author | blanchet |
Tue, 16 Sep 2014 19:23:37 +0200 | |
changeset 58352 | 37745650a3f4 |
parent 49756 | 28e37eab4e6f |
child 58889 | 5b7a9633cfa8 |
permissions | -rw-r--r-- |
13383 | 1 |
(* Title: HOL/ex/Tarski.thy |
40945 | 2 |
Author: Florian Kammüller, Cambridge University Computer Laboratory |
13383 | 3 |
*) |
7112 | 4 |
|
13585 | 5 |
header {* The Full Theorem of Tarski *} |
7112 | 6 |
|
27681 | 7 |
theory Tarski |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
40945
diff
changeset
|
8 |
imports Main "~~/src/HOL/Library/FuncSet" |
27681 | 9 |
begin |
7112 | 10 |
|
13383 | 11 |
text {* |
12 |
Minimal version of lattice theory plus the full theorem of Tarski: |
|
13 |
The fixedpoints of a complete lattice themselves form a complete |
|
14 |
lattice. |
|
15 |
||
16 |
Illustrates first-class theories, using the Sigma representation of |
|
17 |
structures. Tidied and converted to Isar by lcp. |
|
18 |
*} |
|
19 |
||
20 |
record 'a potype = |
|
7112 | 21 |
pset :: "'a set" |
22 |
order :: "('a * 'a) set" |
|
23 |
||
19736 | 24 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
25 |
monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where |
19736 | 26 |
"monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r)" |
7112 | 27 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
28 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
29 |
least :: "['a => bool, 'a potype] => 'a" where |
19736 | 30 |
"least P po = (SOME x. x: pset po & P x & |
31 |
(\<forall>y \<in> pset po. P y --> (x,y): order po))" |
|
7112 | 32 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
33 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
34 |
greatest :: "['a => bool, 'a potype] => 'a" where |
19736 | 35 |
"greatest P po = (SOME x. x: pset po & P x & |
36 |
(\<forall>y \<in> pset po. P y --> (y,x): order po))" |
|
7112 | 37 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
38 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
39 |
lub :: "['a set, 'a potype] => 'a" where |
19736 | 40 |
"lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po" |
7112 | 41 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
42 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
43 |
glb :: "['a set, 'a potype] => 'a" where |
19736 | 44 |
"glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po" |
7112 | 45 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
46 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
47 |
isLub :: "['a set, 'a potype, 'a] => bool" where |
19736 | 48 |
"isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) & |
49 |
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po)))" |
|
7112 | 50 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
51 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
52 |
isGlb :: "['a set, 'a potype, 'a] => bool" where |
19736 | 53 |
"isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) & |
54 |
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po)))" |
|
7112 | 55 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
56 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
57 |
"fix" :: "[('a => 'a), 'a set] => 'a set" where |
19736 | 58 |
"fix f A = {x. x: A & f x = x}" |
7112 | 59 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
60 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
61 |
interval :: "[('a*'a) set,'a, 'a ] => 'a set" where |
19736 | 62 |
"interval r a b = {x. (a,x): r & (x,b): r}" |
7112 | 63 |
|
64 |
||
19736 | 65 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
66 |
Bot :: "'a potype => 'a" where |
19736 | 67 |
"Bot po = least (%x. True) po" |
7112 | 68 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
69 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
70 |
Top :: "'a potype => 'a" where |
19736 | 71 |
"Top po = greatest (%x. True) po" |
7112 | 72 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
73 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
74 |
PartialOrder :: "('a potype) set" where |
30198 | 75 |
"PartialOrder = {P. refl_on (pset P) (order P) & antisym (order P) & |
13585 | 76 |
trans (order P)}" |
7112 | 77 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
78 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
79 |
CompleteLattice :: "('a potype) set" where |
19736 | 80 |
"CompleteLattice = {cl. cl: PartialOrder & |
17841 | 81 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) & |
82 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}" |
|
7112 | 83 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
84 |
definition |
27681 | 85 |
CLF_set :: "('a potype * ('a => 'a)) set" where |
86 |
"CLF_set = (SIGMA cl: CompleteLattice. |
|
19736 | 87 |
{f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})" |
13383 | 88 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
89 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
90 |
induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where |
19736 | 91 |
