| author | wenzelm |
| Fri, 23 May 1997 10:14:16 +0200 | |
| changeset 3311 | 36e3de24137d |
| parent 2717 | b29c45ef3d86 |
| child 4091 | 771b1f6422a8 |
| permissions | -rw-r--r-- |
| 1461 | 1 |
(* Title: ZF/AC/AC2_AC6.ML |
| 1123 | 2 |
ID: $Id$ |
| 1461 | 3 |
Author: Krzysztof Grabczewski |
| 1123 | 4 |
|
| 1196 | 5 |
The proofs needed to show that each of AC2, AC3, ..., AC6 is equivalent |
6 |
to AC0 and AC1: |
|
| 1123 | 7 |
AC1 ==> AC2 ==> AC1 |
8 |
AC1 ==> AC4 ==> AC3 ==> AC1 |
|
9 |
AC4 ==> AC5 ==> AC4 |
|
10 |
AC1 <-> AC6 |
|
11 |
*) |
|
12 |
||
13 |
(* ********************************************************************** *) |
|
| 1461 | 14 |
(* AC1 ==> AC2 *) |
| 1123 | 15 |
(* ********************************************************************** *) |
16 |
||
17 |
goal thy "!!B. [| B:A; f:(PROD X:A. X); 0~:A |] \ |
|
| 1461 | 18 |
\ ==> {f`B} <= B Int {f`C. C:A}";
|
| 2469 | 19 |
by (fast_tac (!claset addSEs [apply_type]) 1); |
| 1123 | 20 |
val lemma1 = result(); |
21 |
||
22 |
goalw thy [pairwise_disjoint_def] |
|
| 1461 | 23 |
"!!A. [| pairwise_disjoint(A); B:A; C:A; D:B; D:C |] ==> f`B = f`C"; |
| 2469 | 24 |
by (fast_tac (!claset addSEs [equals0D]) 1); |
| 1123 | 25 |
val lemma2 = result(); |
26 |
||
27 |
goalw thy AC_defs "!!Z. AC1 ==> AC2"; |
|
| 1206 | 28 |
by (rtac allI 1); |
29 |
by (rtac impI 1); |
|
| 1123 | 30 |
by (REPEAT (eresolve_tac [asm_rl,conjE,allE,exE,impE] 1)); |
31 |
by (REPEAT (resolve_tac [exI,ballI,equalityI] 1)); |
|
| 1206 | 32 |
by (rtac lemma1 2 THEN (REPEAT (assume_tac 2))); |
| 2469 | 33 |
by (fast_tac (!claset addSEs [RepFunE, lemma2] addEs [apply_type]) 1); |
| 1196 | 34 |
qed "AC1_AC2"; |
| 1123 | 35 |
|
36 |
||
37 |
(* ********************************************************************** *) |
|
| 1461 | 38 |
(* AC2 ==> AC1 *) |
| 1123 | 39 |
(* ********************************************************************** *) |
40 |
||
41 |
goal thy "!!A. 0~:A ==> 0 ~: {B*{B}. B:A}";
|
|
| 2469 | 42 |
by (fast_tac (!claset addSDs [sym RS (Sigma_empty_iff RS iffD1)] |
| 1461 | 43 |
addSEs [RepFunE, equals0D]) 1); |
| 1123 | 44 |
val lemma1 = result(); |
45 |
||
46 |
goal thy "!!A. [| X*{X} Int C = {y}; X:A |] \
|
|
| 1461 | 47 |
\ ==> (THE y. X*{X} Int C = {y}): X*A";
|
| 1206 | 48 |
by (rtac subst_elem 1); |
| 2469 | 49 |
by (fast_tac (!claset addSIs [the_equality] |
| 1461 | 50 |
addSEs [sym RS trans RS (singleton_eq_iff RS iffD1)]) 2); |
| 2469 | 51 |
by (fast_tac (!claset addSEs [equalityE, make_elim singleton_subsetD]) 1); |
| 1123 | 52 |
val lemma2 = result(); |
53 |
||
54 |
goal thy "!!A. ALL D:{E*{E}. E:A}. EX y. D Int C = {y} \
|
|
| 1461 | 55 |
\ ==> (lam x:A. fst(THE z. (x*{x} Int C = {z}))) : \
|
56 |
\ (PROD X:A. X) "; |
|
| 2469 | 57 |
by (fast_tac (!claset addSEs [lemma2] |
| 1461 | 58 |
addSIs [lam_type, RepFunI, fst_type] |
59 |
addSDs [bspec]) 1); |
|
| 1123 | 60 |
val lemma3 = result(); |
61 |
||
62 |
goalw thy (AC_defs@AC_aux_defs) "!!Z. AC2 ==> AC1"; |
|
63 |
by (REPEAT (resolve_tac [allI, impI] 1)); |
|
64 |
by (REPEAT (eresolve_tac [allE, impE] 1)); |
|
| 2469 | 65 |
by (fast_tac (!claset addSEs [lemma3]) 2); |
66 |
by (fast_tac (!claset addSIs [lemma1, equals0I]) 1); |
|
| 1196 | 67 |
qed "AC2_AC1"; |
| 1123 | 68 |
|
69 |
