| 2281 |      1 | (*  Title:      HOL/Integ/Lagrange.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Tobias Nipkow
 | 
|  |      4 |     Copyright   1996 TU Muenchen
 | 
|  |      5 | 
 | 
|  |      6 | 
 | 
|  |      7 | The following lemma essentially shows that all composite natural numbers are
 | 
|  |      8 | sums of fours squares, provided all prime numbers are. However, this is an
 | 
|  |      9 | abstract thm about commutative rings and has a priori nothing to do with nat.
 | 
|  |     10 | *)
 | 
|  |     11 | 
 | 
|  |     12 | goalw Lagrange.thy [Lagrange.sq_def] "!!x1::'a::cring. \
 | 
|  |     13 | \  (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = \
 | 
|  |     14 | \  sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  + \
 | 
|  |     15 | \  sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  + \
 | 
|  |     16 | \  sq(x1*y3 - x2*y4 + x3*y1 + x4*y2)  + \
 | 
|  |     17 | \  sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)";
 | 
|  |     18 | by(cring_simp 1);
 | 
|  |     19 | qed "Lagrange_lemma";
 |