"induced A r = {(a,b). a : A & b: A & (a,b): r}" |
7112 | 92 |
|
93 |
||
19736 | 94 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
95 |
sublattice :: "('a potype * 'a set)set" where |
19736 | 96 |
"sublattice = |
97 |
(SIGMA cl: CompleteLattice. |
|
17841 | 98 |
{S. S \<subseteq> pset cl & |
19736 | 99 |
(| pset = S, order = induced S (order cl) |): CompleteLattice})" |
7112 | 100 |
|
19736 | 101 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
102 |
sublat :: "['a set, 'a potype] => bool" ("_ <<= _" [51,50]50) where |
19736 | 103 |
"S <<= cl == S : sublattice `` {cl}" |
7112 | 104 |
|
19736 | 105 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21232
diff
changeset
|
106 |
dual :: "'a potype => 'a potype" where |
19736 | 107 |
"dual po = (| pset = pset po, order = converse (order po) |)" |
7112 | 108 |
|
27681 | 109 |
locale S = |
13115 | 110 |
fixes cl :: "'a potype" |
111 |
and A :: "'a set" |
|
112 |
and r :: "('a * 'a) set" |
|
13585 | 113 |
defines A_def: "A == pset cl" |
114 |
and r_def: "r == order cl" |
|
7112 | 115 |
|
27681 | 116 |
locale PO = S + |
117 |
assumes cl_po: "cl : PartialOrder" |
|
118 |
||
119 |
locale CL = S + |
|
13115 | 120 |
assumes cl_co: "cl : CompleteLattice" |
7112 | 121 |
|
49756
28e37eab4e6f
added some ad-hoc namespace prefixes to avoid duplicate facts;
wenzelm
parents:
46752
diff
changeset
|
122 |
sublocale CL < po: PO |
27681 | 123 |
apply (simp_all add: A_def r_def) |
124 |
apply unfold_locales |
|
125 |
using cl_co unfolding CompleteLattice_def by auto |
|
126 |
||
127 |
locale CLF = S + |
|
13115 | 128 |
fixes f :: "'a => 'a" |
129 |
and P :: "'a set" |
|
27681 | 130 |
assumes f_cl: "(cl,f) : CLF_set" (*was the equivalent "f : CLF_set``{cl}"*) |
13115 | 131 |
defines P_def: "P == fix f A" |
7112 | 132 |
|
49756
28e37eab4e6f
added some ad-hoc namespace prefixes to avoid duplicate facts;
wenzelm
parents:
46752
diff
changeset
|
133 |
sublocale CLF < cl: CL |
27681 | 134 |
apply (simp_all add: A_def r_def) |
135 |
apply unfold_locales |
|
136 |
using f_cl unfolding CLF_set_def by auto |
|
7112 | 137 |
|
27681 | 138 |
locale Tarski = CLF + |
13115 | 139 |
fixes Y :: "'a set" |
140 |
and intY1 :: "'a set" |
|
141 |
and v :: "'a" |
|
142 |
assumes |
|
17841 | 143 |
Y_ss: "Y \<subseteq> P" |
13115 | 144 |
defines |
145 |
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)" |
|
13383 | 146 |
and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r & |
13115 | 147 |
x: intY1} |
13383 | 148 |
(| pset=intY1, order=induced intY1 r|)" |
13115 | 149 |
|
150 |
||
14569 | 151 |
subsection {* Partial Order *} |
13115 | 152 |
|
27681 | 153 |
lemma (in PO) dual: |
154 |
"PO (dual cl)" |
|
155 |
apply unfold_locales |
|
156 |
using cl_po |
|
157 |
unfolding PartialOrder_def dual_def |
|
158 |
by auto |
|
159 |
||
30198 | 160 |
lemma (in PO) PO_imp_refl_on [simp]: "refl_on A r" |
13383 | 161 |
apply (insert cl_po) |
13115 | 162 |
apply (simp add: PartialOrder_def A_def r_def) |
163 |
done |
|
164 |
||
27681 | 165 |
lemma (in PO) PO_imp_sym [simp]: "antisym r" |
13383 | 166 |
apply (insert cl_po) |
19316 | 167 |
apply (simp add: PartialOrder_def r_def) |
13115 | 168 |
done |
169 |
||
27681 | 170 |
lemma (in PO) PO_imp_trans [simp]: "trans r" |
13383 | 171 |
apply (insert cl_po) |
19316 | 172 |
apply (simp add: PartialOrder_def r_def) |
13115 | 173 |
done |
174 |
||
18705 | 175 |
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r" |
13383 | 176 |
apply (insert cl_po) |
30198 | 177 |
apply (simp add: PartialOrder_def refl_on_def A_def r_def) |
13115 | 178 |
done |
179 |
||
18705 | 180 |
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b" |
13383 | 181 |
apply (insert cl_po) |
19316 | 182 |
apply (simp add: PartialOrder_def antisym_def r_def) |
13115 | 183 |
done |
184 |
||
18705 | 185 |
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r" |
13383 | 186 |
apply (insert cl_po) |
19316 | 187 |
apply (simp add: PartialOrder_def r_def) |
13115 | 188 |
apply (unfold trans_def, fast) |
189 |
done |
|
190 |
||
191 |
lemma (in PO) monotoneE: |
|
192 |
"[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r" |
|
193 |
by (simp add: monotone_def) |
|
194 |
||
195 |
lemma (in PO) po_subset_po: |
|
17841 | 196 |
"S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder" |
13115 | 197 |
apply (simp (no_asm) add: PartialOrder_def) |
198 |
apply auto |
|
13383 | 199 |
-- {* refl *} |
30198 | 200 |
apply (simp add: refl_on_def induced_def) |
18705 | 201 |
apply (blast intro: reflE) |
13383 | 202 |
-- {* antisym *} |
13115 | 203 |
apply (simp add: antisym_def induced_def) |
18705 | 204 |
apply (blast intro: antisymE) |
13383 | 205 |
-- {* trans *} |
13115 | 206 |
apply (simp add: trans_def induced_def) |
18705 | 207 |
apply (blast intro: transE) |
13115 | 208 |
done |
209 |
||
17841 | 210 |
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r" |
13115 | 211 |
by (simp add: add: induced_def) |
212 |
||
213 |
