| author | blanchet | 
| Tue, 17 May 2011 15:11:36 +0200 | |
| changeset 42837 | 358769224d94 | 
| parent 41959 | b460124855b8 | 
| child 44170 | 510ac30f44c0 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Multivariate_Analysis/Path_Connected.thy | 
| 36583 | 2 | Author: Robert Himmelmann, TU Muenchen | 
| 3 | *) | |
| 4 | ||
| 5 | header {* Continuous paths and path-connected sets *}
 | |
| 6 | ||
| 7 | theory Path_Connected | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 8 | imports Convex_Euclidean_Space | 
| 36583 | 9 | begin | 
| 10 | ||
| 11 | subsection {* Paths. *}
 | |
| 12 | ||
| 13 | definition | |
| 14 | path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | |
| 15 |   where "path g \<longleftrightarrow> continuous_on {0 .. 1} g"
 | |
| 16 | ||
| 17 | definition | |
| 18 | pathstart :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" | |
| 19 | where "pathstart g = g 0" | |
| 20 | ||
| 21 | definition | |
| 22 | pathfinish :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" | |
| 23 | where "pathfinish g = g 1" | |
| 24 | ||
| 25 | definition | |
| 26 | path_image :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a set" | |
| 27 |   where "path_image g = g ` {0 .. 1}"
 | |
| 28 | ||
| 29 | definition | |
| 30 | reversepath :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a)" | |
| 31 | where "reversepath g = (\<lambda>x. g(1 - x))" | |
| 32 | ||
| 33 | definition | |
| 34 | joinpaths :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a)" | |
| 35 | (infixr "+++" 75) | |
| 36 | where "g1 +++ g2 = (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))" | |
| 37 | ||
| 38 | definition | |
| 39 | simple_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | |
| 40 | where "simple_path g \<longleftrightarrow> | |
| 41 |   (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 | |
| 42 | ||
| 43 | definition | |
| 44 | injective_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | |
| 45 |   where "injective_path g \<longleftrightarrow> (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
 | |
| 46 | ||
| 47 | subsection {* Some lemmas about these concepts. *}
 | |
| 48 | ||
| 49 | lemma injective_imp_simple_path: | |
| 50 | "injective_path g \<Longrightarrow> simple_path g" | |
| 51 | unfolding injective_path_def simple_path_def by auto | |
| 52 | ||
| 53 | lemma path_image_nonempty: "path_image g \<noteq> {}"
 | |
| 54 | unfolding path_image_def image_is_empty interval_eq_empty by auto | |
| 55 | ||
| 56 | lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g" | |
| 57 | unfolding pathstart_def path_image_def by auto | |
| 58 | ||
| 59 | lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g" | |
| 60 | unfolding pathfinish_def path_image_def by auto | |
| 61 | ||
| 62 | lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)" | |
| 63 | unfolding path_def path_image_def | |
| 64 | apply (erule connected_continuous_image) | |
| 65 | by(rule convex_connected, rule convex_real_interval) | |
| 66 | ||
| 67 | lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)" | |
| 68 | unfolding path_def path_image_def | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36583diff
changeset | 69 | by (erule compact_continuous_image, rule compact_interval) | 
| 36583 | 70 | |
| 71 | lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g" | |
| 72 | unfolding reversepath_def by auto | |
| 73 | ||
| 74 | lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g" | |
| 75 | unfolding pathstart_def reversepath_def pathfinish_def by auto | |
| 76 | ||
| 77 | lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g" | |
| 78 | unfolding pathstart_def reversepath_def pathfinish_def by auto | |
| 79 | ||
| 80 | lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1" | |
| 81 | unfolding pathstart_def joinpaths_def pathfinish_def by auto | |
| 82 | ||
| 83 | lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" | |
| 84 | unfolding pathstart_def joinpaths_def pathfinish_def by auto | |
| 85 | ||
| 86 | lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof- | |
| 87 | have *:"\<And>g. path_image(reversepath g) \<subseteq> path_image g" | |
| 88 | unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE) | |
| 89 | apply(rule_tac x="1 - xa" in bexI) by auto | |
| 90 | show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed | |
| 91 | ||
| 92 | lemma path_reversepath[simp]: "path(reversepath g) \<longleftrightarrow> path g" proof- | |
| 93 | have *:"\<And>g. path g \<Longrightarrow> path(reversepath g)" unfolding path_def reversepath_def | |
| 94 | apply(rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"]) | |
