| author | aspinall | 
| Wed, 04 Jul 2007 21:19:34 +0200 | |
| changeset 23570 | 37532c9df22c | 
| parent 21404 | eb85850d3eb7 | 
| child 35762 | af3ff2ba4c54 | 
| permissions | -rw-r--r-- | 
| 1478 | 1 | (* Title: ZF/ex/ramsey.thy | 
| 0 | 2 | ID: $Id$ | 
| 1478 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 4 | Copyright 1992 University of Cambridge | 
| 5 | ||
| 6 | Ramsey's Theorem (finite exponent 2 version) | |
| 7 | ||
| 8 | Based upon the article | |
| 9 | D Basin and M Kaufmann, | |
| 10 | The Boyer-Moore Prover and Nuprl: An Experimental Comparison. | |
| 11 | In G Huet and G Plotkin, editors, Logical Frameworks. | |
| 12867 | 12 | (CUP, 1991), pages 89-119 | 
| 0 | 13 | |
| 14 | See also | |
| 15 | M Kaufmann, | |
| 16 | An example in NQTHM: Ramsey's Theorem | |
| 17 | Internal Note, Computational Logic, Inc., Austin, Texas 78703 | |
| 18 | Available from the author: kaufmann@cli.com | |
| 12867 | 19 | |
| 20 | This function compute Ramsey numbers according to the proof given below | |
| 21 | (which, does not constrain the base case values at all. | |
| 22 | ||
| 23 | fun ram 0 j = 1 | |
| 24 | | ram i 0 = 1 | |
| 25 | | ram i j = ram (i-1) j + ram i (j-1) | |
| 26 | ||
| 0 | 27 | *) | 
| 28 | ||
| 16417 | 29 | theory Ramsey imports Main begin | 
| 21233 | 30 | |
| 31 | definition | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 32 | Symmetric :: "i=>o" where | 
| 12867 | 33 | "Symmetric(E) == (\<forall>x y. <x,y>:E --> <y,x>:E)" | 
| 34 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 35 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 36 | Atleast :: "[i,i]=>o" where -- "not really necessary: ZF defines cardinality" | 
| 12867 | 37 | "Atleast(n,S) == (\<exists>f. f \<in> inj(n,S))" | 
| 38 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 39 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 40 | Clique :: "[i,i,i]=>o" where | 
| 12867 | 41 | "Clique(C,V,E) == (C \<subseteq> V) & (\<forall>x \<in> C. \<forall>y \<in> C. x\<noteq>y --> <x,y> \<in> E)" | 
| 42 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 43 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 44 | Indept :: "[i,i,i]=>o" where | 
| 12867 | 45 | "Indept(I,V,E) == (I \<subseteq> V) & (\<forall>x \<in> I. \<forall>y \<in> I. x\<noteq>y --> <x,y> \<notin> E)" | 
| 46 | ||
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 47 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 48 | Ramsey :: "[i,i,i]=>o" where | 
| 12867 | 49 | "Ramsey(n,i,j) == \<forall>V E. Symmetric(E) & Atleast(n,V) --> | 
| 50 | (\<exists>C. Clique(C,V,E) & Atleast(i,C)) | | |
| 51 | (\<exists>I. Indept(I,V,E) & Atleast(j,I))" | |
| 52 | ||
| 53 | (*** Cliques and Independent sets ***) | |
| 54 | ||
| 55 | lemma Clique0 [intro]: "Clique(0,V,E)" | |
| 56 | by (unfold Clique_def, blast) | |
| 57 | ||
| 58 | lemma Clique_superset: "[| Clique(C,V',E); V'<=V |] ==> Clique(C,V,E)" | |
| 59 | by (unfold Clique_def, blast) | |
| 60 | ||
| 61 | lemma Indept0 [intro]: "Indept(0,V,E)" | |
| 62 | by (unfold Indept_def, blast) | |
| 0 | 63 | |
| 12867 | 64 | lemma Indept_superset: "[| Indept(I,V',E); V'<=V |] ==> Indept(I,V,E)" | 
| 65 | by (unfold Indept_def, blast) | |