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r" |
|
214 |
by (simp add: add: induced_def) |
|
215 |
||
17841 | 216 |
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L" |
13383 | 217 |
apply (insert cl_co) |
13115 | 218 |
apply (simp add: CompleteLattice_def A_def) |
219 |
done |
|
220 |
||
221 |
declare (in CL) cl_co [simp] |
|
222 |
||
223 |
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)" |
|
224 |
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) |
|
225 |
||
226 |
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)" |
|
227 |
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) |
|
228 |
||
229 |
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
41413
diff
changeset
|
230 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold) |
13115 | 231 |
|
232 |
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
41413
diff
changeset
|
233 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold) |
13115 | 234 |
|
235 |
lemma (in PO) dualPO: "dual cl \<in> PartialOrder" |
|
13383 | 236 |
apply (insert cl_po) |
30198 | 237 |
apply (simp add: PartialOrder_def dual_def refl_on_converse |
13115 | 238 |
trans_converse antisym_converse) |
239 |
done |
|
240 |
||
241 |
lemma Rdual: |
|
17841 | 242 |
"\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L)) |
243 |
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))" |
|
13115 | 244 |
apply safe |
245 |
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)} |
|
246 |
(|pset = A, order = r|) " in exI) |
|
247 |
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec) |
|
248 |
apply (drule mp, fast) |
|
249 |
apply (simp add: isLub_lub isGlb_def) |
|
250 |
apply (simp add: isLub_def, blast) |
|
251 |
done |
|
252 |
||
253 |
lemma lub_dual_glb: "lub S cl = glb S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
41413
diff
changeset
|
254 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) |
13115 | 255 |
|
256 |
lemma glb_dual_lub: "glb S cl = lub S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
41413
diff
changeset
|
257 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) |
13115 | 258 |
|
17841 | 259 |
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder" |
13115 | 260 |
by (simp add: PartialOrder_def CompleteLattice_def, fast) |
261 |
||
262 |
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] |
|
263 |
||
27681 | 264 |
(*declare CL_imp_PO [THEN PO.PO_imp_refl, simp] |
21232 | 265 |
declare CL_imp_PO [THEN PO.PO_imp_sym, simp] |
27681 | 266 |
declare CL_imp_PO [THEN PO.PO_imp_trans, simp]*) |
13115 | 267 |
|
30198 | 268 |
lemma (in CL) CO_refl_on: "refl_on A r" |
269 |
by (rule PO_imp_refl_on) |
|
13115 | 270 |
|
271 |
lemma (in CL) CO_antisym: "antisym r" |
|
272 |
by (rule PO_imp_sym) |
|
273 |
||
274 |
lemma (in CL) CO_trans: "trans r" |
|
275 |
by (rule PO_imp_trans) |
|
276 |
||
277 |
lemma CompleteLatticeI: |
|
17841 | 278 |
"[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L)); |
279 |
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|] |
|
13115 | 280 |
==> po \<in> CompleteLattice" |
13383 | 281 |
apply (unfold CompleteLattice_def, blast) |
13115 | 282 |
done |
283 |
||
284 |
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice" |
|
13383 | 285 |
apply (insert cl_co) |
13115 | 286 |
apply (simp add: CompleteLattice_def dual_def) |
13383 | 287 |
apply (fold dual_def) |
288 |
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] |
|
13115 | 289 |
dualPO) |
290 |
done |
|
291 |
||
13585 | 292 |
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl" |
13115 | 293 |
by (simp add: dual_def) |
294 |
||
13585 | 295 |
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)" |
13115 | 296 |
by (simp add: dual_def) |
297 |
||
298 |
lemma (in PO) monotone_dual: |
|
13585 | 299 |
"monotone f (pset cl) (order cl) |
300 |
==> monotone f (pset (dual cl)) (order(dual cl))" |
|
301 |
by (simp add: monotone_def dualA_iff dualr_iff) |
|
13115 | 302 |
|
303 |
lemma (in PO) interval_dual: |
|
13585 | 304 |
"[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x" |
13115 | 305 |
apply (simp add: interval_def dualr_iff) |
306 |
apply (fold r_def, fast) |
|
307 |
done |
|
308 |
||
27681 | 309 |
lemma (in PO) trans: |
310 |
"(x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r" |
|
311 |
using cl_po apply (auto simp add: PartialOrder_def r_def) |
|
312 |
unfolding trans_def by blast |
|
313 |
||
13115 | 314 |
lemma (in PO) interval_not_empty: |
27681 | 315 |
"interval r a b \<noteq> {} ==> (a, b) \<in> r" |
13115 | 316 |
apply (simp add: interval_def) |
27681 | 317 |
using trans by blast |
13115 | 318 |
|
319 |
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r" |
|
320 |
by (simp add: interval_def) |
|
321 |
||
322 |
lemma (in PO) left_in_interval: |
|
323 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b" |
|
324 |
apply (simp (no_asm_simp) add: interval_def) |
|
325 |
apply (simp add: PO_imp_trans interval_not_empty) |
|
18705 | 326 |