| 95 | apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id) | |
| 96 |     apply(rule continuous_on_subset[of "{0..1}"], assumption) by auto
 | |
| 97 | show ?thesis using *[of "reversepath g"] *[of g] unfolding reversepath_reversepath by (rule iffI) qed | |
| 98 | ||
| 99 | lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath | |
| 100 | ||
| 101 | lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2" | |
| 102 | unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof- | |
| 103 |   assume as:"continuous_on {0..1} (g1 +++ g2)"
 | |
| 104 | have *:"g1 = (\<lambda>x. g1 (2 *\<^sub>R x)) \<circ> (\<lambda>x. (1/2) *\<^sub>R x)" | |
| 105 | "g2 = (\<lambda>x. g2 (2 *\<^sub>R x - 1)) \<circ> (\<lambda>x. (1/2) *\<^sub>R (x + 1))" | |
| 106 | unfolding o_def by (auto simp add: add_divide_distrib) | |
| 107 |   have "op *\<^sub>R (1 / 2) ` {0::real..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {(0::real)..1} \<subseteq> {0..1}"
 | |
| 108 | by auto | |
| 109 |   thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
 | |
| 110 | apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose) | |
| 111 | apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer | |
| 112 | apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3 | |
| 113 |     apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
 | |
| 114 | apply(rule) defer apply rule proof- | |
| 115 |     fix x assume "x \<in> op *\<^sub>R (1 / 2) ` {0::real..1}"
 | |
| 116 | hence "x \<le> 1 / 2" unfolding image_iff by auto | |
| 117 | thus "(g1 +++ g2) x = g1 (2 *\<^sub>R x)" unfolding joinpaths_def by auto next | |
| 118 |     fix x assume "x \<in> (\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {0::real..1}"
 | |
| 119 | hence "x \<ge> 1 / 2" unfolding image_iff by auto | |
| 120 | thus "(g1 +++ g2) x = g2 (2 *\<^sub>R x - 1)" proof(cases "x = 1 / 2") | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36583diff
changeset | 121 | case True hence "x = (1/2) *\<^sub>R 1" by auto | 
| 36583 | 122 | thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by (auto simp add: mult_ac) | 
| 123 | qed (auto simp add:le_less joinpaths_def) qed | |
| 124 | next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | |
| 125 |   have *:"{0 .. 1::real} = {0.. (1/2)*\<^sub>R 1} \<union> {(1/2) *\<^sub>R 1 .. 1}" by auto
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
37674diff
changeset | 126 |   have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real}" apply(rule set_eqI, rule) unfolding image_iff 
 | 
| 36583 | 127 | defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by auto | 
| 128 |   have ***:"(\<lambda>x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real}"
 | |
| 129 | apply (auto simp add: image_def) | |
| 130 | apply (rule_tac x="(x + 1) / 2" in bexI) | |
| 131 | apply (auto simp add: add_divide_distrib) | |
| 132 | done | |
| 133 |   show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply (rule closed_real_atLeastAtMost)+ proof-
 | |
| 134 |     show "continuous_on {0..(1 / 2) *\<^sub>R 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *\<^sub>R x)"]) defer
 | |
| 135 | unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id) | |
| 136 | unfolding ** apply(rule as(1)) unfolding joinpaths_def by auto next | |
| 137 |     show "continuous_on {(1/2)*\<^sub>R1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *\<^sub>R x - 1)"]) defer
 | |
| 138 | apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const) | |
| 139 | unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def] | |
| 140 | by (auto simp add: mult_ac) qed qed | |
| 141 | ||
| 142 | lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof | |
| 143 | fix x assume "x \<in> path_image (g1 +++ g2)" | |
| 144 |   then obtain y where y:"y\<in>{0..1}" "x = (if y \<le> 1 / 2 then g1 (2 *\<^sub>R y) else g2 (2 *\<^sub>R y - 1))"
 | |
| 145 | unfolding path_image_def image_iff joinpaths_def by auto | |
| 146 | thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "y \<le> 1/2") | |
| 147 | apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1) | |
| 148 | by(auto intro!: imageI) qed | |
| 149 | ||
| 150 | lemma subset_path_image_join: | |
| 151 | assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s" shows "path_image(g1 +++ g2) \<subseteq> s" | |
| 152 | using path_image_join_subset[of g1 g2] and assms by auto | |
| 153 | ||
| 154 | lemma path_image_join: | |
| 155 | assumes "path g1" "path g2" "pathfinish g1 = pathstart g2" | |
| 156 | shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)" | |
| 157 | apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE) | |
| 158 | fix x assume "x \<in> path_image g1" | |