| 66 | ||
| 67 | (*** Atleast ***) | |
| 68 | ||
| 69 | lemma Atleast0 [intro]: "Atleast(0,A)" | |
| 70 | by (unfold Atleast_def inj_def Pi_def function_def, blast) | |
| 71 | ||
| 72 | lemma Atleast_succD: | |
| 73 |     "Atleast(succ(m),A) ==> \<exists>x \<in> A. Atleast(m, A-{x})"
 | |
| 74 | apply (unfold Atleast_def) | |
| 75 | apply (blast dest: inj_is_fun [THEN apply_type] inj_succ_restrict) | |
| 76 | done | |
| 0 | 77 | |
| 12867 | 78 | lemma Atleast_superset: | 
| 79 | "[| Atleast(n,A); A \<subseteq> B |] ==> Atleast(n,B)" | |
| 80 | by (unfold Atleast_def, blast intro: inj_weaken_type) | |
| 81 | ||
| 82 | lemma Atleast_succI: | |
| 83 | "[| Atleast(m,B); b\<notin> B |] ==> Atleast(succ(m), cons(b,B))" | |
| 84 | apply (unfold Atleast_def succ_def) | |
| 85 | apply (blast intro: inj_extend elim: mem_irrefl) | |
| 86 | done | |
| 87 | ||
| 88 | lemma Atleast_Diff_succI: | |
| 89 |      "[| Atleast(m, B-{x});  x \<in> B |] ==> Atleast(succ(m), B)"
 | |
| 90 | by (blast intro: Atleast_succI [THEN Atleast_superset]) | |
| 91 | ||
| 92 | (*** Main Cardinality Lemma ***) | |
| 0 | 93 | |
| 12867 | 94 | (*The #-succ(0) strengthens the original theorem statement, but precisely | 
| 95 | the same proof could be used!!*) | |
| 96 | lemma pigeon2 [rule_format]: | |
| 97 | "m \<in> nat ==> | |
| 98 | \<forall>n \<in> nat. \<forall>A B. Atleast((m#+n) #- succ(0), A Un B) --> | |
| 99 | Atleast(m,A) | Atleast(n,B)" | |
| 100 | apply (induct_tac "m") | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 101 | apply (blast intro!: Atleast0, simp) | 
| 12867 | 102 | apply (rule ballI) | 
| 103 | apply (rename_tac m' n) (*simplifier does NOT preserve bound names!*) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 104 | apply (induct_tac "n", auto) | 
| 12867 | 105 | apply (erule Atleast_succD [THEN bexE]) | 
| 106 | apply (rename_tac n' A B z) | |
| 107 | apply (erule UnE) | |
| 108 | (**case z \<in> B. Instantiate the '\<forall>A B' induction hypothesis. **) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 109 | apply (drule_tac [2] x1 = A and x = "B-{z}" in spec [THEN spec])
 | 
| 12867 | 110 | apply (erule_tac [2] mp [THEN disjE]) | 
| 111 | (*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*) | |
| 112 | apply (erule_tac [3] asm_rl notE Atleast_Diff_succI)+ | |
| 113 | (*proving the condition*) | |
| 114 | prefer 2 apply (blast intro: Atleast_superset) | |
| 115 | (**case z \<in> A. Instantiate the '\<forall>n \<in> nat. \<forall>A B' induction hypothesis. **) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 116 | apply (drule_tac x2="succ(n')" and x1="A-{z}" and x=B
 | 
| 12867 | 117 | in bspec [THEN spec, THEN spec]) | 
| 118 | apply (erule nat_succI) | |
| 119 | apply (erule mp [THEN disjE]) | |
| 120 | (*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 121 | apply (erule_tac [2] asm_rl Atleast_Diff_succI notE)+ | 
| 12867 | 122 | (*proving the condition*) | 
| 123 | apply simp | |
| 124 | apply (blast intro: Atleast_superset) | |
| 125 | done | |
| 0 | 126 | |
| 12867 | 127 | |
| 128 | (**** Ramsey's Theorem ****) | |
| 129 | ||
| 130 | (** Base cases of induction; they now admit ANY Ramsey number **) | |
| 131 | ||
