| 1440 |      1 | (*  Title:      Lattice.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Markus Wenzel, TU Muenchen
 | 
|  |      4 | 
 | 
|  |      5 | Lattices are orders with binary (finitary) infima and suprema.
 | 
|  |      6 | *)
 | 
|  |      7 | 
 | 
|  |      8 | Lattice = Order +
 | 
|  |      9 | 
 | 
|  |     10 | axclass
 | 
|  |     11 |   lattice < order
 | 
|  |     12 |   ex_inf       "ALL x y. EX inf. is_inf x y inf"
 | 
|  |     13 |   ex_sup       "ALL x y. EX sup. is_sup x y sup"
 | 
|  |     14 | 
 | 
|  |     15 | consts
 | 
|  |     16 |   "&&"          :: "['a::lattice, 'a] => 'a"       (infixl 70)
 | 
|  |     17 |   "||"          :: "['a::lattice, 'a] => 'a"       (infixl 65)
 | 
|  |     18 | 
 | 
|  |     19 | defs
 | 
|  |     20 |   inf_def       "x && y == @inf. is_inf x y inf"
 | 
|  |     21 |   sup_def       "x || y == @sup. is_sup x y sup"
 | 
|  |     22 | 
 | 
|  |     23 | end
 |