apply (simp add: reflE) |
13115 | 327 |
done |
328 |
||
329 |
lemma (in PO) right_in_interval: |
|
330 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b" |
|
331 |
apply (simp (no_asm_simp) add: interval_def) |
|
332 |
apply (simp add: PO_imp_trans interval_not_empty) |
|
18705 | 333 |
apply (simp add: reflE) |
13115 | 334 |
done |
335 |
||
13383 | 336 |
|
14569 | 337 |
subsection {* sublattice *} |
13383 | 338 |
|
13115 | 339 |
lemma (in PO) sublattice_imp_CL: |
18750 | 340 |
"S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice" |
19316 | 341 |
by (simp add: sublattice_def CompleteLattice_def r_def) |
13115 | 342 |
|
343 |
lemma (in CL) sublatticeI: |
|
17841 | 344 |
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |] |
18750 | 345 |
==> S <<= cl" |
13115 | 346 |
by (simp add: sublattice_def A_def r_def) |
347 |
||
27681 | 348 |
lemma (in CL) dual: |
349 |
"CL (dual cl)" |
|
350 |
apply unfold_locales |
|
351 |
using cl_co unfolding CompleteLattice_def |
|
352 |
apply (simp add: dualPO isGlb_dual_isLub [symmetric] isLub_dual_isGlb [symmetric] dualA_iff) |
|
353 |
done |
|
354 |
||
13383 | 355 |
|
14569 | 356 |
subsection {* lub *} |
13383 | 357 |
|
17841 | 358 |
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L" |
13115 | 359 |
apply (rule antisymE) |
360 |
apply (auto simp add: isLub_def r_def) |
|
361 |
done |
|
362 |
||
17841 | 363 |
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r" |
13115 | 364 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
365 |
apply (unfold lub_def least_def) |
|
366 |
apply (rule some_equality [THEN ssubst]) |
|
367 |
apply (simp add: isLub_def) |
|
13383 | 368 |
apply (simp add: lub_unique A_def isLub_def) |
13115 | 369 |
apply (simp add: isLub_def r_def) |
370 |
done |
|
371 |
||
372 |
lemma (in CL) lub_least: |
|
17841 | 373 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r" |
13115 | 374 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
375 |
apply (unfold lub_def least_def) |
|
376 |
apply (rule_tac s=x in some_equality [THEN ssubst]) |
|
377 |
apply (simp add: isLub_def) |
|
13383 | 378 |
apply (simp add: lub_unique A_def isLub_def) |
13115 | 379 |
apply (simp add: isLub_def r_def A_def) |
380 |
done |
|
381 |
||
17841 | 382 |
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A" |
13115 | 383 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
384 |
apply (unfold lub_def least_def) |
|
385 |
apply (subst some_equality) |
|
386 |
apply (simp add: isLub_def) |
|
387 |
prefer 2 apply (simp add: isLub_def A_def) |
|
13383 | 388 |
apply (simp add: lub_unique A_def isLub_def) |
13115 | 389 |
done |
390 |
||
391 |
lemma (in CL) lubI: |
|
17841 | 392 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r; |
13115 | 393 |
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl" |
394 |
apply (rule lub_unique, assumption) |
|
395 |
apply (simp add: isLub_def A_def r_def) |
|
396 |
apply (unfold isLub_def) |
|
397 |
apply (rule conjI) |
|
398 |
apply (fold A_def r_def) |
|
399 |
apply (rule lub_in_lattice, assumption) |
|
400 |
apply (simp add: lub_upper lub_least) |
|
401 |
done |
|
402 |
||
17841 | 403 |
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl" |
13115 | 404 |
by (simp add: lubI isLub_def A_def r_def) |
405 |
||
406 |
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A" |
|
407 |
by (simp add: isLub_def A_def) |
|
408 |
||
409 |
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r" |
|
410 |
by (simp add: isLub_def r_def) |
|
411 |
||
412 |
lemma (in CL) isLub_least: |
|
413 |
"[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r" |
|
414 |
by (simp add: isLub_def A_def r_def) |
|
415 |
||
416 |
lemma (in CL) isLubI: |
|
13383 | 417 |
"[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r; |
13115 | 418 |
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L" |
419 |
by (simp add: isLub_def A_def r_def) |
|
420 |
||
13383 | 421 |
|
14569 | 422 |
subsection {* glb *} |
13383 | 423 |
|
17841 | 424 |
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A" |
13115 | 425 |
apply (subst glb_dual_lub) |
426 |
apply (simp add: A_def) |
|
427 |
apply (rule dualA_iff [THEN subst]) |
|
21232 | 428 |
apply (rule CL.lub_in_lattice) |
27681 | 429 |
apply (rule dual) |
13115 | 430 |
apply (simp add: dualA_iff) |
431 |
done |
|
432 |
||
17841 | 433 |
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r" |
13115 | 434 |
apply (subst glb_dual_lub) |
435 |
apply (simp add: r_def) |
|
436 |
apply (rule dualr_iff [THEN subst]) |
|
21232 | 437 |
apply (rule CL.lub_upper) |
27681 | 438 |
apply (rule dual) |
13115 | 439 |
apply (simp add: dualA_iff A_def, assumption) |
440 |
done |
|
441 |
||
13383 | 442 |
text {* |
443 |
Reduce the sublattice property by using substructural properties; |
|
444 |
abandoned see @{text "Tarski_4.ML"}. |
|
445 |
*} |
|
13115 | 446 |
|
447 |
lemma (in CLF) [simp]: |
|
13585 | 448 |
"f: pset cl -> pset cl & monotone f (pset cl) (order cl)" |
