| author | immler | 
| Wed, 14 Nov 2018 14:25:57 -0500 | |
| changeset 69298 | 360bde07daf9 | 
| parent 68406 | 6beb45f6cf67 | 
| child 69593 | 3dda49e08b9d | 
| permissions | -rw-r--r-- | 
| 43919 | 1 | (* Title: HOL/Library/Extended_Nat.thy | 
| 27110 | 2 | Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen | 
| 41853 | 3 | Contributions: David Trachtenherz, TU Muenchen | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 4 | *) | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 5 | |
| 60500 | 6 | section \<open>Extended natural numbers (i.e. with infinity)\<close> | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 7 | |
| 43919 | 8 | theory Extended_Nat | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 9 | imports Main Countable Order_Continuity | 
| 15131 | 10 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 11 | |
| 43921 | 12 | class infinity = | 
| 61384 | 13 |   fixes infinity :: "'a"  ("\<infinity>")
 | 
| 43921 | 14 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 15 | context | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 16 |   fixes f :: "nat \<Rightarrow> 'a::{canonically_ordered_monoid_add, linorder_topology, complete_linorder}"
 | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 17 | begin | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 18 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 19 | lemma sums_SUP[simp, intro]: "f sums (SUP n. \<Sum>i<n. f i)" | 
| 64267 | 20 | unfolding sums_def by (intro LIMSEQ_SUP monoI sum_mono2 zero_le) auto | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 21 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 22 | lemma suminf_eq_SUP: "suminf f = (SUP n. \<Sum>i<n. f i)" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 23 | using sums_SUP by (rule sums_unique[symmetric]) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 24 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 25 | end | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 26 | |
| 60500 | 27 | subsection \<open>Type definition\<close> | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 28 | |
| 60500 | 29 | text \<open> | 
| 11355 | 30 | We extend the standard natural numbers by a special value indicating | 
| 27110 | 31 | infinity. | 
| 60500 | 32 | \<close> | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 33 | |
| 49834 | 34 | typedef enat = "UNIV :: nat option set" .. | 
| 54415 | 35 | |
| 60500 | 36 | text \<open>TODO: introduce enat as coinductive datatype, enat is just @{const of_nat}\<close>
 | 
| 54415 | 37 | |
| 43924 | 38 | definition enat :: "nat \<Rightarrow> enat" where | 
| 39 | "enat n = Abs_enat (Some n)" | |
| 62374 
cb27a55d868a
remove lattice syntax from countable complete lattice
 hoelzl parents: 
61631diff
changeset | 40 | |
| 43921 | 41 | instantiation enat :: infinity | 
| 42 | begin | |
| 60679 | 43 | |
| 44 | definition "\<infinity> = Abs_enat None" | |
| 45 | instance .. | |
| 46 | ||
| 43921 | 47 | end | 
| 54415 | 48 | |
| 49 | instance enat :: countable | |
| 50 | proof | |
| 51 | show "\<exists>to_nat::enat \<Rightarrow> nat. inj to_nat" | |
| 52 | by (rule exI[of _ "to_nat \<circ> Rep_enat"]) (simp add: inj_on_def Rep_enat_inject) | |
| 53 | qed | |
| 62374 
cb27a55d868a
remove lattice syntax from countable complete lattice
 hoelzl parents: 
61631diff
changeset | 54 | |
| 58306 
117ba6cbe414
renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
 blanchet parents: 
57514diff
changeset | 55 | old_rep_datatype enat "\<infinity> :: enat" | 
| 43921 | 56 | proof - | 
| 43924 | 57 | fix P i assume "\<And>j. P (enat j)" "P \<infinity>" | 
| 43921 | 58 | then show "P i" | 
| 59 | proof induct | |
| 60 | case (Abs_enat y) then show ?case | |
| 61 | by (cases y rule: option.exhaust) | |
| 43924 | 62 | (auto simp: enat_def infinity_enat_def) | 
| 43921 | 63 | qed | 
| 43924 | 64 | qed (auto simp add: enat_def infinity_enat_def Abs_enat_inject) | 
| 19736 | 65 | |
| 43924 | 66 | declare [[coercion "enat::nat\<Rightarrow>enat"]] | 
| 19736 | 67 | |
| 45934 | 68 | lemmas enat2_cases = enat.exhaust[case_product enat.exhaust] | 
| 69 | lemmas enat3_cases = enat.exhaust[case_product enat.exhaust enat.exhaust] | |
| 70 | ||
| 54416 | 71 | lemma not_infinity_eq [iff]: "(x \<noteq> \<infinity>) = (\<exists>i. x = enat i)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 72 | by (cases x) auto | 
| 31084 | 73 | |
| 54416 | 74 | lemma not_enat_eq [iff]: "(\<forall>y. x \<noteq> enat y) = (x = \<infinity>)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 75 | by (cases x) auto | 
| 31077 | 76 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 77 | lemma enat_ex_split: "(\<exists>c::enat. P c) \<longleftrightarrow> P \<infinity> \<or> (\<exists>c::nat. P c)" | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 78 | by (metis enat.exhaust) | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 79 | |
| 43924 | 80 | primrec the_enat :: "enat \<Rightarrow> nat" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 81 | where "the_enat (enat n) = n" | 
| 41855 | 82 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 83 | |
| 60500 | 84 | subsection \<open>Constructors and numbers\<close> | 
| 27110 | 85 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 86 | instantiation enat :: zero_neq_one | 
| 25594 | 87 | begin | 
| 88 | ||
| 89 | definition | |
| 43924 | 90 | "0 = enat 0" | 
| 25594 | 91 | |
| 92 | definition | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 93 | "1 = enat 1" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 94 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 95 | instance | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 96 | proof qed (simp add: zero_enat_def one_enat_def) | 