| 159 |   then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
 | |
| 160 | thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff | |
| 161 | apply(rule_tac x="(1/2) *\<^sub>R y" in bexI) by auto next | |
| 162 | fix x assume "x \<in> path_image g2" | |
| 163 |   then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
 | |
| 164 | then show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff | |
| 165 | apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def] | |
| 166 | by (auto simp add: add_divide_distrib) qed | |
| 167 | ||
| 168 | lemma not_in_path_image_join: | |
| 169 | assumes "x \<notin> path_image g1" "x \<notin> path_image g2" shows "x \<notin> path_image(g1 +++ g2)" | |
| 170 | using assms and path_image_join_subset[of g1 g2] by auto | |
| 171 | ||
| 172 | lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)" | |
| 173 | using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+ | |
| 174 | apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE) | |
| 175 | by auto | |
| 176 | ||
| 177 | lemma simple_path_join_loop: | |
| 178 | assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1" | |
| 179 |   "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
 | |
| 180 | shows "simple_path(g1 +++ g2)" | |
| 181 | unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2" | |
| 182 | note inj = assms(1,2)[unfolded injective_path_def, rule_format] | |
| 183 |   fix x y::"real" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
 | |
| 184 | show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x \<le> 1/2",case_tac[!] "y \<le> 1/2", unfold not_le) | |
| 185 | assume as:"x \<le> 1 / 2" "y \<le> 1 / 2" | |
| 186 | hence "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)" using xy(3) unfolding joinpaths_def by auto | |
| 187 |     moreover have "2 *\<^sub>R x \<in> {0..1}" "2 *\<^sub>R y \<in> {0..1}" using xy(1,2) as
 | |
| 188 | by auto | |
| 189 | ultimately show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto | |
| 190 | next assume as:"x > 1 / 2" "y > 1 / 2" | |
| 191 | hence "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)" using xy(3) unfolding joinpaths_def by auto | |
| 192 |     moreover have "2 *\<^sub>R x - 1 \<in> {0..1}" "2 *\<^sub>R y - 1 \<in> {0..1}" using xy(1,2) as by auto
 | |
| 193 | ultimately show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto | |
| 194 | next assume as:"x \<le> 1 / 2" "y > 1 / 2" | |
| 195 | hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def | |
| 196 | using xy(1,2) by auto | |
| 197 | moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def | |
| 198 | using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2) | |
| 199 | by (auto simp add: field_simps) | |
| 200 | ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto | |
| 201 | hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1) | |
| 202 | using inj(1)[of "2 *\<^sub>R x" 0] by auto | |
| 203 | moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym] | |
| 204 | unfolding joinpaths_def pathfinish_def using as(2) and xy(2) | |
| 205 | using inj(2)[of "2 *\<^sub>R y - 1" 1] by auto | |
| 206 | ultimately show ?thesis by auto | |
| 207 | next assume as:"x > 1 / 2" "y \<le> 1 / 2" | |
| 208 | hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def | |
| 209 | using xy(1,2) by auto | |
| 210 | moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def | |
| 211 | using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1) | |
| 212 | by (auto simp add: field_simps) | |
| 213 | ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto | |
| 214 | hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2) | |
| 215 | using inj(1)[of "2 *\<^sub>R y" 0] by auto | |
| 216 | moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym] | |
| 217 | unfolding joinpaths_def pathfinish_def using as(1) and xy(1) | |
| 218 | using inj(2)[of "2 *\<^sub>R x - 1" 1] by auto | |
| 219 | ultimately show ?thesis by auto qed qed | |
| 220 | ||
| 221 | lemma injective_path_join: | |
| 222 | assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2" | |
| 223 |   "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
 | |
| 224 | shows "injective_path(g1 +++ g2)" | |
| 225 | unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2" | |
| 226 | note inj = assms(1,2)[unfolded injective_path_def, rule_format] | |
| 227 |   fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
 | |
| 228 | show "x = y" proof(cases "x \<le> 1/2", case_tac[!] "y \<le> 1/2", unfold not_le) | |
| 229 | assume "x \<le> 1 / 2" "y \<le> 1 / 2" thus ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy | |
| 230 | unfolding joinpaths_def by auto | |
