b (\<gamma>\<^sub>o S) \<subseteq> \<gamma>\<^sub>o (g2 b S)" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
223 |
shows "Step f1 g1 (\<gamma>\<^sub>o S) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (Step f2 g2 S C)" |
54944 | 224 |
by (induction C arbitrary: S) (auto simp: mono_gamma_o assms) |
51390 | 225 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
226 |
lemma step_step': "step (\<gamma>\<^sub>o S) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' S C)" |
51390 | 227 |
unfolding step_def step'_def |
51694 | 228 |
by(rule gamma_Step_subcomm) |
51974 | 229 |
(auto simp: aval'_correct in_gamma_update asem_def split: option.splits) |
47613 | 230 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
231 |
lemma AI_correct: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c C" |
47613 | 232 |
proof(simp add: CS_def AI_def) |
49464 | 233 |
assume 1: "pfp (step' \<top>) (bot c) = Some C" |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
234 |
have pfp': "step' \<top> C \<le> C" by(rule pfp_pfp[OF 1]) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
235 |
have 2: "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c C" --"transfer the pfp'" |
50986 | 236 |
proof(rule order_trans) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
237 |
show "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' \<top> C)" by(rule step_step') |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
238 |
show "... \<le> \<gamma>\<^sub>c C" by (metis mono_gamma_c[OF pfp']) |
47613 | 239 |
qed |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
240 |
have 3: "strip (\<gamma>\<^sub>c C) = c" by(simp add: strip_pfp[OF _ 1] step'_def) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
241 |
have "lfp c (step (\<gamma>\<^sub>o \<top>)) \<le> \<gamma>\<^sub>c C" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
242 |
by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^sub>o \<top>)", OF 3 2]) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
243 |
thus "lfp c (step UNIV) \<le> \<gamma>\<^sub>c C" by simp |
47613 | 244 |
qed |
245 |
||
246 |
end |
|
247 |
||
248 |
||
249 |
subsubsection "Monotonicity" |
|
250 |
||
51721 | 251 |
locale Abs_Int_fun_mono = Abs_Int_fun + |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
252 |
assumes mono_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> plus' a1 a2 \<le> plus' b1 b2" |
47613 | 253 |
begin |
254 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
255 |
lemma mono_aval': "S \<le> S' \<Longrightarrow> aval' e S \<le> aval' e S'" |
47613 | 256 |
by(induction e)(auto simp: le_fun_def mono_plus') |
257 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
258 |
lemma mono_update: "a \<le> a' \<Longrightarrow> S \<le> S' \<Longrightarrow> S(x := a) \<le> S'(x := a')" |
47613 | 259 |
by(simp add: le_fun_def) |
260 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51036
diff
changeset
|
261 |
lemma mono_step': "S1 \<le> S2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> step' S1 C1 \<le> step' S2 C2" |
51390 | 262 |
unfolding step'_def |
51694 | 263 |
by(rule mono2_Step) |
51807 | 264 |
(auto simp: mono_update mono_aval' asem_def split: option.split) |
47613 | 265 |
|
51722 | 266 |
lemma mono_step'_top: "C \<le> C' \<Longrightarrow> step' \<top> C \<le> step' \<top> C'" |