13383 | 449 |
apply (insert f_cl) |
27681 | 450 |
apply (simp add: CLF_set_def) |
13115 | 451 |
done |
452 |
||
453 |
declare (in CLF) f_cl [simp] |
|
454 |
||
455 |
||
13585 | 456 |
lemma (in CLF) f_in_funcset: "f \<in> A -> A" |
13115 | 457 |
by (simp add: A_def) |
458 |
||
459 |
lemma (in CLF) monotone_f: "monotone f A r" |
|
460 |
by (simp add: A_def r_def) |
|
461 |
||
27681 | 462 |
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set" |
463 |
apply (simp add: CLF_set_def CL_dualCL monotone_dual) |
|
13115 | 464 |
apply (simp add: dualA_iff) |
465 |
done |
|
466 |
||
27681 | 467 |
lemma (in CLF) dual: |
468 |
"CLF (dual cl) f" |
|
469 |
apply (rule CLF.intro) |
|
470 |
apply (rule CLF_dual) |
|
471 |
done |
|
472 |
||
13383 | 473 |
|
14569 | 474 |
subsection {* fixed points *} |
13383 | 475 |
|
17841 | 476 |
lemma fix_subset: "fix f A \<subseteq> A" |
13115 | 477 |
by (simp add: fix_def, fast) |
478 |
||
479 |
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x" |
|
480 |
by (simp add: fix_def) |
|
481 |
||
482 |
lemma fixf_subset: |
|
17841 | 483 |
"[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B" |
484 |
by (simp add: fix_def, auto) |
|
13115 | 485 |
|
13383 | 486 |
|
14569 | 487 |
subsection {* lemmas for Tarski, lub *} |
13115 | 488 |
lemma (in CLF) lubH_le_flubH: |
489 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r" |
|
490 |
apply (rule lub_least, fast) |
|
491 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
492 |
apply (rule lub_in_lattice, fast) |
|
13383 | 493 |
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *} |
13115 | 494 |
apply (rule ballI) |
495 |
apply (rule transE) |
|
13585 | 496 |
-- {* instantiates @{text "(x, ???z) \<in> order cl to (x, f x)"}, *} |
13383 | 497 |
-- {* because of the def of @{text H} *} |
13115 | 498 |
apply fast |
13383 | 499 |
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *} |
13115 | 500 |
apply (rule_tac f = "f" in monotoneE) |
501 |
apply (rule monotone_f, fast) |
|
502 |
apply (rule lub_in_lattice, fast) |
|
503 |
apply (rule lub_upper, fast) |
|
504 |
apply assumption |
|
505 |
done |
|
506 |
||
507 |
lemma (in CLF) flubH_le_lubH: |
|
508 |
"[| H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r" |
|
509 |
apply (rule lub_upper, fast) |
|
510 |
apply (rule_tac t = "H" in ssubst, assumption) |
|
511 |
apply (rule CollectI) |
|
512 |
apply (rule conjI) |
|
513 |
apply (rule_tac [2] f_in_funcset [THEN funcset_mem]) |
|
514 |
apply (rule_tac [2] lub_in_lattice) |
|
515 |
prefer 2 apply fast |
|
516 |
apply (rule_tac f = "f" in monotoneE) |
|
517 |
apply (rule monotone_f) |
|
13383 | 518 |
apply (blast intro: lub_in_lattice) |
519 |
apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem]) |
|
13115 | 520 |
apply (simp add: lubH_le_flubH) |
521 |
done |
|
522 |
||
523 |
lemma (in CLF) lubH_is_fixp: |
|
524 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A" |
|
525 |
apply (simp add: fix_def) |
|
526 |
apply (rule conjI) |
|
527 |
apply (rule lub_in_lattice, fast) |
|
528 |
apply (rule antisymE) |
|
529 |
apply (simp add: flubH_le_lubH) |
|
530 |
apply (simp add: lubH_le_flubH) |
|
531 |
done |
|
532 |
||
533 |
lemma (in CLF) fix_in_H: |
|
534 |
"[| H = {x. (x, f x) \<in> r & x \<in> A}; x \<in> P |] ==> x \<in> H" |
|
30198 | 535 |
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on |
13383 | 536 |
fix_subset [of f A, THEN subsetD]) |
13115 | 537 |
|
538 |
lemma (in CLF) fixf_le_lubH: |
|
539 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r" |
|
540 |
apply (rule ballI) |
|
541 |
apply (rule lub_upper, fast) |
|
542 |
apply (rule fix_in_H) |
|
13383 | 543 |
apply (simp_all add: P_def) |
13115 | 544 |
done |
545 |
||
546 |
lemma (in CLF) lubH_least_fixf: |
|
13383 | 547 |
"H = {x. (x, f x) \<in> r & x \<in> A} |
13115 | 548 |
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r" |
549 |
apply (rule allI) |
|
550 |
apply (rule impI) |
|
551 |
apply (erule bspec) |
|
552 |
apply (rule lubH_is_fixp, assumption) |
|
553 |
done |
|
554 |
||
14569 | 555 |
subsection {* Tarski fixpoint theorem 1, first part *} |
13115 | 556 |
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl" |
557 |
apply (rule sym) |
|
13383 | 558 |
apply (simp add: P_def) |
13115 | 559 |
apply (rule lubI) |
560 |
apply (rule fix_subset) |
|
561 |
apply (rule lub_in_lattice, fast) |
|
562 |
apply (simp add: fixf_le_lubH) |
|
563 |
apply (simp add: lubH_least_fixf) |
|
564 |
done |
|
565 |
||
566 |
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P" |
|
13383 | 567 |
-- {* Tarski for glb *} |
13115 | 568 |
apply (simp add: glb_dual_lub P_def A_def r_def) |
569 |
apply (rule dualA_iff [THEN subst]) |
|
21232 | 570 |
apply (rule CLF.lubH_is_fixp) |
27681 | 571 |
apply (rule dual) |
13115 | 572 |
apply (simp add: dualr_iff dualA_iff) |
573 |
done |
|
574 |
||
575 |
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl" |
|
576 |
apply (simp add: glb_dual_lub P_def A_def r_def) |