| 231 | next assume "x > 1 / 2" "y > 1 / 2" thus ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy | |
| 232 | unfolding joinpaths_def by auto | |
| 233 | next assume as:"x \<le> 1 / 2" "y > 1 / 2" | |
| 234 | hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def | |
| 235 | using xy(1,2) by auto | |
| 236 | hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto | |
| 237 | thus ?thesis using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2) | |
| 238 | unfolding pathstart_def pathfinish_def joinpaths_def | |
| 239 | by auto | |
| 240 | next assume as:"x > 1 / 2" "y \<le> 1 / 2" | |
| 241 | hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def | |
| 242 | using xy(1,2) by auto | |
| 243 | hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto | |
| 244 | thus ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2) | |
| 245 | unfolding pathstart_def pathfinish_def joinpaths_def | |
| 246 | by auto qed qed | |
| 247 | ||
| 248 | lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join | |
| 249 | ||
| 250 | subsection {* Reparametrizing a closed curve to start at some chosen point. *}
 | |
| 251 | ||
| 252 | definition "shiftpath a (f::real \<Rightarrow> 'a::topological_space) = | |
| 253 | (\<lambda>x. if (a + x) \<le> 1 then f(a + x) else f(a + x - 1))" | |
| 254 | ||
| 255 | lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a" | |
| 256 | unfolding pathstart_def shiftpath_def by auto | |
| 257 | ||
| 258 | lemma pathfinish_shiftpath: assumes "0 \<le> a" "pathfinish g = pathstart g" | |
| 259 | shows "pathfinish(shiftpath a g) = g a" | |
| 260 | using assms unfolding pathstart_def pathfinish_def shiftpath_def | |
| 261 | by auto | |
| 262 | ||
| 263 | lemma endpoints_shiftpath: | |
| 264 |   assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
 | |
| 265 | shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a" | |
| 266 | using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath) | |
| 267 | ||
| 268 | lemma closed_shiftpath: | |
| 269 |   assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
 | |
| 270 | shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)" | |
| 271 | using endpoints_shiftpath[OF assms] by auto | |
| 272 | ||
| 273 | lemma path_shiftpath: | |
| 274 |   assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
 | |
| 275 | shows "path(shiftpath a g)" proof- | |
| 276 |   have *:"{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by auto
 | |
| 277 | have **:"\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)" | |
| 278 | using assms(2)[unfolded pathfinish_def pathstart_def] by auto | |
| 279 | show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union) | |
| 280 | apply(rule closed_real_atLeastAtMost)+ apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3 | |
| 281 | apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3 | |
| 282 | apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+ | |
| 283 | apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]]) | |
| 284 | using assms(3) and ** by(auto, auto simp add: field_simps) qed | |
| 285 | ||
| 286 | lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
 | |
| 287 | shows "shiftpath (1 - a) (shiftpath a g) x = g x" | |
| 288 | using assms unfolding pathfinish_def pathstart_def shiftpath_def by auto | |
| 289 | ||
| 290 | lemma path_image_shiftpath: | |
| 291 |   assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
 | |
| 292 | shows "path_image(shiftpath a g) = path_image g" proof- | |
| 293 |   { fix x assume as:"g 1 = g 0" "x \<in> {0..1::real}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a + x \<le> 1}. g x \<noteq> g (a + y - 1)" 
 | |
| 294 |     hence "\<exists>y\<in>{0..1} \<inter> {x. a + x \<le> 1}. g x = g (a + y)" proof(cases "a \<le> x")
 | |
| 295 | case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI) | |
| 296 | using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1) | |
| 297 | by(auto simp add: field_simps atomize_not) next | |
| 298 | case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI) | |
| 299 | by(auto simp add: field_simps) qed } | |
| 300 | thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def | |
| 301 | by(auto simp add: image_iff) qed | |
| 302 | ||
| 303 | subsection {* Special case of straight-line paths. *}
 | |
| 304 | ||
| 305 | definition | |
| 306 | linepath :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a" where | |
| 307 | "linepath a b = (\<lambda>x. (1 - x) *\<^sub>R a + x *\<^sub>R b)" | |
| 308 | ||
| 309 | lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a" | |
| 310 | unfolding pathstart_def linepath_def by auto | |
| 311 | ||
| 312 | lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b" | |