||
70 |
(* ********************************************************************** *) |
|
| 1461 | 71 |
(* AC1 ==> AC4 *) |
| 1123 | 72 |
(* ********************************************************************** *) |
73 |
||
74 |
goal thy "!!R. 0 ~: {R``{x}. x:domain(R)}";
|
|
| 2469 | 75 |
by (fast_tac (!claset addEs [sym RS equals0D]) 1); |
| 1123 | 76 |
val lemma = result(); |
77 |
||
78 |
goalw thy AC_defs "!!Z. AC1 ==> AC4"; |
|
79 |
by (REPEAT (resolve_tac [allI, impI] 1)); |
|
80 |
by (REPEAT (eresolve_tac [allE, lemma RSN (2, impE), exE] 1)); |
|
|
2717
b29c45ef3d86
best_tac avoids looping with change to RepFun_eqI in claset
paulson
parents:
2496
diff
changeset
|
81 |
by (best_tac (!claset addSIs [lam_type] addSEs [apply_type]) 1); |
| 1196 | 82 |
qed "AC1_AC4"; |
| 1123 | 83 |
|
84 |
||
85 |
(* ********************************************************************** *) |
|
| 1461 | 86 |
(* AC4 ==> AC3 *) |
| 1123 | 87 |
(* ********************************************************************** *) |
88 |
||
89 |
goal thy "!!f. f:A->B ==> (UN z:A. {z}*f`z) <= A*Union(B)";
|
|
| 2469 | 90 |
by (fast_tac (!claset addSDs [apply_type]) 1); |
| 1123 | 91 |
val lemma1 = result(); |
92 |
||
93 |
goal thy "!!f. domain(UN z:A. {z}*f(z)) = {a:A. f(a)~=0}";
|
|
| 2496 | 94 |
by (fast_tac (!claset addSIs [not_emptyI] addDs [range_type]) 1); |
| 1123 | 95 |
val lemma2 = result(); |
96 |
||
97 |
goal thy "!!f. x:A ==> (UN z:A. {z}*f(z))``{x} = f(x)";
|
|
| 2496 | 98 |
by (Fast_tac 1); |
| 1123 | 99 |
val lemma3 = result(); |
100 |
||
101 |
goalw thy AC_defs "!!Z. AC4 ==> AC3"; |
|
102 |
by (REPEAT (resolve_tac [allI,ballI] 1)); |
|
103 |
by (REPEAT (eresolve_tac [allE,impE] 1)); |
|
| 1206 | 104 |
by (etac lemma1 1); |
| 2469 | 105 |
by (asm_full_simp_tac (!simpset addsimps [lemma2, lemma3] |
| 1461 | 106 |
addcongs [Pi_cong]) 1); |
| 1196 | 107 |
qed "AC4_AC3"; |
| 1123 | 108 |
|
109 |
(* ********************************************************************** *) |
|
| 1461 | 110 |
(* AC3 ==> AC1 *) |
| 1123 | 111 |
(* ********************************************************************** *) |
112 |
||
113 |
goal thy "!!A. b~:A ==> (PROD x:{a:A. id(A)`a~=b}. id(A)`x) = (PROD x:A. x)";
|
|
| 2469 | 114 |
by (asm_full_simp_tac (!simpset addsimps [id_def] addcongs [Pi_cong]) 1); |
| 1123 | 115 |
by (res_inst_tac [("b","A")] subst_context 1);
|
| 2496 | 116 |
by (Fast_tac 1); |
| 1123 | 117 |
val lemma = result(); |
118 |
||
119 |
goalw thy AC_defs "!!Z. AC3 ==> AC1"; |
|
120 |
by (REPEAT (resolve_tac [allI, impI] 1)); |
|
121 |
by (REPEAT (eresolve_tac [allE, ballE] 1)); |
|
| 2469 | 122 |
by (fast_tac (!claset addSIs [id_type]) 2); |
123 |
by (fast_tac (!claset addEs [lemma RS subst]) 1); |
|
| 1196 | 124 |
qed "AC3_AC1"; |
| 1123 | 125 |
|
126 |
(* ********************************************************************** *) |
|
| 1461 | 127 |
(* AC4 ==> AC5 *) |
| 1123 | 128 |
(* ********************************************************************** *) |
129 |
||
130 |
goalw thy (range_def::AC_defs) "!!Z. AC4 ==> AC5"; |
|
131 |
by (REPEAT (resolve_tac [allI,ballI] 1)); |
|
132 |
by (REPEAT (eresolve_tac [allE,impE] 1)); |
|
133 |
by (eresolve_tac [fun_is_rel RS converse_type] 1); |
|
| 1206 | 134 |
