| 
0
 | 
     1  | 
(*  Title: 	Cube/cube
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Tobias Nipkow
  | 
| 
 | 
     4  | 
    Copyright   1990  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
For cube.thy.  The systems of the Lambda-cube that extend simple types
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open Cube;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
val simple = [s_b,strip_s,strip_b,app,lam_ss,pi_ss];
  | 
| 
 | 
    12  | 
  | 
| 
203
 | 
    13  | 
val L2_thy = extend_theory Cube.thy "L2" ([],[],[],[],[],[],None)
  | 
| 
0
 | 
    14  | 
[
  | 
| 
 | 
    15  | 
  ("pi_bs",  "[| A:[]; !!x. x:A ==> B(x):* |] ==> Prod(A,B):*"),
 | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
  ("lam_bs", "[| A:[]; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):* |] \
 | 
| 
 | 
    18  | 
\	==> Abs(A,f) : Prod(A,B)")
  | 
| 
 | 
    19  | 
];
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
val lam_bs = get_axiom L2_thy "lam_bs";
  | 
| 
 | 
    22  | 
val pi_bs = get_axiom L2_thy "pi_bs";
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
val L2 = simple @ [lam_bs,pi_bs];
  | 
| 
 | 
    25  | 
  | 
| 
203
 | 
    26  | 
val Lomega_thy = extend_theory Cube.thy "Lomega" ([],[],[],[],[],[],None)
  | 
| 
0
 | 
    27  | 
[
  | 
| 
 | 
    28  | 
  ("pi_bb",  "[| A:[]; !!x. x:A ==> B(x):[] |] ==> Prod(A,B):[]"),
 | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
  ("lam_bb", "[| A:[]; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):[] |] \
 | 
| 
 | 
    31  | 
\	==> Abs(A,f) : Prod(A,B)")
  | 
| 
 | 
    32  | 
];
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
val lam_bb = get_axiom Lomega_thy "lam_bb";
  | 
| 
 | 
    35  | 
val pi_bb = get_axiom Lomega_thy "pi_bb";
  | 
| 
 | 
    36  | 
val Lomega = simple @ [lam_bb,pi_bb];
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
val LOmega_thy = merge_theories(L2_thy,Lomega_thy);
  | 
| 
 | 
    39  | 
val LOmega = simple @ [lam_bs,pi_bs,lam_bb,pi_bb];
  | 
| 
 | 
    40  | 
  | 
| 
203
 | 
    41  | 
val LP_thy = extend_theory Cube.thy "LP" ([],[],[],[],[],[],None)
  | 
| 
0
 | 
    42  | 
[
  | 
| 
 | 
    43  | 
  ("pi_sb",  "[| A:*; !!x. x:A ==> B(x):[] |] ==> Prod(A,B):[]"),
 | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
  ("lam_sb", "[| A:*; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):[] |] \
 | 
| 
 | 
    46  | 
\	==> Abs(A,f) : Prod(A,B)")
  | 
| 
 | 
    47  | 
];
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
val lam_sb = get_axiom LP_thy "lam_sb";
  | 
| 
 | 
    50  | 
val pi_sb = get_axiom LP_thy "pi_sb";
  | 
| 
 | 
    51  | 
val LP = simple @ [lam_sb,pi_sb];
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
val LP2_thy = merge_theories(L2_thy,LP_thy);
  | 
| 
 | 
    54  | 
val LP2 = simple @ [lam_bs,pi_bs,lam_sb,pi_sb];
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
val LPomega_thy = merge_theories(LP_thy,Lomega_thy);
  | 
| 
 | 
    57  | 
val LPomega = simple @ [lam_bb,pi_bb,lam_sb,pi_sb];
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
val CC_thy = merge_theories(L2_thy,LPomega_thy);
  | 
| 
 | 
    60  | 
val CC = simple @ [lam_bs,pi_bs,lam_bb,pi_bb,lam_sb,pi_sb];
  |