| 313 | unfolding pathfinish_def linepath_def by auto | |
| 314 | ||
| 315 | lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)" | |
| 316 | unfolding linepath_def by (intro continuous_intros) | |
| 317 | ||
| 318 | lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)" | |
| 319 | using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on) | |
| 320 | ||
| 321 | lemma path_linepath[intro]: "path(linepath a b)" | |
| 322 | unfolding path_def by(rule continuous_on_linepath) | |
| 323 | ||
| 324 | lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
37674diff
changeset | 325 | unfolding path_image_def segment linepath_def apply (rule set_eqI, rule) defer | 
| 36583 | 326 | unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI) | 
| 327 | by auto | |
| 328 | ||
| 329 | lemma reversepath_linepath[simp]: "reversepath(linepath a b) = linepath b a" | |
| 330 | unfolding reversepath_def linepath_def by(rule ext, auto) | |
| 331 | ||
| 332 | lemma injective_path_linepath: | |
| 333 | assumes "a \<noteq> b" shows "injective_path(linepath a b)" | |
| 334 | proof - | |
| 335 |   { fix x y :: "real"
 | |
| 336 | assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b" | |
| 337 | hence "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" by (simp add: algebra_simps) | |
| 338 | with assms have "x = y" by simp } | |
| 339 | thus ?thesis unfolding injective_path_def linepath_def by(auto simp add: algebra_simps) qed | |
| 340 | ||
| 341 | lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath) | |
| 342 | ||
| 343 | subsection {* Bounding a point away from a path. *}
 | |
| 344 | ||
| 345 | lemma not_on_path_ball: | |
| 346 | fixes g :: "real \<Rightarrow> 'a::heine_borel" | |
| 347 | assumes "path g" "z \<notin> path_image g" | |
| 348 |   shows "\<exists>e>0. ball z e \<inter> (path_image g) = {}" proof-
 | |
| 349 | obtain a where "a\<in>path_image g" "\<forall>y\<in>path_image g. dist z a \<le> dist z y" | |
| 350 | using distance_attains_inf[OF _ path_image_nonempty, of g z] | |
| 351 | using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto | |
| 352 | thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed | |
| 353 | ||
| 354 | lemma not_on_path_cball: | |
| 355 | fixes g :: "real \<Rightarrow> 'a::heine_borel" | |
| 356 | assumes "path g" "z \<notin> path_image g" | |
| 357 |   shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}" proof-
 | |
| 358 |   obtain e where "ball z e \<inter> path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto
 | |
| 359 | moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto | |
| 360 | ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed | |
| 361 | ||
| 362 | subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
 | |
| 363 | ||
| 364 | definition "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | |
| 365 | ||
| 366 | lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def | |
| 367 | ||
| 368 | lemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" "y \<in> s" | |
| 369 | using assms unfolding path_defs by auto | |
| 370 | ||
| 371 | lemma path_component_refl: assumes "x \<in> s" shows "path_component s x x" | |
| 372 | unfolding path_defs apply(rule_tac x="\<lambda>u. x" in exI) using assms | |
| 373 | by(auto intro!:continuous_on_intros) | |
| 374 | ||
| 375 | lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s" | |
| 376 | by(auto intro!: path_component_mem path_component_refl) | |
| 377 | ||
| 378 | lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x" | |
| 379 | using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI) | |
| 380 | by auto | |
| 381 | ||
| 382 | lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z" | |
| 383 | using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join) | |
| 384 | ||
| 385 | lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y" | |
| 386 | unfolding path_component_def by auto | |
| 387 | ||
| 388 | subsection {* Can also consider it as a set, as the name suggests. *}
 | |
| 389 | ||
| 390 | lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
37674diff
changeset | 391 | apply(rule set_eqI) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto | 
| 36583 | 392 | |
| 393 | lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto | |
| 394 | ||
| 395 | lemma path_component_subset: "(path_component s x) \<subseteq> s" | |
| 396 | apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def) | |
| 397 | ||
| 398 | lemma path_component_eq_empty: "path_component s x = {} \<longleftrightarrow> x \<notin> s"
 | |
| 399 | apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set | |
| 400 | apply(drule path_component_mem(1)) using path_component_refl by auto | |