by (etac exE 1); |
135 |
by (rtac bexI 1); |
|
136 |
by (rtac Pi_type 2 THEN (assume_tac 2)); |
|
| 2469 | 137 |
by (fast_tac (!claset addSDs [apply_type] |
| 1461 | 138 |
addSEs [fun_is_rel RS converse_type RS subsetD RS SigmaD2]) 2); |
| 1206 | 139 |
by (rtac ballI 1); |
140 |
by (rtac apply_equality 1 THEN (assume_tac 2)); |
|
141 |
by (etac domainE 1); |
|
| 1196 | 142 |
by (forward_tac [range_type] 1 THEN (assume_tac 1)); |
| 2469 | 143 |
by (fast_tac (!claset addDs [apply_equality]) 1); |
| 1196 | 144 |
qed "AC4_AC5"; |
| 1123 | 145 |
|
146 |
||
147 |
(* ********************************************************************** *) |
|
| 1461 | 148 |
(* AC5 ==> AC4, Rubin & Rubin, p. 11 *) |
| 1123 | 149 |
(* ********************************************************************** *) |
150 |
||
151 |
goal thy "!!A. R <= A*B ==> (lam x:R. fst(x)) : R -> A"; |
|
| 2469 | 152 |
by (fast_tac (!claset addSIs [lam_type, fst_type]) 1); |
| 1123 | 153 |
val lemma1 = result(); |
154 |
||
155 |
goalw thy [range_def] "!!A. R <= A*B ==> range(lam x:R. fst(x)) = domain(R)"; |
|
| 1206 | 156 |
by (rtac equalityI 1); |
| 2469 | 157 |
by (fast_tac (!claset addSEs [lamE] |
| 1461 | 158 |
addEs [subst_elem] |
|
1932
cc9f1ba8f29a
Tidying: removing redundant args in classical reasoner calls
paulson
parents:
1924
diff
changeset
|
159 |
addSDs [Pair_fst_snd_eq]) 1); |
| 1206 | 160 |
by (rtac subsetI 1); |
161 |
by (etac domainE 1); |
|
162 |
by (rtac domainI 1); |
|
| 2469 | 163 |
by (fast_tac (!claset addSEs [lamI RS subst_elem] addIs [fst_conv RS ssubst]) 1); |
| 1123 | 164 |
val lemma2 = result(); |
165 |
||
166 |
goal thy "!!A. [| EX f: A->C. P(f,domain(f)); A=B |] ==> EX f: B->C. P(f,B)"; |
|
| 1206 | 167 |
by (etac bexE 1); |
| 1123 | 168 |
by (forward_tac [domain_of_fun] 1); |
| 2469 | 169 |
by (Fast_tac 1); |
| 1123 | 170 |
val lemma3 = result(); |
171 |
||
172 |
goal thy "!!g. [| R <= A*B; g: C->R; ALL x:C. (lam z:R. fst(z))` (g`x) = x |] \ |
|
| 1461 | 173 |
\ ==> (lam x:C. snd(g`x)): (PROD x:C. R``{x})";
|
| 1206 | 174 |
by (rtac lam_type 1); |
175 |
by (dtac apply_type 1 THEN (assume_tac 1)); |
|
176 |
by (dtac bspec 1 THEN (assume_tac 1)); |
|
177 |
by (rtac imageI 1); |
|
| 1123 | 178 |
by (resolve_tac [subsetD RS Pair_fst_snd_eq RSN (2, subst_elem)] 1 |
| 1461 | 179 |
THEN (REPEAT (assume_tac 1))); |
| 2469 | 180 |
by (Asm_full_simp_tac 1); |
| 1123 | 181 |
val lemma4 = result(); |
182 |
||
183 |
goalw thy AC_defs "!!Z. AC5 ==> AC4"; |
|
184 |
by (REPEAT (resolve_tac [allI,impI] 1)); |
|
185 |
by (REPEAT (eresolve_tac [allE,ballE] 1)); |
|
| 1196 | 186 |
by (eresolve_tac [lemma1 RSN (2, notE)] 2 THEN (assume_tac 2)); |
187 |
by (dresolve_tac [lemma2 RSN (2, lemma3)] 1 THEN (assume_tac 1)); |
|
| 2469 | 188 |
by (fast_tac (!claset addSEs [lemma4]) 1); |
| 1196 | 189 |
qed "AC5_AC4"; |
| 1123 | 190 |
|
191 |
||
192 |
(* ********************************************************************** *) |
|
| 1461 | 193 |
(* AC1 <-> AC6 *) |
| 1123 | 194 |
(* ********************************************************************** *) |
195 |
||
196 |
goalw thy AC_defs "AC1 <-> AC6"; |
|
| 2469 | 197 |
by (fast_tac (!claset addDs [equals0D] addSEs [not_emptyE]) 1); |
| 1196 | 198 |
qed "AC1_iff_AC6"; |
199 |