| 25594 | 97 | |
| 98 | end | |
| 99 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 100 | definition eSuc :: "enat \<Rightarrow> enat" where | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 101 | "eSuc i = (case i of enat n \<Rightarrow> enat (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 102 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 103 | lemma enat_0 [code_post]: "enat 0 = 0" | 
| 43919 | 104 | by (simp add: zero_enat_def) | 
| 27110 | 105 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 106 | lemma enat_1 [code_post]: "enat 1 = 1" | 
| 43919 | 107 | by (simp add: one_enat_def) | 
| 27110 | 108 | |
| 54416 | 109 | lemma enat_0_iff: "enat x = 0 \<longleftrightarrow> x = 0" "0 = enat x \<longleftrightarrow> x = 0" | 
| 110 | by (auto simp add: zero_enat_def) | |
| 111 | ||
| 112 | lemma enat_1_iff: "enat x = 1 \<longleftrightarrow> x = 1" "1 = enat x \<longleftrightarrow> x = 1" | |
| 113 | by (auto simp add: one_enat_def) | |
| 114 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 115 | lemma one_eSuc: "1 = eSuc 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 116 | by (simp add: zero_enat_def one_enat_def eSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 117 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 118 | lemma infinity_ne_i0 [simp]: "(\<infinity>::enat) \<noteq> 0" | 
| 43919 | 119 | by (simp add: zero_enat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 120 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 121 | lemma i0_ne_infinity [simp]: "0 \<noteq> (\<infinity>::enat)" | 
| 43919 | 122 | by (simp add: zero_enat_def) | 
| 27110 | 123 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 124 | lemma zero_one_enat_neq: | 
| 61076 | 125 | "\<not> 0 = (1::enat)" | 
| 126 | "\<not> 1 = (0::enat)" | |
| 43919 | 127 | unfolding zero_enat_def one_enat_def by simp_all | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 128 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 129 | lemma infinity_ne_i1 [simp]: "(\<infinity>::enat) \<noteq> 1" | 
| 43919 | 130 | by (simp add: one_enat_def) | 
| 27110 | 131 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 132 | lemma i1_ne_infinity [simp]: "1 \<noteq> (\<infinity>::enat)" | 
| 43919 | 133 | by (simp add: one_enat_def) | 
| 27110 | 134 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 135 | lemma eSuc_enat: "eSuc (enat n) = enat (Suc n)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 136 | by (simp add: eSuc_def) | 
| 27110 | 137 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 138 | lemma eSuc_infinity [simp]: "eSuc \<infinity> = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 139 | by (simp add: eSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 140 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 141 | lemma eSuc_ne_0 [simp]: "eSuc n \<noteq> 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 142 | by (simp add: eSuc_def zero_enat_def split: enat.splits) | 
| 27110 | 143 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 144 | lemma zero_ne_eSuc [simp]: "0 \<noteq> eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 145 | by (rule eSuc_ne_0 [symmetric]) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 146 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 147 | lemma eSuc_inject [simp]: "eSuc m = eSuc n \<longleftrightarrow> m = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 148 | by (simp add: eSuc_def split: enat.splits) | 
| 27110 | 149 | |
| 59000 | 150 | lemma eSuc_enat_iff: "eSuc x = enat y \<longleftrightarrow> (\<exists>n. y = Suc n \<and> x = enat n)" | 
| 151 | by (cases y) (auto simp: enat_0 eSuc_enat[symmetric]) | |
| 152 | ||
| 153 | lemma enat_eSuc_iff: "enat y = eSuc x \<longleftrightarrow> (\<exists>n. y = Suc n \<and> enat n = x)" | |
| 154 | by (cases y) (auto simp: enat_0 eSuc_enat[symmetric]) | |
| 155 | ||
| 60500 | 156 | subsection \<open>Addition\<close> | 
| 27110 | 157 | |
| 43919 | 158 | instantiation enat :: comm_monoid_add | 
| 27110 | 159 | begin | 
| 160 | ||
| 38167 | 161 | definition [nitpick_simp]: | 
| 43924 | 162 | "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | enat m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | enat n \<Rightarrow> enat (m + n)))" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 163 | |
| 43919 | 164 | lemma plus_enat_simps [simp, code]: | 
| 43921 | 165 | fixes q :: enat | 
| 43924 | 166 | shows "enat m + enat n = enat (m + n)" | 
| 43921 | 167 | and "\<infinity> + q = \<infinity>" | 
| 168 | and "q + \<infinity> = \<infinity>" | |
| 43919 | 169 | by (simp_all add: plus_enat_def split: enat.splits) | 
| 27110 | 170 | |
| 60679 | 171 | instance | 
| 172 | proof | |
| 43919 | 173 | fix n m q :: enat | 
| 27110 | 174 | show "n + m + q = n + (m + q)" | 
| 45934 | 175 | by (cases n m q rule: enat3_cases) auto | 
| 27110 | 176 | show "n + m = m + n" | 
| 45934 | 177 | by (cases n m rule: enat2_cases) auto | 
| 27110 | 178 | show "0 + n = n" | 
| 43919 | 179 | by (cases n) (simp_all add: zero_enat_def) | 
| 26089 | 180 | qed | 
| 181 | ||
| 27110 | 182 | end | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 183 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 184 | lemma eSuc_plus_1: | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 185 | "eSuc n = n + 1" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 186 | by (cases n) (simp_all add: eSuc_enat one_enat_def) | 
| 62374 
cb27a55d868a
remove lattice syntax from countable complete lattice
 hoelzl parents: 
61631diff
changeset | 187 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 188 | lemma plus_1_eSuc: | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 189 | "1 + q = eSuc q" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 190 | "q + 1 = eSuc q" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 191 | by (simp_all add: eSuc_plus_1 ac_simps) | 