|
577 |
apply (rule dualA_iff [THEN subst]) |
|
27681 | 578 |
apply (simp add: CLF.T_thm_1_lub [of _ f, OF dual] |
13115 | 579 |
dualPO CL_dualCL CLF_dual dualr_iff) |
580 |
done |
|
581 |
||
14569 | 582 |
subsection {* interval *} |
13383 | 583 |
|
13115 | 584 |
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A" |
30198 | 585 |
apply (insert CO_refl_on) |
586 |
apply (simp add: refl_on_def, blast) |
|
13115 | 587 |
done |
588 |
||
17841 | 589 |
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A" |
13115 | 590 |
apply (simp add: interval_def) |
591 |
apply (blast intro: rel_imp_elem) |
|
592 |
done |
|
593 |
||
594 |
lemma (in CLF) intervalI: |
|
595 |
"[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b" |
|
17841 | 596 |
by (simp add: interval_def) |
13115 | 597 |
|
598 |
lemma (in CLF) interval_lemma1: |
|
17841 | 599 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r" |
600 |
by (unfold interval_def, fast) |
|
13115 | 601 |
|
602 |
lemma (in CLF) interval_lemma2: |
|
17841 | 603 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r" |
604 |
by (unfold interval_def, fast) |
|
13115 | 605 |
|
606 |
lemma (in CLF) a_less_lub: |
|
17841 | 607 |
"[| S \<subseteq> A; S \<noteq> {}; |
13115 | 608 |
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r" |
18705 | 609 |
by (blast intro: transE) |
13115 | 610 |
|
611 |
lemma (in CLF) glb_less_b: |
|
17841 | 612 |
"[| S \<subseteq> A; S \<noteq> {}; |
13115 | 613 |
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r" |
18705 | 614 |
by (blast intro: transE) |
13115 | 615 |
|
616 |
lemma (in CLF) S_intv_cl: |
|
17841 | 617 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A" |
13115 | 618 |
by (simp add: subset_trans [OF _ interval_subset]) |
619 |
||
620 |
lemma (in CLF) L_in_interval: |
|
17841 | 621 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b; |
13115 | 622 |
S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b" |
623 |
apply (rule intervalI) |
|
624 |
apply (rule a_less_lub) |
|
625 |
prefer 2 apply assumption |
|
626 |
apply (simp add: S_intv_cl) |
|
627 |
apply (rule ballI) |
|
628 |
apply (simp add: interval_lemma1) |
|
629 |
apply (simp add: isLub_upper) |
|
13383 | 630 |
-- {* @{text "(L, b) \<in> r"} *} |
13115 | 631 |
apply (simp add: isLub_least interval_lemma2) |
632 |
done |
|
633 |
||
634 |
lemma (in CLF) G_in_interval: |
|
17841 | 635 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G; |
13115 | 636 |
S \<noteq> {} |] ==> G \<in> interval r a b" |
637 |
apply (simp add: interval_dual) |
|
27681 | 638 |
apply (simp add: CLF.L_in_interval [of _ f, OF dual] |
639 |
dualA_iff A_def isGlb_dual_isLub) |
|
13115 | 640 |
done |
641 |
||
642 |
lemma (in CLF) intervalPO: |
|
13383 | 643 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] |
13115 | 644 |
==> (| pset = interval r a b, order = induced (interval r a b) r |) |
645 |
\<in> PartialOrder" |
|
646 |
apply (rule po_subset_po) |
|
647 |
apply (simp add: interval_subset) |
|
648 |
done |
|
649 |
||
650 |
lemma (in CLF) intv_CL_lub: |
|
13383 | 651 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] |
17841 | 652 |
==> \<forall>S. S \<subseteq> interval r a b --> |
13383 | 653 |
(\<exists>L. isLub S (| pset = interval r a b, |
13115 | 654 |
order = induced (interval r a b) r |) L)" |
655 |
apply (intro strip) |
|
656 |
apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) |
|
657 |
prefer 2 apply assumption |
|
658 |
apply assumption |
|
659 |
apply (erule exE) |
|
13383 | 660 |
-- {* define the lub for the interval as *} |
13115 | 661 |
apply (rule_tac x = "if S = {} then a else L" in exI) |
662 |
apply (simp (no_asm_simp) add: isLub_def split del: split_if) |
|
13383 | 663 |
apply (intro impI conjI) |
664 |
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *} |
|
13115 | 665 |
apply (simp add: CL_imp_PO L_in_interval) |
666 |
apply (simp add: left_in_interval) |
|
13383 | 667 |
-- {* lub prop 1 *} |
13115 | 668 |
apply (case_tac "S = {}") |
13383 | 669 |
-- {* @{text "S = {}, y \<in> S = False => everything"} *} |
13115 | 670 |
apply fast |
13383 | 671 |
-- {* @{text "S \<noteq> {}"} *} |
13115 | 672 |
apply simp |
13383 | 673 |
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *} |
13115 | 674 |
apply (rule ballI) |
675 |
apply (simp add: induced_def L_in_interval) |
|
676 |
apply (rule conjI) |
|
677 |
apply (rule subsetD) |
|
678 |
apply (simp add: S_intv_cl, assumption) |
|
679 |
apply (simp add: isLub_upper) |
|
13383 | 680 |
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *} |
13115 | 681 |
apply (rule ballI) |
682 |
apply (rule impI) |
|
683 |
apply (case_tac "S = {}") |
|
13383 | 684 |
-- {* @{text "S = {}"} *} |
13115 | 685 |
apply simp |
686 |
apply (simp add: induced_def interval_def) |
|
687 |
apply (rule conjI) |
|
18705 | 688 |
apply (rule reflE, assumption) |
13115 | 689 |
apply (rule interval_not_empty) |
690 |
apply (simp add: interval_def) |
|