267 |
by (metis mono_step' order_refl) |
|
268 |
||
269 |
lemma AI_least_pfp: assumes "AI c = Some C" "step' \<top> C' \<le> C'" "strip C' = c" |
|
270 |
shows "C \<le> C'" |
|
271 |
by(rule pfp_bot_least[OF _ _ assms(2,3) assms(1)[unfolded AI_def]]) |
|
272 |
(simp_all add: mono_step'_top) |
|
273 |
||
274 |
end |
|
275 |
||
276 |
||
277 |
instantiation acom :: (type) vars |
|
278 |
begin |
|
279 |
||
280 |
definition "vars_acom = vars o strip" |
|
281 |
||
282 |
instance .. |
|
283 |
||
284 |
end |
|
285 |
||
286 |
lemma finite_Cvars: "finite(vars(C::'a acom))" |
|
287 |
by(simp add: vars_acom_def) |
|
288 |
||
289 |
||
290 |
subsubsection "Termination" |
|
291 |
||
292 |
lemma pfp_termination: |
|
293 |
fixes x0 :: "'a::order" and m :: "'a \<Rightarrow> nat" |
|
294 |
assumes mono: "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" |
|
295 |
and m: "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x < y \<Longrightarrow> m x > m y" |
|
296 |
and I: "\<And>x y. I x \<Longrightarrow> I(f x)" and "I x0" and "x0 \<le> f x0" |
|
297 |
shows "\<exists>x. pfp f x0 = Some x" |
|
298 |
proof(simp add: pfp_def, rule wf_while_option_Some[where P = "%x. I x & x \<le> f x"]) |
|
299 |
show "wf {(y,x). ((I x \<and> x \<le> f x) \<and> \<not> f x \<le> x) \<and> y = f x}" |
|
300 |
by(rule wf_subset[OF wf_measure[of m]]) (auto simp: m I) |
|
301 |
next |
|
302 |
show "I x0 \<and> x0 \<le> f x0" using `I x0` `x0 \<le> f x0` by blast |
|
303 |
next |
|
304 |
fix x assume "I x \<and> x \<le> f x" thus "I(f x) \<and> f x \<le> f(f x)" |
|
305 |
by (blast intro: I mono) |
|
306 |
qed |
|
307 |
||
52019
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
308 |
lemma le_iff_le_annos: "C1 \<le> C2 \<longleftrightarrow> |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
309 |
strip C1 = strip C2 \<and> (\<forall> i<size(annos C1). annos C1 ! i \<le> annos C2 ! i)" |
a4cbca8f7342
finally: acom with pointwise access and update of annotations
nipkow
parents:
51974
diff
changeset
|
310 |
by(simp add: less_eq_acom_def anno_def) |
51722 | 311 |
|
312 |
locale Measure1_fun = |
|
51749
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
313 |
fixes m :: "'av::top \<Rightarrow> nat" |
51722 | 314 |
fixes h :: "nat" |
315 |
assumes h: "m x \<le> h" |
|
316 |
begin |
|
317 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
318 |
definition m_s :: "'av st \<Rightarrow> vname set \<Rightarrow> nat" ("m\<^sub>s") where |
51791 | 319 |
"m_s S X = (\<Sum> x \<in> X. m(S x))" |
51722 | 320 |
|
51791 | 321 |
lemma m_s_h: "finite X \<Longrightarrow> m_s S X \<le> h * card X" |
60974
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents:
58955
diff
changeset
|
322 |
by(simp add: m_s_def) (metis mult.commute of_nat_id setsum_bounded_above[OF h]) |
51722 | 323 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
324 |
fun m_o :: "'av st option \<Rightarrow> vname set \<Rightarrow> nat" ("m\<^sub>o") where |
51791 | 325 |
"m_o (Some S) X = m_s S X" | |
326 |
"m_o None X = h * card X + 1" |
|
51722 | 327 |
|
51791 | 328 |
lemma m_o_h: "finite X \<Longrightarrow> m_o opt X \<le> (h*card X + 1)" |
51749
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
329 |
by(cases opt)(auto simp add: m_s_h le_SucI dest: m_s_h) |