| 41853 | 192 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 193 | lemma iadd_Suc: "eSuc m + n = eSuc (m + n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 194 | by (simp_all add: eSuc_plus_1 ac_simps) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 195 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 196 | lemma iadd_Suc_right: "m + eSuc n = eSuc (m + n)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56777diff
changeset | 197 | by (simp only: add.commute[of m] iadd_Suc) | 
| 41853 | 198 | |
| 60500 | 199 | subsection \<open>Multiplication\<close> | 
| 29014 | 200 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 201 | instantiation enat :: "{comm_semiring_1, semiring_no_zero_divisors}"
 | 
| 29014 | 202 | begin | 
| 203 | ||
| 43919 | 204 | definition times_enat_def [nitpick_simp]: | 
| 43924 | 205 | "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | enat m \<Rightarrow> | 
| 206 | (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | enat n \<Rightarrow> enat (m * n)))" | |
| 29014 | 207 | |
| 43919 | 208 | lemma times_enat_simps [simp, code]: | 
| 43924 | 209 | "enat m * enat n = enat (m * n)" | 
| 43921 | 210 | "\<infinity> * \<infinity> = (\<infinity>::enat)" | 
| 43924 | 211 | "\<infinity> * enat n = (if n = 0 then 0 else \<infinity>)" | 
| 212 | "enat m * \<infinity> = (if m = 0 then 0 else \<infinity>)" | |
| 43919 | 213 | unfolding times_enat_def zero_enat_def | 
| 214 | by (simp_all split: enat.split) | |
| 29014 | 215 | |
| 60679 | 216 | instance | 
| 217 | proof | |
| 43919 | 218 | fix a b c :: enat | 
| 29014 | 219 | show "(a * b) * c = a * (b * c)" | 
| 43919 | 220 | unfolding times_enat_def zero_enat_def | 
| 221 | by (simp split: enat.split) | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 222 | show comm: "a * b = b * a" | 
| 43919 | 223 | unfolding times_enat_def zero_enat_def | 
| 224 | by (simp split: enat.split) | |
| 29014 | 225 | show "1 * a = a" | 
| 43919 | 226 | unfolding times_enat_def zero_enat_def one_enat_def | 
| 227 | by (simp split: enat.split) | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 228 | show distr: "(a + b) * c = a * c + b * c" | 
| 43919 | 229 | unfolding times_enat_def zero_enat_def | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49834diff
changeset | 230 | by (simp split: enat.split add: distrib_right) | 
| 29014 | 231 | show "0 * a = 0" | 
| 43919 | 232 | unfolding times_enat_def zero_enat_def | 
| 233 | by (simp split: enat.split) | |
| 29014 | 234 | show "a * 0 = 0" | 
| 43919 | 235 | unfolding times_enat_def zero_enat_def | 
| 236 | by (simp split: enat.split) | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 237 | show "a * (b + c) = a * b + a * c" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 238 | by (cases a b c rule: enat3_cases) (auto simp: times_enat_def zero_enat_def distrib_left) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 239 | show "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 240 | by (cases a b rule: enat2_cases) (auto simp: times_enat_def zero_enat_def) | 
| 29014 | 241 | qed | 
| 242 | ||
| 243 | end | |
| 244 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 245 | lemma mult_eSuc: "eSuc m * n = n + m * n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 246 | unfolding eSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 247 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 248 | lemma mult_eSuc_right: "m * eSuc n = m + m * n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 249 | unfolding eSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 250 | |
| 43924 | 251 | lemma of_nat_eq_enat: "of_nat n = enat n" | 
| 29023 | 252 | apply (induct n) | 
| 43924 | 253 | apply (simp add: enat_0) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 254 | apply (simp add: plus_1_eSuc eSuc_enat) | 
| 29023 | 255 | done | 
| 256 | ||
| 60679 | 257 | instance enat :: semiring_char_0 | 
| 258 | proof | |
| 43924 | 259 | have "inj enat" by (rule injI) simp | 
| 260 | then show "inj (\<lambda>n. of_nat n :: enat)" by (simp add: of_nat_eq_enat) | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 261 | qed | 
| 29023 | 262 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 263 | lemma imult_is_infinity: "((a::enat) * b = \<infinity>) = (a = \<infinity> \<and> b \<noteq> 0 \<or> b = \<infinity> \<and> a \<noteq> 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 264 | by (auto simp add: times_enat_def zero_enat_def split: enat.split) | 
| 41853 | 265 | |
| 60500 | 266 | subsection \<open>Numerals\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 267 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 268 | lemma numeral_eq_enat: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 269 | "numeral k = enat (numeral k)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 270 | using of_nat_eq_enat [of "numeral k"] by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 271 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 272 | lemma enat_numeral [code_abbrev]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 273 | "enat (numeral k) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 274 | using numeral_eq_enat .. | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 275 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 276 | lemma infinity_ne_numeral [simp]: "(\<infinity>::enat) \<noteq> numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 277 | by (simp add: numeral_eq_enat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 278 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 279 | lemma numeral_ne_infinity [simp]: "numeral k \<noteq> (\<infinity>::enat)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 280 | by (simp add: numeral_eq_enat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 281 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 282 | lemma eSuc_numeral [simp]: "eSuc (numeral k) = numeral (k + Num.One)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 283 | by (simp only: eSuc_plus_1 numeral_plus_one) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 284 | |