| 401 | ||
| 402 | subsection {* Path connectedness of a space. *}
 | |
| 403 | ||
| 404 | definition "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | |
| 405 | ||
| 406 | lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)" | |
| 407 | unfolding path_connected_def path_component_def by auto | |
| 408 | ||
| 409 | lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component s x = s)" | |
| 410 | unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset) | |
| 411 | unfolding subset_eq mem_path_component_set Ball_def mem_def by auto | |
| 412 | ||
| 413 | subsection {* Some useful lemmas about path-connectedness. *}
 | |
| 414 | ||
| 415 | lemma convex_imp_path_connected: | |
| 416 | fixes s :: "'a::real_normed_vector set" | |
| 417 | assumes "convex s" shows "path_connected s" | |
| 418 | unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI) | |
| 419 | unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto | |
| 420 | ||
| 421 | lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s" | |
| 422 | unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof- | |
| 423 |   fix e1 e2 assume as:"open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | |
| 424 | then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto | |
| 425 | then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2" | |
| 426 | using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto | |
| 427 |   have *:"connected {0..1::real}" by(auto intro!: convex_connected convex_real_interval)
 | |
| 428 |   have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast
 | |
| 429 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto 
 | |
| 430 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt
 | |
| 431 | by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl) | |
| 432 |   ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
 | |
| 433 | using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)] | |
| 434 | using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed | |
| 435 | ||
| 436 | lemma open_path_component: | |
| 437 | fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) | |
| 438 | assumes "open s" shows "open(path_component s x)" | |
| 439 | unfolding open_contains_ball proof | |
| 440 | fix y assume as:"y \<in> path_component s x" | |
| 441 | hence "y\<in>s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto | |
| 442 | then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto | |
| 443 | show "\<exists>e>0. ball y e \<subseteq> path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof- | |
| 444 | fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer | |
| 445 | apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0` | |
| 446 | using as[unfolded mem_def] by auto qed qed | |
| 447 | ||
| 448 | lemma open_non_path_component: | |
| 449 | fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) | |
| 450 | assumes "open s" shows "open(s - path_component s x)" | |
| 451 | unfolding open_contains_ball proof | |
| 452 | fix y assume as:"y\<in>s - path_component s x" | |
| 453 | then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto | |
| 454 | show "\<exists>e>0. ball y e \<subseteq> s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr) | |
| 455 | fix z assume "z\<in>ball y e" "\<not> z \<notin> path_component s x" | |
| 456 | hence "y \<in> path_component s x" unfolding not_not mem_path_component_set using `e>0` | |
| 457 | apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)]) | |
| 458 | apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto | |
| 459 | thus False using as by auto qed(insert e(2), auto) qed | |
| 460 | ||
| 461 | lemma connected_open_path_connected: | |
| 462 | fixes s :: "'a::real_normed_vector set" (*TODO: generalize to metric_space*) | |
| 463 | assumes "open s" "connected s" shows "path_connected s" | |
| 464 | unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule) | |
| 465 | fix x y assume "x \<in> s" "y \<in> s" show "y \<in> path_component s x" proof(rule ccontr) | |
| 466 | assume "y \<notin> path_component s x" moreover | |
| 467 |     have "path_component s x \<inter> s \<noteq> {}" using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto
 | |
| 468 | ultimately show False using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)] | |
| 469 | using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto | |
| 470 | qed qed | |
| 471 | ||
| 472 | lemma path_connected_continuous_image: | |
| 473 | assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)" | |
| 474 | unfolding path_connected_def proof(rule,rule) | |
| 475 | fix x' y' assume "x' \<in> f ` s" "y' \<in> f ` s" | |