51722 | 330 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
331 |
definition m_c :: "'av st option acom \<Rightarrow> nat" ("m\<^sub>c") where |
63882
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
nipkow
parents:
61179
diff
changeset
|
332 |
"m_c C = sum_list (map (\<lambda>a. m_o a (vars C)) (annos C))" |
51722 | 333 |
|
334 |
text{* Upper complexity bound: *} |
|
335 |
lemma m_c_h: "m_c C \<le> size(annos C) * (h * card(vars C) + 1)" |
|
336 |
proof- |
|
337 |
let ?X = "vars C" let ?n = "card ?X" let ?a = "size(annos C)" |
|
51791 | 338 |
have "m_c C = (\<Sum>i<?a. m_o (annos C ! i) ?X)" |
63882
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
nipkow
parents:
61179
diff
changeset
|
339 |
by(simp add: m_c_def sum_list_setsum_nth atLeast0LessThan) |
51722 | 340 |
also have "\<dots> \<le> (\<Sum>i<?a. h * ?n + 1)" |
341 |
apply(rule setsum_mono) using m_o_h[OF finite_Cvars] by simp |
|
342 |
also have "\<dots> = ?a * (h * ?n + 1)" by simp |
|
343 |
finally show ?thesis . |
|
344 |
qed |
|
345 |
||
346 |
end |
|
347 |
||
348 |
||
51826 | 349 |
locale Measure_fun = Measure1_fun where m=m |
350 |
for m :: "'av::semilattice_sup_top \<Rightarrow> nat" + |
|
51749
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
351 |
assumes m2: "x < y \<Longrightarrow> m x > m y" |
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
352 |
begin |
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
353 |
|
51785 | 354 |
text{* The predicates @{text "top_on_ty a X"} that follow describe that any abstract |
51749
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
355 |
state in @{text a} maps all variables in @{text X} to @{term \<top>}. |
51722 | 356 |
This is an important invariant for the termination proof where we argue that only |
357 |
the finitely many variables in the program change. That the others do not change |
|
358 |
follows because they remain @{term \<top>}. *} |
|
359 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
360 |
fun top_on_st :: "'av st \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>s") where |
51785 | 361 |
"top_on_st S X = (\<forall>x\<in>X. S x = \<top>)" |
51722 | 362 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
363 |
fun top_on_opt :: "'av st option \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>o") where |
51785 | 364 |
"top_on_opt (Some S) X = top_on_st S X" | |
365 |
"top_on_opt None X = True" |
|
51722 | 366 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52729
diff
changeset
|
367 |
definition top_on_acom :: "'av st option acom \<Rightarrow> vname set \<Rightarrow> bool" ("top'_on\<^sub>c") where |
51785 | 368 |
"top_on_acom C X = (\<forall>a \<in> set(annos C). top_on_opt a X)" |
51722 | 369 |
|
51785 | 370 |
lemma top_on_top: "top_on_opt \<top> X" |
51722 | 371 |
by(auto simp: top_option_def) |
372 |
||
51785 | 373 |
lemma top_on_bot: "top_on_acom (bot c) X" |
51722 | 374 |
by(auto simp add: top_on_acom_def bot_def) |
375 |
||
51785 | 376 |
lemma top_on_post: "top_on_acom C X \<Longrightarrow> top_on_opt (post C) X" |
51722 | 377 |
by(simp add: top_on_acom_def post_in_annos) |
378 |
||
379 |
lemma top_on_acom_simps: |
|
51785 | 380 |
"top_on_acom (SKIP {Q}) X = top_on_opt Q X" |
381 |
"top_on_acom (x ::= e {Q}) X = top_on_opt Q X" |
|
52046