13383 | 691 |
-- {* @{text "S \<noteq> {}"} *} |
13115 | 692 |
apply simp |
693 |
apply (simp add: induced_def L_in_interval) |
|
694 |
apply (rule isLub_least, assumption) |
|
695 |
apply (rule subsetD) |
|
696 |
prefer 2 apply assumption |
|
697 |
apply (simp add: S_intv_cl, fast) |
|
698 |
done |
|
699 |
||
700 |
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual] |
|
701 |
||
702 |
lemma (in CLF) interval_is_sublattice: |
|
13383 | 703 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] |
18750 | 704 |
==> interval r a b <<= cl" |
13115 | 705 |
apply (rule sublatticeI) |
706 |
apply (simp add: interval_subset) |
|
707 |
apply (rule CompleteLatticeI) |
|
708 |
apply (simp add: intervalPO) |
|
709 |
apply (simp add: intv_CL_lub) |
|
710 |
apply (simp add: intv_CL_glb) |
|
711 |
done |
|
712 |
||
13383 | 713 |
lemmas (in CLF) interv_is_compl_latt = |
13115 | 714 |
interval_is_sublattice [THEN sublattice_imp_CL] |
715 |
||
13383 | 716 |
|
14569 | 717 |
subsection {* Top and Bottom *} |
13115 | 718 |
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)" |
719 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) |
|
720 |
||
721 |
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)" |
|
722 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) |
|
723 |
||
724 |
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A" |
|
725 |
apply (simp add: Bot_def least_def) |
|
17841 | 726 |
apply (rule_tac a="glb A cl" in someI2) |
727 |
apply (simp_all add: glb_in_lattice glb_lower |
|
728 |
r_def [symmetric] A_def [symmetric]) |
|
13115 | 729 |
done |
730 |
||
731 |
lemma (in CLF) Top_in_lattice: "Top cl \<in> A" |
|
732 |
apply (simp add: Top_dual_Bot A_def) |
|
13383 | 733 |
apply (rule dualA_iff [THEN subst]) |
27681 | 734 |
apply (rule CLF.Bot_in_lattice [OF dual]) |
13115 | 735 |
done |
736 |
||
737 |
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r" |
|
738 |
apply (simp add: Top_def greatest_def) |
|
17841 | 739 |
apply (rule_tac a="lub A cl" in someI2) |
13115 | 740 |
apply (rule someI2) |
17841 | 741 |
apply (simp_all add: lub_in_lattice lub_upper |
742 |
r_def [symmetric] A_def [symmetric]) |
|
13115 | 743 |
done |
744 |
||
745 |
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r" |
|
746 |
apply (simp add: Bot_dual_Top r_def) |
|
747 |
apply (rule dualr_iff [THEN subst]) |
|
27681 | 748 |
apply (rule CLF.Top_prop [OF dual]) |
749 |
apply (simp add: dualA_iff A_def) |
|
13115 | 750 |
done |
751 |
||
752 |
lemma (in CLF) Top_intv_not_empty: "x \<in> A ==> interval r x (Top cl) \<noteq> {}" |
|
753 |
apply (rule notI) |
|
754 |
apply (drule_tac a = "Top cl" in equals0D) |
|
755 |
apply (simp add: interval_def) |
|
30198 | 756 |
apply (simp add: refl_on_def Top_in_lattice Top_prop) |
13115 | 757 |
done |
758 |
||
759 |
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}" |
|
760 |
apply (simp add: Bot_dual_Top) |
|
761 |
apply (subst interval_dual) |
|
762 |
prefer 2 apply assumption |
|
763 |
apply (simp add: A_def) |
|
764 |
apply (rule dualA_iff [THEN subst]) |
|
27681 | 765 |
apply (rule CLF.Top_in_lattice [OF dual]) |
766 |
apply (rule CLF.Top_intv_not_empty [OF dual]) |
|
767 |
apply (simp add: dualA_iff A_def) |
|
13115 | 768 |
done |
769 |
||
14569 | 770 |
subsection {* fixed points form a partial order *} |
13383 | 771 |
|
13115 | 772 |
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder" |
773 |
by (simp add: P_def fix_subset po_subset_po) |
|
774 |
||
17841 | 775 |
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A" |
13115 | 776 |
apply (rule subset_trans [OF _ fix_subset]) |
777 |
apply (rule Y_ss [simplified P_def]) |
|
778 |
done |
|
779 |
||
780 |
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A" |
|
18750 | 781 |
by (rule Y_subset_A [THEN lub_in_lattice]) |
13115 | 782 |
|
783 |
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r" |
|
784 |
apply (rule lub_least) |
|
785 |
apply (rule Y_subset_A) |
|
786 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
787 |
apply (rule lubY_in_A) |
|
17841 | 788 |
-- {* @{text "Y \<subseteq> P ==> f x = x"} *} |
13115 | 789 |
apply (rule ballI) |
790 |
apply (rule_tac t = "x" in fix_imp_eq [THEN subst]) |
|
791 |
apply (erule Y_ss [simplified P_def, THEN subsetD]) |
|
13383 | 792 |
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *} |
13115 | 793 |
apply (rule_tac f = "f" in monotoneE) |
794 |
apply (rule monotone_f) |
|
795 |
apply (simp add: Y_subset_A [THEN subsetD]) |
|
796 |
apply (rule lubY_in_A) |
|
797 |
apply (simp add: lub_upper Y_subset_A) |
|
798 |
done |
|
799 |
||
17841 | 800 |
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A" |
13115 | 801 |
apply (unfold intY1_def) |
802 |
apply (rule interval_subset) |
|
803 |
apply (rule lubY_in_A) |
|
804 |
apply (rule Top_in_lattice) |
|
805 |
done |
|
806 |
||
807 |
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD] |
|
808 |
||
809 |
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1" |