| 476 | then obtain x y where xy:"x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto | |
| 477 | guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] .. | |
| 478 | thus "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'" | |
| 479 | unfolding xy apply(rule_tac x="f \<circ> g" in exI) unfolding path_defs | |
| 480 |     using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed
 | |
| 481 | ||
| 482 | lemma homeomorphic_path_connectedness: | |
| 483 | "s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)" | |
| 484 | unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule | |
| 485 | apply(drule_tac f=f in path_connected_continuous_image) prefer 3 | |
| 486 | apply(drule_tac f=g in path_connected_continuous_image) by auto | |
| 487 | ||
| 488 | lemma path_connected_empty: "path_connected {}"
 | |
| 489 | unfolding path_connected_def by auto | |
| 490 | ||
| 491 | lemma path_connected_singleton: "path_connected {a}"
 | |
| 492 | unfolding path_connected_def pathstart_def pathfinish_def path_image_def | |
| 493 | apply (clarify, rule_tac x="\<lambda>x. a" in exI, simp add: image_constant_conv) | |
| 494 | apply (simp add: path_def continuous_on_const) | |
| 495 | done | |
| 496 | ||
| 497 | lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
 | |
| 498 | shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule) | |
| 499 | fix x y assume as:"x \<in> s \<union> t" "y \<in> s \<union> t" | |
| 500 | from assms(3) obtain z where "z \<in> s \<inter> t" by auto | |
| 501 | thus "path_component (s \<union> t) x y" using as using assms(1-2)[unfolded path_connected_component] apply- | |
| 502 | apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z]) | |
| 503 | by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed | |
| 504 | ||
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 505 | lemma path_connected_UNION: | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 506 | assumes "\<And>i. i \<in> A \<Longrightarrow> path_connected (S i)" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 507 | assumes "\<And>i. i \<in> A \<Longrightarrow> z \<in> S i" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 508 | shows "path_connected (\<Union>i\<in>A. S i)" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 509 | unfolding path_connected_component proof(clarify) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 510 | fix x i y j | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 511 | assume *: "i \<in> A" "x \<in> S i" "j \<in> A" "y \<in> S j" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 512 | hence "path_component (S i) x z" and "path_component (S j) z y" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 513 | using assms by (simp_all add: path_connected_component) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 514 | hence "path_component (\<Union>i\<in>A. S i) x z" and "path_component (\<Union>i\<in>A. S i) z y" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 515 | using *(1,3) by (auto elim!: path_component_of_subset [COMP swap_prems_rl]) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 516 | thus "path_component (\<Union>i\<in>A. S i) x y" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 517 | by (rule path_component_trans) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 518 | qed | 
| 36583 | 519 | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 520 | subsection {* sphere is path-connected. *}
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36583diff
changeset | 521 | |
| 36583 | 522 | lemma path_connected_punctured_universe: | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 523 |   assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 524 |   shows "path_connected((UNIV::'a::euclidean_space set) - {a})"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 525 | proof- | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 526 |   let ?A = "{x::'a. \<exists>i\<in>{..<DIM('a)}. x $$ i < a $$ i}"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 527 |   let ?B = "{x::'a. \<exists>i\<in>{..<DIM('a)}. a $$ i < x $$ i}"
 | 
| 36583 | 528 | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 529 | have A: "path_connected ?A" unfolding Collect_bex_eq | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 530 | proof (rule path_connected_UNION) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 531 |     fix i assume "i \<in> {..<DIM('a)}"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 532 |     thus "(\<chi>\<chi> i. a $$ i - 1) \<in> {x::'a. x $$ i < a $$ i}" by simp
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 533 |     show "path_connected {x. x $$ i < a $$ i}" unfolding euclidean_component_def