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
nipkow
parents:
52022
diff
changeset
|
382 |
"top_on_acom (C1;;C2) X = (top_on_acom C1 X \<and> top_on_acom C2 X)" |
51785 | 383 |
"top_on_acom (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) X = |
384 |
(top_on_opt P1 X \<and> top_on_acom C1 X \<and> top_on_opt P2 X \<and> top_on_acom C2 X \<and> top_on_opt Q X)" |
|
385 |
"top_on_acom ({I} WHILE b DO {P} C {Q}) X = |
|
386 |
(top_on_opt I X \<and> top_on_acom C X \<and> top_on_opt P X \<and> top_on_opt Q X)" |
|
51722 | 387 |
by(auto simp add: top_on_acom_def) |
388 |
||
389 |
lemma top_on_sup: |
|
51785 | 390 |
"top_on_opt o1 X \<Longrightarrow> top_on_opt o2 X \<Longrightarrow> top_on_opt (o1 \<squnion> o2) X" |
51722 | 391 |
apply(induction o1 o2 rule: sup_option.induct) |
392 |
apply(auto) |
|
393 |
done |
|
394 |
||
51749
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
395 |
lemma top_on_Step: fixes C :: "'av st option acom" |
51785 | 396 |
assumes "!!x e S. \<lbrakk>top_on_opt S X; x \<notin> X; vars e \<subseteq> -X\<rbrakk> \<Longrightarrow> top_on_opt (f x e S) X" |
397 |
"!!b S. top_on_opt S X \<Longrightarrow> vars b \<subseteq> -X \<Longrightarrow> top_on_opt (g b S) X" |
|
398 |
shows "\<lbrakk> vars C \<subseteq> -X; top_on_opt S X; top_on_acom C X \<rbrakk> \<Longrightarrow> top_on_acom (Step f g S C) X" |
|
51722 | 399 |
proof(induction C arbitrary: S) |
400 |
qed (auto simp: top_on_acom_simps vars_acom_def top_on_post top_on_sup assms) |
|
401 |
||
402 |
lemma m1: "x \<le> y \<Longrightarrow> m x \<ge> m y" |
|
403 |
by(auto simp: le_less m2) |
|
404 |
||
405 |
lemma m_s2_rep: assumes "finite(X)" and "S1 = S2 on -X" and "\<forall>x. S1 x \<le> S2 x" and "S1 \<noteq> S2" |
|
406 |
shows "(\<Sum>x\<in>X. m (S2 x)) < (\<Sum>x\<in>X. m (S1 x))" |
|
407 |
proof- |
|
408 |
from assms(3) have 1: "\<forall>x\<in>X. m(S1 x) \<ge> m(S2 x)" by (simp add: m1) |
|
409 |
from assms(2,3,4) have "EX x:X. S1 x < S2 x" |
|
410 |
by(simp add: fun_eq_iff) (metis Compl_iff le_neq_trans) |
|
411 |
hence 2: "\<exists>x\<in>X. m(S1 x) > m(S2 x)" by (metis m2) |
|
412 |
from setsum_strict_mono_ex1[OF `finite X` 1 2] |
|
413 |
show "(\<Sum>x\<in>X. m (S2 x)) < (\<Sum>x\<in>X. m (S1 x))" . |
|
414 |
qed |
|
415 |
||
51791 | 416 |
lemma m_s2: "finite(X) \<Longrightarrow> S1 = S2 on -X \<Longrightarrow> S1 < S2 \<Longrightarrow> m_s S1 X > m_s S2 X" |
51722 | 417 |
apply(auto simp add: less_fun_def m_s_def) |
418 |
apply(simp add: m_s2_rep le_fun_def) |
|
419 |
done |
|
420 |
||
51785 | 421 |
lemma m_o2: "finite X \<Longrightarrow> top_on_opt o1 (-X) \<Longrightarrow> top_on_opt o2 (-X) \<Longrightarrow> |
51791 | 422 |
o1 < o2 \<Longrightarrow> m_o o1 X > m_o o2 X" |
51722 | 423 |
proof(induction o1 o2 rule: less_eq_option.induct) |
51749
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
424 |
case 1 thus ?case by (auto simp: m_s2 less_option_def) |
51722 | 425 |
next |
51749
c27bb7994bd3
moved defs into locale to reduce unnecessary polymorphism; tuned
nipkow
parents:
51722
diff
changeset
|
426 |
case 2 thus ?case by(auto simp: less_option_def le_imp_less_Suc m_s_h) |
51722 | 427 |
next |
428 |
case 3 thus ?case by (auto simp: less_option_def) |
|
429 |
qed |
|
430 |
||
51785 | 431 |
lemma m_o1: "finite X \<Longrightarrow> top_on_opt o1 (-X) \<Longrightarrow> top_on_opt o2 (-X) \<Longrightarrow> |
