76399
|
1 |
theory Document
|
|
2 |
imports Main
|
|
3 |
begin
|
|
4 |
|
|
5 |
section \<open>Abstract\<close>
|
|
6 |
|
|
7 |
text \<open>
|
|
8 |
\small
|
|
9 |
Isabelle is a formal document preparation system. This example shows how to
|
|
10 |
use it together with Foil{\TeX} to produce slides in {\LaTeX}. See
|
|
11 |
\<^url>\<open>https://ctan.org/pkg/foiltex\<close> for further information.
|
|
12 |
\<close>
|
|
13 |
|
|
14 |
|
|
15 |
chapter \<open>Introduction\<close>
|
|
16 |
|
|
17 |
section \<open>Some slide\<close>
|
|
18 |
|
|
19 |
paragraph \<open>Point 1:
|
|
20 |
\plainstyle ABC\<close>
|
|
21 |
|
|
22 |
text \<open>
|
|
23 |
\<^item> something
|
|
24 |
\<^item> to say \dots
|
|
25 |
\<close>
|
|
26 |
|
|
27 |
paragraph \<open>Point 2:
|
|
28 |
\plainstyle XYZ\<close>
|
|
29 |
|
|
30 |
text \<open>
|
|
31 |
\<^item> more
|
|
32 |
\<^item> to say \dots
|
|
33 |
\<close>
|
|
34 |
|
|
35 |
|
|
36 |
section \<open>Another slide\<close>
|
|
37 |
|
|
38 |
paragraph \<open>Key definitions:\<close>
|
|
39 |
|
|
40 |
text \<open>Informal bla bla.\<close>
|
|
41 |
|
|
42 |
definition "foo = True" \<comment> \<open>side remark on \<^const>\<open>foo\<close>\<close>
|
|
43 |
|
|
44 |
definition "bar = False" \<comment> \<open>side remark on \<^const>\<open>bar\<close>\<close>
|
|
45 |
|
|
46 |
lemma foo unfolding foo_def ..
|
|
47 |
|
|
48 |
|
|
49 |
chapter \<open>Application: Cantor's theorem\<close>
|
|
50 |
|
|
51 |
section \<open>Informal notes\<close>
|
|
52 |
|
|
53 |
text_raw \<open>\isakeeptag{proof}\<close>
|
|
54 |
text \<open>
|
|
55 |
Cantor's Theorem states that there is no surjection from
|
|
56 |
a set to its powerset. The proof works by diagonalization. E.g.\ see
|
|
57 |
\<^item> \<^url>\<open>http://mathworld.wolfram.com/CantorDiagonalMethod.html\<close>
|
|
58 |
\<^item> \<^url>\<open>https://en.wikipedia.org/wiki/Cantor's_diagonal_argument\<close>
|
|
59 |
\<close>
|
|
60 |
|
|
61 |
section \<open>Formal proof\<close>
|
|
62 |
|
|
63 |
theorem Cantor: "\<nexists>f :: 'a \<Rightarrow> 'a set. \<forall>A. \<exists>x. A = f x"
|
|
64 |
proof
|
|
65 |
assume "\<exists>f :: 'a \<Rightarrow> 'a set. \<forall>A. \<exists>x. A = f x"
|
|
66 |
then obtain f :: "'a \<Rightarrow> 'a set" where *: "\<forall>A. \<exists>x. A = f x" ..
|
|
67 |
let ?D = "{x. x \<notin> f x}"
|
|
68 |
from * obtain a where "?D = f a" by blast
|
|
69 |
moreover have "a \<in> ?D \<longleftrightarrow> a \<notin> f a" by blast
|
|
70 |
ultimately show False by blast
|
|
71 |
qed
|
|
72 |
|
|
73 |
|
|
74 |
chapter \<open>Conclusion\<close>
|
|
75 |
|
|
76 |
section \<open>Lorem ipsum dolor\<close>
|
|
77 |
|
|
78 |
text \<open>
|
|
79 |
\<^item> Lorem ipsum dolor sit amet, consectetur adipiscing elit.
|
|
80 |
\<^item> Donec id ipsum sapien.
|
|
81 |
\<^item> Vivamus malesuada enim nibh, a tristique nisi sodales ac.
|
|
82 |
\<^item> Praesent ut sem consectetur, interdum tellus ac, sodales nulla.
|
|
83 |
\<close>
|
|
84 |
|
|
85 |
end
|