| 132 | lemma Ramsey0j: "Ramsey(n,0,j)" | |
| 133 | by (unfold Ramsey_def, blast) | |
| 134 | ||
| 135 | lemma Ramseyi0: "Ramsey(n,i,0)" | |
| 136 | by (unfold Ramsey_def, blast) | |
| 137 | ||
| 138 | (** Lemmas for induction step **) | |
| 0 | 139 | |
| 12867 | 140 | (*The use of succ(m) here, rather than #-succ(0), simplifies the proof of | 
| 141 | Ramsey_step_lemma.*) | |
| 142 | lemma Atleast_partition: "[| Atleast(m #+ n, A); m \<in> nat; n \<in> nat |] | |
| 143 |       ==> Atleast(succ(m), {x \<in> A. ~P(x)}) | Atleast(n, {x \<in> A. P(x)})"
 | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 144 | apply (rule nat_succI [THEN pigeon2], assumption+) | 
| 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 145 | apply (rule Atleast_superset, auto) | 
| 12867 | 146 | done | 
| 147 | ||
| 148 | (*For the Atleast part, proves ~(a \<in> I) from the second premise!*) | |
| 149 | lemma Indept_succ: | |
| 150 |     "[| Indept(I, {z \<in> V-{a}. <a,z> \<notin> E}, E);  Symmetric(E);  a \<in> V;   
 | |
| 151 | Atleast(j,I) |] ==> | |
| 152 | Indept(cons(a,I), V, E) & Atleast(succ(j), cons(a,I))" | |
| 153 | apply (unfold Symmetric_def Indept_def) | |
| 154 | apply (blast intro!: Atleast_succI) | |
| 155 | done | |
| 156 | ||
| 157 | ||
| 158 | lemma Clique_succ: | |
| 159 |     "[| Clique(C, {z \<in> V-{a}. <a,z>:E}, E);  Symmetric(E);  a \<in> V;   
 | |
| 160 | Atleast(j,C) |] ==> | |
| 161 | Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))" | |
| 162 | apply (unfold Symmetric_def Clique_def) | |
| 163 | apply (blast intro!: Atleast_succI) | |
| 164 | done | |
| 165 | ||
| 166 | (** Induction step **) | |
| 0 | 167 | |
| 12867 | 168 | (*Published proofs gloss over the need for Ramsey numbers to be POSITIVE.*) | 
| 169 | lemma Ramsey_step_lemma: | |
| 170 | "[| Ramsey(succ(m), succ(i), j); Ramsey(n, i, succ(j)); | |
| 171 | m \<in> nat; n \<in> nat |] ==> Ramsey(succ(m#+n), succ(i), succ(j))" | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12867diff
changeset | 172 | apply (unfold Ramsey_def, clarify) | 
| 12867 | 173 | apply (erule Atleast_succD [THEN bexE]) | 
| 174 | apply (erule_tac P1 = "%z.<x,z>:E" in Atleast_partition [THEN disjE], | |
| 175 | assumption+) | |
| 176 | (*case m*) | |
| 177 | apply (fast dest!: Indept_succ elim: Clique_superset) | |
| 178 | (*case n*) | |
| 179 | apply (fast dest!: Clique_succ elim: Indept_superset) | |
| 180 | done | |
| 181 | ||
| 182 | ||
| 183 | (** The actual proof **) | |
| 184 | ||
| 185 | (*Again, the induction requires Ramsey numbers to be positive.*) | |
| 186 | lemma ramsey_lemma: "i \<in> nat ==> \<forall>j \<in> nat. \<exists>n \<in> nat. Ramsey(succ(n), i, j)" | |
| 187 | apply (induct_tac "i") | |
| 188 | apply (blast intro!: Ramsey0j) | |
| 189 | apply (rule ballI) | |
| 190 | apply (induct_tac "j") | |
| 191 | apply (blast intro!: Ramseyi0) | |
| 192 | apply (blast intro!: add_type Ramsey_step_lemma) | |
| 193 | done | |
| 194 | ||
| 195 | (*Final statement in a tidy form, without succ(...) *) | |
| 196 | lemma ramsey: "[| i \<in> nat; j \<in> nat |] ==> \<exists>n \<in> nat. Ramsey(n,i,j)" | |
| 197 | by (blast dest: ramsey_lemma) | |
| 0 | 198 | |
| 199 | end |