51791 | 432 |
o1 \<le> o2 \<Longrightarrow> m_o o1 X \<ge> m_o o2 X" |
51722 | 433 |
by(auto simp: le_less m_o2) |
434 |
||
435 |
||
51785 | 436 |
lemma m_c2: "top_on_acom C1 (-vars C1) \<Longrightarrow> top_on_acom C2 (-vars C2) \<Longrightarrow> |
51722 | 437 |
C1 < C2 \<Longrightarrow> m_c C1 > m_c C2" |
51783 | 438 |
proof(auto simp add: le_iff_le_annos size_annos_same[of C1 C2] vars_acom_def less_acom_def) |
51722 | 439 |
let ?X = "vars(strip C2)" |
51785 | 440 |
assume top: "top_on_acom C1 (- vars(strip C2))" "top_on_acom C2 (- vars(strip C2))" |
51722 | 441 |
and strip_eq: "strip C1 = strip C2" |
442 |
and 0: "\<forall>i<size(annos C2). annos C1 ! i \<le> annos C2 ! i" |
|
51791 | 443 |
hence 1: "\<forall>i<size(annos C2). m_o (annos C1 ! i) ?X \<ge> m_o (annos C2 ! i) ?X" |
51722 | 444 |
apply (auto simp: all_set_conv_all_nth vars_acom_def top_on_acom_def) |
445 |
by (metis (lifting, no_types) finite_cvars m_o1 size_annos_same2) |
|
446 |
fix i assume i: "i < size(annos C2)" "\<not> annos C2 ! i \<le> annos C1 ! i" |
|
51785 | 447 |
have topo1: "top_on_opt (annos C1 ! i) (- ?X)" |
51722 | 448 |
using i(1) top(1) by(simp add: top_on_acom_def size_annos_same[OF strip_eq]) |
51785 | 449 |
have topo2: "top_on_opt (annos C2 ! i) (- ?X)" |
51722 | 450 |
using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF strip_eq]) |
51791 | 451 |
from i have "m_o (annos C1 ! i) ?X > m_o (annos C2 ! i) ?X" (is "?P i") |
51722 | 452 |
by (metis 0 less_option_def m_o2[OF finite_cvars topo1] topo2) |
453 |
hence 2: "\<exists>i < size(annos C2). ?P i" using `i < size(annos C2)` by blast |
|
51791 | 454 |
have "(\<Sum>i<size(annos C2). m_o (annos C2 ! i) ?X) |
455 |
< (\<Sum>i<size(annos C2). m_o (annos C1 ! i) ?X)" |
|
51722 | 456 |
apply(rule setsum_strict_mono_ex1) using 1 2 by (auto) |
51783 | 457 |
thus ?thesis |
63882
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
nipkow
parents:
61179
diff
changeset
|
458 |
by(simp add: m_c_def vars_acom_def strip_eq sum_list_setsum_nth atLeast0LessThan size_annos_same[OF strip_eq]) |
51722 | 459 |
qed |
460 |
||
461 |
end |
|
462 |
||
463 |
||
464 |
locale Abs_Int_fun_measure = |
|
465 |
Abs_Int_fun_mono where \<gamma>=\<gamma> + Measure_fun where m=m |
|
51826 | 466 |
for \<gamma> :: "'av::semilattice_sup_top \<Rightarrow> val set" and m :: "'av \<Rightarrow> nat" |
51722 | 467 |
begin |
468 |
||
51785 | 469 |
lemma top_on_step': "top_on_acom C (-vars C) \<Longrightarrow> top_on_acom (step' \<top> C) (-vars C)" |
51722 | 470 |
unfolding step'_def |
471 |
by(rule top_on_Step) |
|
51807 | 472 |
(auto simp add: top_option_def asem_def split: option.splits) |
51722 | 473 |
|
474 |
lemma AI_Some_measure: "\<exists>C. AI c = Some C" |
|
475 |
unfolding AI_def |
|
51785 | 476 |
apply(rule pfp_termination[where I = "\<lambda>C. top_on_acom C (- vars C)" and m="m_c"]) |
51722 | 477 |
apply(simp_all add: m_c2 mono_step'_top bot_least top_on_bot) |
51754 | 478 |
using top_on_step' apply(auto simp add: vars_acom_def) |
51722 | 479 |
done |
480 |
||
47613 | 481 |
end |
482 |
||
483 |
text{* Problem: not executable because of the comparison of abstract states, |
|
52022 | 484 |
i.e. functions, in the pre-fixpoint computation. *} |
47613 | 485 |
|
486 |
end |