| 60500 | 285 | subsection \<open>Subtraction\<close> | 
| 41853 | 286 | |
| 43919 | 287 | instantiation enat :: minus | 
| 41853 | 288 | begin | 
| 289 | ||
| 43919 | 290 | definition diff_enat_def: | 
| 43924 | 291 | "a - b = (case a of (enat x) \<Rightarrow> (case b of (enat y) \<Rightarrow> enat (x - y) | \<infinity> \<Rightarrow> 0) | 
| 41853 | 292 | | \<infinity> \<Rightarrow> \<infinity>)" | 
| 293 | ||
| 294 | instance .. | |
| 295 | ||
| 296 | end | |
| 297 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 298 | lemma idiff_enat_enat [simp, code]: "enat a - enat b = enat (a - b)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 299 | by (simp add: diff_enat_def) | 
| 41853 | 300 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 301 | lemma idiff_infinity [simp, code]: "\<infinity> - n = (\<infinity>::enat)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 302 | by (simp add: diff_enat_def) | 
| 41853 | 303 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 304 | lemma idiff_infinity_right [simp, code]: "enat a - \<infinity> = 0" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 305 | by (simp add: diff_enat_def) | 
| 41853 | 306 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 307 | lemma idiff_0 [simp]: "(0::enat) - n = 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 308 | by (cases n, simp_all add: zero_enat_def) | 
| 41853 | 309 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 310 | lemmas idiff_enat_0 [simp] = idiff_0 [unfolded zero_enat_def] | 
| 41853 | 311 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 312 | lemma idiff_0_right [simp]: "(n::enat) - 0 = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 313 | by (cases n) (simp_all add: zero_enat_def) | 
| 41853 | 314 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 315 | lemmas idiff_enat_0_right [simp] = idiff_0_right [unfolded zero_enat_def] | 
| 41853 | 316 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 317 | lemma idiff_self [simp]: "n \<noteq> \<infinity> \<Longrightarrow> (n::enat) - n = 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 318 | by (auto simp: zero_enat_def) | 
| 41853 | 319 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 320 | lemma eSuc_minus_eSuc [simp]: "eSuc n - eSuc m = n - m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 321 | by (simp add: eSuc_def split: enat.split) | 
| 41855 | 322 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 323 | lemma eSuc_minus_1 [simp]: "eSuc n - 1 = n" | 
| 68406 | 324 | by (simp add: one_enat_def flip: eSuc_enat zero_enat_def) | 
| 41855 | 325 | |
| 43924 | 326 | (*lemmas idiff_self_eq_0_enat = idiff_self_eq_0[unfolded zero_enat_def]*) | 
| 41853 | 327 | |
| 60500 | 328 | subsection \<open>Ordering\<close> | 
| 27110 | 329 | |
| 43919 | 330 | instantiation enat :: linordered_ab_semigroup_add | 
| 27110 | 331 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 332 | |
| 38167 | 333 | definition [nitpick_simp]: | 
| 43924 | 334 | "m \<le> n = (case n of enat n1 \<Rightarrow> (case m of enat m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) | 
| 27110 | 335 | | \<infinity> \<Rightarrow> True)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 336 | |
| 38167 | 337 | definition [nitpick_simp]: | 
| 43924 | 338 | "m < n = (case m of enat m1 \<Rightarrow> (case n of enat n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) | 
| 27110 | 339 | | \<infinity> \<Rightarrow> False)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 340 | |
| 43919 | 341 | lemma enat_ord_simps [simp]: | 
| 43924 | 342 | "enat m \<le> enat n \<longleftrightarrow> m \<le> n" | 
| 343 | "enat m < enat n \<longleftrightarrow> m < n" | |
| 43921 | 344 | "q \<le> (\<infinity>::enat)" | 
| 345 | "q < (\<infinity>::enat) \<longleftrightarrow> q \<noteq> \<infinity>" | |
| 346 | "(\<infinity>::enat) \<le> q \<longleftrightarrow> q = \<infinity>" | |
| 347 | "(\<infinity>::enat) < q \<longleftrightarrow> False" | |
| 43919 | 348 | by (simp_all add: less_eq_enat_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 349 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 350 | lemma numeral_le_enat_iff[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 351 | shows "numeral m \<le> enat n \<longleftrightarrow> numeral m \<le> n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 352 | by (auto simp: numeral_eq_enat) | 
| 45934 | 353 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 354 | lemma numeral_less_enat_iff[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 355 | shows "numeral m < enat n \<longleftrightarrow> numeral m < n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 356 | by (auto simp: numeral_eq_enat) | 
| 45934 | 357 | |
| 43919 | 358 | lemma enat_ord_code [code]: | 
| 43924 | 359 | "enat m \<le> enat n \<longleftrightarrow> m \<le> n" | 
| 360 | "enat m < enat n \<longleftrightarrow> m < n" | |
| 43921 | 361 | "q \<le> (\<infinity>::enat) \<longleftrightarrow> True" | 
| 43924 | 362 | "enat m < \<infinity> \<longleftrightarrow> True" | 
| 363 | "\<infinity> \<le> enat n \<longleftrightarrow> False" | |
| 43921 | 364 | "(\<infinity>::enat) < q \<longleftrightarrow> False" | 