|
810 |
apply (simp add: intY1_def interval_def) |
|
811 |
apply (rule conjI) |
|
812 |
apply (rule transE) |
|
813 |
apply (rule lubY_le_flubY) |
|
13383 | 814 |
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *} |
13115 | 815 |
apply (rule_tac f=f in monotoneE) |
816 |
apply (rule monotone_f) |
|
817 |
apply (rule lubY_in_A) |
|
818 |
apply (simp add: intY1_def interval_def intY1_elem) |
|
819 |
apply (simp add: intY1_def interval_def) |
|
13383 | 820 |
-- {* @{text "(f x, Top cl) \<in> r"} *} |
13115 | 821 |
apply (rule Top_prop) |
822 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
823 |
apply (simp add: intY1_def interval_def intY1_elem) |
|
824 |
done |
|
825 |
||
826 |
lemma (in Tarski) intY1_mono: |
|
827 |
"monotone (%x: intY1. f x) intY1 (induced intY1 r)" |
|
828 |
apply (auto simp add: monotone_def induced_def intY1_f_closed) |
|
829 |
apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) |
|
830 |
done |
|
831 |
||
13383 | 832 |
lemma (in Tarski) intY1_is_cl: |
13115 | 833 |
"(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice" |
834 |
apply (unfold intY1_def) |
|
835 |
apply (rule interv_is_compl_latt) |
|
836 |
apply (rule lubY_in_A) |
|
837 |
apply (rule Top_in_lattice) |
|
838 |
apply (rule Top_intv_not_empty) |
|
839 |
apply (rule lubY_in_A) |
|
840 |
done |
|
841 |
||
842 |
lemma (in Tarski) v_in_P: "v \<in> P" |
|
843 |
apply (unfold P_def) |
|
844 |
apply (rule_tac A = "intY1" in fixf_subset) |
|
845 |
apply (rule intY1_subset) |
|
27681 | 846 |
unfolding v_def |
847 |
apply (rule CLF.glbH_is_fixp [OF CLF.intro, unfolded CLF_set_def, of "\<lparr>pset = intY1, order = induced intY1 r\<rparr>", simplified]) |
|
848 |
apply auto |
|
849 |
apply (rule intY1_is_cl) |
|
31754 | 850 |
apply (erule intY1_f_closed) |
27681 | 851 |
apply (rule intY1_mono) |
13115 | 852 |
done |
853 |
||
13383 | 854 |
lemma (in Tarski) z_in_interval: |
13115 | 855 |
"[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1" |
856 |
apply (unfold intY1_def P_def) |
|
857 |
apply (rule intervalI) |
|
13383 | 858 |
prefer 2 |
13115 | 859 |
apply (erule fix_subset [THEN subsetD, THEN Top_prop]) |
860 |
apply (rule lub_least) |
|
861 |
apply (rule Y_subset_A) |
|
862 |
apply (fast elim!: fix_subset [THEN subsetD]) |
|
863 |
apply (simp add: induced_def) |
|
864 |
done |
|
865 |
||
13383 | 866 |
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] |
13115 | 867 |
==> ((%x: intY1. f x) z, z) \<in> induced intY1 r" |
868 |
apply (simp add: induced_def intY1_f_closed z_in_interval P_def) |
|
13383 | 869 |
apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD] |
18705 | 870 |
reflE) |
13115 | 871 |
done |
872 |
||
873 |
lemma (in Tarski) tarski_full_lemma: |
|
874 |
"\<exists>L. isLub Y (| pset = P, order = induced P r |) L" |
|
875 |
apply (rule_tac x = "v" in exI) |
|
876 |
apply (simp add: isLub_def) |
|
13383 | 877 |
-- {* @{text "v \<in> P"} *} |
13115 | 878 |
apply (simp add: v_in_P) |
879 |
apply (rule conjI) |
|
13383 | 880 |
-- {* @{text v} is lub *} |
881 |
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *} |
|
13115 | 882 |
apply (rule ballI) |
883 |
apply (simp add: induced_def subsetD v_in_P) |
|
884 |
apply (rule conjI) |
|
885 |
apply (erule Y_ss [THEN subsetD]) |
|
886 |
apply (rule_tac b = "lub Y cl" in transE) |
|
887 |
apply (rule lub_upper) |
|
888 |
apply (rule Y_subset_A, assumption) |
|
889 |
apply (rule_tac b = "Top cl" in interval_imp_mem) |
|
890 |
apply (simp add: v_def) |
|
891 |
apply (fold intY1_def) |
|
27681 | 892 |
apply (rule CL.glb_in_lattice [OF CL.intro [OF intY1_is_cl], simplified]) |
893 |
apply auto |
|
13115 | 894 |
apply (rule indI) |
895 |
prefer 3 apply assumption |
|
896 |
prefer 2 apply (simp add: v_in_P) |
|
897 |
apply (unfold v_def) |
|
898 |
apply (rule indE) |
|
899 |
apply (rule_tac [2] intY1_subset) |
|
27681 | 900 |
apply (rule CL.glb_lower [OF CL.intro [OF intY1_is_cl], simplified]) |
13383 | 901 |
apply (simp add: CL_imp_PO intY1_is_cl) |
13115 | 902 |
apply force |
903 |
apply (simp add: induced_def intY1_f_closed z_in_interval) |
|
18705 | 904 |
apply (simp add: P_def fix_imp_eq [of _ f A] reflE |
905 |
fix_subset [of f A, THEN subsetD]) |
|
13115 | 906 |
done |
907 |
||
908 |
lemma CompleteLatticeI_simp: |
|
13383 | 909 |
"[| (| pset = A, order = r |) \<in> PartialOrder; |
17841 | 910 |
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |] |
13115 | 911 |
==> (| pset = A, order = r |) \<in> CompleteLattice" |
912 |
by (simp add: CompleteLatticeI Rdual) |
|
913 |
||
914 |
theorem (in CLF) Tarski_full: |
|
915 |
"(| pset = P, order = induced P r|) \<in> CompleteLattice" |
|
916 |
apply (rule CompleteLatticeI_simp) |
|
917 |
apply (rule fixf_po, clarify) |
|
13383 | 918 |
apply (simp add: P_def A_def r_def) |
27681 | 919 |
apply (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]]) |
28823 | 920 |
proof - show "CLF cl f" .. qed |
7112 | 921 |
|
922 |
end |