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 534 | by (rule convex_imp_path_connected [OF convex_halfspace_lt]) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 535 | qed | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 536 | have B: "path_connected ?B" unfolding Collect_bex_eq | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 537 | proof (rule path_connected_UNION) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 538 |     fix i assume "i \<in> {..<DIM('a)}"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 539 |     thus "(\<chi>\<chi> i. a $$ i + 1) \<in> {x::'a. a $$ i < x $$ i}" by simp
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 540 |     show "path_connected {x. a $$ i < x $$ i}" unfolding euclidean_component_def
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 541 | by (rule convex_imp_path_connected [OF convex_halfspace_gt]) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 542 | qed | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 543 |   from assms have "1 < DIM('a)" by auto
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 544 | hence "a + basis 0 - basis 1 \<in> ?A \<inter> ?B" by auto | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 545 |   hence "?A \<inter> ?B \<noteq> {}" by fast
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 546 | with A B have "path_connected (?A \<union> ?B)" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 547 | by (rule path_connected_Un) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 548 |   also have "?A \<union> ?B = {x. \<exists>i\<in>{..<DIM('a)}. x $$ i \<noteq> a $$ i}"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 549 | unfolding neq_iff bex_disj_distrib Collect_disj_eq .. | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 550 |   also have "\<dots> = {x. x \<noteq> a}"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 551 | unfolding Bex_def euclidean_eq [where 'a='a] by simp | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 552 |   also have "\<dots> = UNIV - {a}" by auto
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 553 | finally show ?thesis . | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 554 | qed | 
| 36583 | 555 | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 556 | lemma path_connected_sphere: | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 557 |   assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 558 |   shows "path_connected {x::'a::euclidean_space. norm(x - a) = r}"
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 559 | proof (rule linorder_cases [of r 0]) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 560 |   assume "r < 0" hence "{x::'a. norm(x - a) = r} = {}" by auto
 | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 561 | thus ?thesis using path_connected_empty by simp | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 562 | next | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 563 | assume "r = 0" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 564 | thus ?thesis using path_connected_singleton by simp | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 565 | next | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 566 | assume r: "0 < r" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
37674diff
changeset | 567 |   hence *:"{x::'a. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" apply -apply(rule set_eqI,rule)
 | 
| 36583 | 568 | unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib) | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
37674diff
changeset | 569 |   have **:"{x::'a. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_eqI,rule)
 | 
| 36583 | 570 | unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto split:split_if_asm) | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 571 |   have "continuous_on (UNIV - {0}) (\<lambda>x::'a. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within
 | 
| 36583 | 572 | apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within) | 
| 573 | apply(rule continuous_at_norm[unfolded o_def]) by auto | |
| 574 | thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms] | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 575 | by(auto intro!: path_connected_continuous_image continuous_on_intros) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 576 | qed | 
| 36583 | 577 | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 578 | lemma connected_sphere: "2 \<le> DIM('a::euclidean_space) \<Longrightarrow> connected {x::'a. norm(x - a) = r}"
 | 
| 36583 | 579 | using path_connected_sphere path_connected_imp_connected by auto | 
| 580 | ||
| 581 | end |