| 27110 | 365 | by simp_all | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 366 | |
| 60679 | 367 | instance | 
| 368 | by standard (auto simp add: less_eq_enat_def less_enat_def plus_enat_def split: enat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 369 | |
| 27110 | 370 | end | 
| 371 | ||
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 372 | instance enat :: dioid | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 373 | proof | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 374 | fix a b :: enat show "(a \<le> b) = (\<exists>c. b = a + c)" | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 375 | by (cases a b rule: enat2_cases) (auto simp: le_iff_add enat_ex_split) | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 376 | qed | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62374diff
changeset | 377 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 378 | instance enat :: "{linordered_nonzero_semiring, strict_ordered_comm_monoid_add}"
 | 
| 29014 | 379 | proof | 
| 43919 | 380 | fix a b c :: enat | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 381 | show "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow>c * a \<le> c * b" | 
| 43919 | 382 | unfolding times_enat_def less_eq_enat_def zero_enat_def | 
| 383 | by (simp split: enat.splits) | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 384 | show "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" for a b c d :: enat | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 385 | by (cases a b c d rule: enat2_cases[case_product enat2_cases]) auto | 
| 67689 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67091diff
changeset | 386 | show "a < b \<Longrightarrow> a + 1 < b + 1" | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67091diff
changeset | 387 | by (metis add_right_mono eSuc_minus_1 eSuc_plus_1 less_le) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 388 | qed (simp add: zero_enat_def one_enat_def) | 
| 29014 | 389 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 390 | (* BH: These equations are already proven generally for any type in | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 391 | class linordered_semidom. However, enat is not in that class because | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 392 | it does not have the cancellation property. Would it be worthwhile to | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 393 | a generalize linordered_semidom to a new class that includes enat? *) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 394 | |
| 43919 | 395 | lemma enat_ord_number [simp]: | 
| 61076 | 396 | "(numeral m :: enat) \<le> numeral n \<longleftrightarrow> (numeral m :: nat) \<le> numeral n" | 
| 397 | "(numeral m :: enat) < numeral n \<longleftrightarrow> (numeral m :: nat) < numeral n" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 398 | by (simp_all add: numeral_eq_enat) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 399 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 400 | lemma infinity_ileE [elim!]: "\<infinity> \<le> enat m \<Longrightarrow> R" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 401 | by (simp add: zero_enat_def less_eq_enat_def split: enat.splits) | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 402 | |
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 403 | lemma infinity_ilessE [elim!]: "\<infinity> < enat m \<Longrightarrow> R" | 
| 27110 | 404 | by simp | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 405 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 406 | lemma eSuc_ile_mono [simp]: "eSuc n \<le> eSuc m \<longleftrightarrow> n \<le> m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 407 | by (simp add: eSuc_def less_eq_enat_def split: enat.splits) | 
| 62374 
cb27a55d868a
remove lattice syntax from countable complete lattice
 hoelzl parents: 
61631diff
changeset | 408 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 409 | lemma eSuc_mono [simp]: "eSuc n < eSuc m \<longleftrightarrow> n < m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 410 | by (simp add: eSuc_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 411 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 412 | lemma ile_eSuc [simp]: "n \<le> eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 413 | by (simp add: eSuc_def less_eq_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 414 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 415 | lemma not_eSuc_ilei0 [simp]: "\<not> eSuc n \<le> 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 416 | by (simp add: zero_enat_def eSuc_def less_eq_enat_def split: enat.splits) | 
| 27110 | 417 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 418 | lemma i0_iless_eSuc [simp]: "0 < eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 419 | by (simp add: zero_enat_def eSuc_def less_enat_def split: enat.splits) | 
| 27110 | 420 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 421 | lemma iless_eSuc0[simp]: "(n < eSuc 0) = (n = 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 422 | by (simp add: zero_enat_def eSuc_def less_enat_def split: enat.split) | 
| 41853 | 423 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 424 | lemma ileI1: "m < n \<Longrightarrow> eSuc m \<le> n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 425 | by (simp add: eSuc_def less_eq_enat_def less_enat_def split: enat.splits) | 
| 27110 | 426 | |
| 43924 | 427 | lemma Suc_ile_eq: "enat (Suc m) \<le> n \<longleftrightarrow> enat m < n" | 
| 27110 | 428 | by (cases n) auto | 
| 429 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 430 | lemma iless_Suc_eq [simp]: "enat m < eSuc n \<longleftrightarrow> enat m \<le> n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 431 | by (auto simp add: eSuc_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 432 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 433 | lemma imult_infinity: "(0::enat) < n \<Longrightarrow> \<infinity> * n = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 434 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 41853 | 435 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 436 | lemma imult_infinity_right: "(0::enat) < n \<Longrightarrow> n * \<infinity> = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 437 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 41853 | 438 | |
| 43919 | 439 | lemma enat_0_less_mult_iff: "(0 < (m::enat) * n) = (0 < m \<and> 0 < n)" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 440 | by (simp only: zero_less_iff_neq_zero mult_eq_0_iff, simp) | 
| 41853 | 441 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 442 | lemma mono_eSuc: "mono eSuc" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 443 | by (simp add: mono_def) | 
| 41853 | 444 | |
| 43919 | 445 | lemma min_enat_simps [simp]: | 
| 43924 | 446 | "min (enat m) (enat n) = enat (min m n)" | 
| 27110 | 447 | "min q 0 = 0" | 
| 448 | "min 0 q = 0" | |
| 43921 | 449 | "min q (\<infinity>::enat) = q" | 
| 450 | "min (\<infinity>::enat) q = q" | |
| 27110 | 451 | by (auto simp add: min_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 452 | |
| 43919 | 453 | lemma max_enat_simps [simp]: | 
| 43924 | 454 | "max (enat m) (enat n) = enat (max m n)" | 
| 27110 | 455 | "max q 0 = q" | 
| 456 | "max 0 q = q" | |
| 43921 | 457 | "max q \<infinity> = (\<infinity>::enat)" | 
| 458 | "max \<infinity> q = (\<infinity>::enat)" | |
| 27110 | 459 | by (simp_all add: max_def) | 
| 460 | ||
| 43924 | 461 | lemma enat_ile: "n \<le> enat m \<Longrightarrow> \<exists>k. n = enat k" | 
| 27110 | 462 | by (cases n) simp_all | 
| 463 | ||
| 43924 | 464 | lemma enat_iless: "n < enat m \<Longrightarrow> \<exists>k. n = enat k" | 
| 27110 | 465 | by (cases n) simp_all | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 466 | |
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61384diff
changeset | 467 | lemma iadd_le_enat_iff: | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61384diff
changeset | 468 | "x + y \<le> enat n \<longleftrightarrow> (\<exists>y' x'. x = enat x' \<and> y = enat y' \<and> x' + y' \<le> n)" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61384diff
changeset | 469 | by(cases x y rule: enat.exhaust[case_product enat.exhaust]) simp_all | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61384diff
changeset | 470 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 471 | lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j \<Longrightarrow> \<exists>j. enat k < Y j" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 472 | apply (induct_tac k) | 
| 43924 | 473 | apply (simp (no_asm) only: enat_0) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 474 | apply (fast intro: le_less_trans [OF zero_le]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 475 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 476 | apply (drule spec) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 477 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 478 | apply (drule ileI1) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 479 | apply (rule eSuc_enat [THEN subst]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 480 | apply (rule exI) | 
| 27110 | 481 | apply (erule (1) le_less_trans) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 482 | done | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 483 | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 484 | lemma eSuc_max: "eSuc (max x y) = max (eSuc x) (eSuc y)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 485 | by (simp add: eSuc_def split: enat.split) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 486 | |
| 62374 
cb27a55d868a
remove lattice syntax from countable complete lattice
 hoelzl parents: 
61631diff
changeset | 487 | lemma eSuc_Max: | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 488 |   assumes "finite A" "A \<noteq> {}"
 | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 489 | shows "eSuc (Max A) = Max (eSuc ` A)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 490 | using assms proof induction | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 491 | case (insert x A) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 492 |   thus ?case by(cases "A = {}")(simp_all add: eSuc_max)
 | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 493 | qed simp | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 494 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51717diff
changeset | 495 | instantiation enat :: "{order_bot, order_top}"
 | 
| 29337 | 496 | begin | 
| 497 | ||
| 60679 | 498 | definition bot_enat :: enat where "bot_enat = 0" | 
| 499 | definition top_enat :: enat where "top_enat = \<infinity>" | |
| 29337 | 500 | |
| 60679 | 501 | instance | 
| 502 | by standard (simp_all add: bot_enat_def top_enat_def) | |
| 29337 | 503 | |
| 504 | end | |
| 505 | ||
| 43924 | 506 | lemma finite_enat_bounded: | 
| 507 | assumes le_fin: "\<And>y. y \<in> A \<Longrightarrow> y \<le> enat n" | |
| 42993 | 508 | shows "finite A" | 
| 509 | proof (rule finite_subset) | |
| 43924 | 510 |   show "finite (enat ` {..n})" by blast
 | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44019diff
changeset | 511 |   have "A \<subseteq> {..enat n}" using le_fin by fastforce
 | 
| 43924 | 512 |   also have "\<dots> \<subseteq> enat ` {..n}"
 | 
| 60679 | 513 | apply (rule subsetI) | 
| 514 | subgoal for x by (cases x) auto | |
| 515 | done | |
| 43924 | 516 |   finally show "A \<subseteq> enat ` {..n}" .
 | 
| 42993 | 517 | qed | 
| 518 | ||
| 26089 | 519 | |
| 60500 | 520 | subsection \<open>Cancellation simprocs\<close> | 
| 45775 | 521 | |
| 522 | lemma enat_add_left_cancel: "a + b = a + c \<longleftrightarrow> a = (\<infinity>::enat) \<or> b = c" | |
| 523 | unfolding plus_enat_def by (simp split: enat.split) | |
| 524 | ||
| 525 | lemma enat_add_left_cancel_le: "a + b \<le> a + c \<longleftrightarrow> a = (\<infinity>::enat) \<or> b \<le> c" | |
| 526 | unfolding plus_enat_def by (simp split: enat.split) | |
| 527 | ||
| 528 | lemma enat_add_left_cancel_less: "a + b < a + c \<longleftrightarrow> a \<noteq> (\<infinity>::enat) \<and> b < c" | |
| 529 | unfolding plus_enat_def by (simp split: enat.split) | |
| 530 | ||
| 60500 | 531 | ML \<open> | 
| 45775 | 532 | structure Cancel_Enat_Common = | 
| 533 | struct | |
| 534 | (* copied from src/HOL/Tools/nat_numeral_simprocs.ML *) | |
| 535 |   fun find_first_t _    _ []         = raise TERM("find_first_t", [])
 | |
| 536 | | find_first_t past u (t::terms) = | |
| 537 | if u aconv t then (rev past @ terms) | |
| 538 | else find_first_t (t::past) u terms | |
| 539 | ||
| 51366 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 540 |   fun dest_summing (Const (@{const_name Groups.plus}, _) $ t $ u, ts) =
 | 
| 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 541 | dest_summing (t, dest_summing (u, ts)) | 
| 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 542 | | dest_summing (t, ts) = t :: ts | 
| 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 543 | |
| 45775 | 544 | val mk_sum = Arith_Data.long_mk_sum | 
| 51366 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 545 | fun dest_sum t = dest_summing (t, []) | 
| 45775 | 546 | val find_first = find_first_t [] | 
| 547 | val trans_tac = Numeral_Simprocs.trans_tac | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 548 | val norm_ss = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 549 |     simpset_of (put_simpset HOL_basic_ss @{context}
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 550 |       addsimps @{thms ac_simps add_0_left add_0_right})
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 551 | fun norm_tac ctxt = ALLGOALS (simp_tac (put_simpset norm_ss ctxt)) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 552 | fun simplify_meta_eq ctxt cancel_th th = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 553 | Arith_Data.simplify_meta_eq [] ctxt | 
| 45775 | 554 | ([th, cancel_th] MRS trans) | 
| 555 | fun mk_eq (a, b) = HOLogic.mk_Trueprop (HOLogic.mk_eq (a, b)) | |
| 556 | end | |
| 557 | ||
| 558 | structure Eq_Enat_Cancel = ExtractCommonTermFun | |
| 559 | (open Cancel_Enat_Common | |
| 560 | val mk_bal = HOLogic.mk_eq | |
| 561 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} @{typ enat}
 | |
| 562 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel}
 | |
| 563 | ) | |
| 564 | ||
| 565 | structure Le_Enat_Cancel = ExtractCommonTermFun | |
| 566 | (open Cancel_Enat_Common | |
| 567 |   val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less_eq}
 | |
| 568 |   val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} @{typ enat}
 | |
| 569 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel_le}
 | |
| 570 | ) | |
| 571 | ||
| 572 | structure Less_Enat_Cancel = ExtractCommonTermFun | |
| 573 | (open Cancel_Enat_Common | |
| 574 |   val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less}
 | |
| 575 |   val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} @{typ enat}
 | |
| 576 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel_less}
 | |
| 577 | ) | |
| 60500 | 578 | \<close> | 
| 45775 | 579 | |
| 580 | simproc_setup enat_eq_cancel | |
| 581 |   ("(l::enat) + m = n" | "(l::enat) = m + n") =
 | |
| 60500 | 582 | \<open>fn phi => fn ctxt => fn ct => Eq_Enat_Cancel.proc ctxt (Thm.term_of ct)\<close> | 
| 45775 | 583 | |
| 584 | simproc_setup enat_le_cancel | |
| 585 |   ("(l::enat) + m \<le> n" | "(l::enat) \<le> m + n") =
 | |
| 60500 | 586 | \<open>fn phi => fn ctxt => fn ct => Le_Enat_Cancel.proc ctxt (Thm.term_of ct)\<close> | 
| 45775 | 587 | |
| 588 | simproc_setup enat_less_cancel | |
| 589 |   ("(l::enat) + m < n" | "(l::enat) < m + n") =
 | |
| 60500 | 590 | \<open>fn phi => fn ctxt => fn ct => Less_Enat_Cancel.proc ctxt (Thm.term_of ct)\<close> | 
| 45775 | 591 | |
| 60500 | 592 | text \<open>TODO: add regression tests for these simprocs\<close> | 
| 45775 | 593 | |
| 60500 | 594 | text \<open>TODO: add simprocs for combining and cancelling numerals\<close> | 
| 45775 | 595 | |
| 60500 | 596 | subsection \<open>Well-ordering\<close> | 
| 26089 | 597 | |
| 43924 | 598 | lemma less_enatE: | 
| 599 | "[| n < enat m; !!k. n = enat k ==> k < m ==> P |] ==> P" | |
| 26089 | 600 | by (induct n) auto | 
| 601 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 602 | lemma less_infinityE: | 
| 43924 | 603 | "[| n < \<infinity>; !!k. n = enat k ==> P |] ==> P" | 
| 26089 | 604 | by (induct n) auto | 
| 605 | ||
| 43919 | 606 | lemma enat_less_induct: | 
| 67091 | 607 | assumes prem: "\<And>n. \<forall>m::enat. m < n \<longrightarrow> P m \<Longrightarrow> P n" shows "P n" | 
| 26089 | 608 | proof - | 
| 67091 | 609 | have P_enat: "\<And>k. P (enat k)" | 
| 26089 | 610 | apply (rule nat_less_induct) | 
| 611 | apply (rule prem, clarify) | |
| 43924 | 612 | apply (erule less_enatE, simp) | 
| 26089 | 613 | done | 
| 614 | show ?thesis | |
| 615 | proof (induct n) | |
| 616 | fix nat | |
| 43924 | 617 | show "P (enat nat)" by (rule P_enat) | 
| 26089 | 618 | next | 
| 43921 | 619 | show "P \<infinity>" | 
| 26089 | 620 | apply (rule prem, clarify) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 621 | apply (erule less_infinityE) | 
| 43924 | 622 | apply (simp add: P_enat) | 
| 26089 | 623 | done | 
| 624 | qed | |
| 625 | qed | |
| 626 | ||
| 43919 | 627 | instance enat :: wellorder | 
| 26089 | 628 | proof | 
| 27823 | 629 | fix P and n | 
| 61076 | 630 | assume hyp: "(\<And>n::enat. (\<And>m::enat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" | 
| 43919 | 631 | show "P n" by (blast intro: enat_less_induct hyp) | 
| 26089 | 632 | qed | 
| 633 | ||
| 60500 | 634 | subsection \<open>Complete Lattice\<close> | 
| 42993 | 635 | |
| 43919 | 636 | instantiation enat :: complete_lattice | 
| 42993 | 637 | begin | 
| 638 | ||
| 43919 | 639 | definition inf_enat :: "enat \<Rightarrow> enat \<Rightarrow> enat" where | 
| 56777 | 640 | "inf_enat = min" | 
| 42993 | 641 | |
| 43919 | 642 | definition sup_enat :: "enat \<Rightarrow> enat \<Rightarrow> enat" where | 
| 56777 | 643 | "sup_enat = max" | 
| 42993 | 644 | |
| 43919 | 645 | definition Inf_enat :: "enat set \<Rightarrow> enat" where | 
| 56777 | 646 |   "Inf_enat A = (if A = {} then \<infinity> else (LEAST x. x \<in> A))"
 | 
| 42993 | 647 | |
| 43919 | 648 | definition Sup_enat :: "enat set \<Rightarrow> enat" where | 
| 56777 | 649 |   "Sup_enat A = (if A = {} then 0 else if finite A then Max A else \<infinity>)"
 | 
| 650 | instance | |
| 651 | proof | |
| 43919 | 652 | fix x :: "enat" and A :: "enat set" | 
| 42993 | 653 |   { assume "x \<in> A" then show "Inf A \<le> x"
 | 
| 43919 | 654 | unfolding Inf_enat_def by (auto intro: Least_le) } | 
| 42993 | 655 |   { assume "\<And>y. y \<in> A \<Longrightarrow> x \<le> y" then show "x \<le> Inf A"
 | 
| 43919 | 656 | unfolding Inf_enat_def | 
| 42993 | 657 |       by (cases "A = {}") (auto intro: LeastI2_ex) }
 | 
| 658 |   { assume "x \<in> A" then show "x \<le> Sup A"
 | |
| 43919 | 659 | unfolding Sup_enat_def by (cases "finite A") auto } | 
| 42993 | 660 |   { assume "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" then show "Sup A \<le> x"
 | 
| 43924 | 661 | unfolding Sup_enat_def using finite_enat_bounded by auto } | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51717diff
changeset | 662 | qed (simp_all add: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51717diff
changeset | 663 | inf_enat_def sup_enat_def bot_enat_def top_enat_def Inf_enat_def Sup_enat_def) | 
| 42993 | 664 | end | 
| 665 | ||
| 43978 | 666 | instance enat :: complete_linorder .. | 
| 27110 | 667 | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 668 | lemma eSuc_Sup: "A \<noteq> {} \<Longrightarrow> eSuc (Sup A) = Sup (eSuc ` A)"
 | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 669 | by(auto simp add: Sup_enat_def eSuc_Max inj_on_def dest: finite_imageD) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 670 | |
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 671 | lemma sup_continuous_eSuc: "sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. eSuc (f x))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 672 | using eSuc_Sup[of "_ ` UNIV"] by (auto simp: sup_continuous_def) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60500diff
changeset | 673 | |
| 60500 | 674 | subsection \<open>Traditional theorem names\<close> | 
| 27110 | 675 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 676 | lemmas enat_defs = zero_enat_def one_enat_def eSuc_def | 
| 43919 | 677 | plus_enat_def less_eq_enat_def less_enat_def | 
| 27110 | 678 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 679 | lemma iadd_is_0: "(m + n = (0::enat)) = (m = 0 \<and> n = 0)" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 680 | by (rule add_eq_0_iff_both_eq_0) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 681 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 682 | lemma i0_lb : "(0::enat) \<le> n" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 683 | by (rule zero_le) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 684 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 685 | lemma ile0_eq: "n \<le> (0::enat) \<longleftrightarrow> n = 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 686 | by (rule le_zero_eq) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 687 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 688 | lemma not_iless0: "\<not> n < (0::enat)" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 689 | by (rule not_less_zero) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 690 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 691 | lemma i0_less[simp]: "(0::enat) < n \<longleftrightarrow> n \<noteq> 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 692 | by (rule zero_less_iff_neq_zero) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 693 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 694 | lemma imult_is_0: "((m::enat) * n = 0) = (m = 0 \<or> n = 0)" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 695 | by (rule mult_eq_0_iff) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 696 | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 697 | end |