| 41959 |      1 | (*  Title:      Sequents/LK/Propositional.thy
 | 
| 21426 |      2 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      3 |     Copyright   1992  University of Cambridge
 | 
|  |      4 | *)
 | 
|  |      5 | 
 | 
| 60770 |      6 | section \<open>Classical sequent calculus: examples with propositional connectives\<close>
 | 
| 21426 |      7 | 
 | 
|  |      8 | theory Propositional
 | 
| 55229 |      9 | imports "../LK"
 | 
| 21426 |     10 | begin
 | 
|  |     11 | 
 | 
|  |     12 | text "absorptive laws of & and | "
 | 
|  |     13 | 
 | 
|  |     14 | lemma "|- P & P <-> P"
 | 
|  |     15 |   by fast_prop
 | 
|  |     16 | 
 | 
|  |     17 | lemma "|- P | P <-> P"
 | 
|  |     18 |   by fast_prop
 | 
|  |     19 | 
 | 
|  |     20 | 
 | 
|  |     21 | text "commutative laws of & and | "
 | 
|  |     22 | 
 | 
|  |     23 | lemma "|- P & Q  <->  Q & P"
 | 
|  |     24 |   by fast_prop
 | 
|  |     25 | 
 | 
|  |     26 | lemma "|- P | Q  <->  Q | P"
 | 
|  |     27 |   by fast_prop
 | 
|  |     28 | 
 | 
|  |     29 | 
 | 
|  |     30 | text "associative laws of & and | "
 | 
|  |     31 | 
 | 
|  |     32 | lemma "|- (P & Q) & R  <->  P & (Q & R)"
 | 
|  |     33 |   by fast_prop
 | 
|  |     34 | 
 | 
|  |     35 | lemma "|- (P | Q) | R  <->  P | (Q | R)"
 | 
|  |     36 |   by fast_prop
 | 
|  |     37 | 
 | 
|  |     38 | 
 | 
|  |     39 | text "distributive laws of & and | "
 | 
|  |     40 | 
 | 
|  |     41 | lemma "|- (P & Q) | R  <-> (P | R) & (Q | R)"
 | 
|  |     42 |   by fast_prop
 | 
|  |     43 | 
 | 
|  |     44 | lemma "|- (P | Q) & R  <-> (P & R) | (Q & R)"
 | 
|  |     45 |   by fast_prop
 | 
|  |     46 | 
 | 
|  |     47 | 
 | 
|  |     48 | text "Laws involving implication"
 | 
|  |     49 | 
 | 
|  |     50 | lemma "|- (P|Q --> R) <-> (P-->R) & (Q-->R)"
 | 
|  |     51 |   by fast_prop
 | 
|  |     52 | 
 | 
|  |     53 | lemma "|- (P & Q --> R) <-> (P--> (Q-->R))"
 | 
|  |     54 |   by fast_prop
 | 
|  |     55 | 
 | 
|  |     56 | lemma "|- (P --> Q & R) <-> (P-->Q)  &  (P-->R)"
 | 
|  |     57 |   by fast_prop
 | 
|  |     58 | 
 | 
|  |     59 | 
 | 
|  |     60 | text "Classical theorems"
 | 
|  |     61 | 
 | 
|  |     62 | lemma "|- P|Q --> P| ~P&Q"
 | 
|  |     63 |   by fast_prop
 | 
|  |     64 | 
 | 
|  |     65 | lemma "|- (P-->Q)&(~P-->R)  -->  (P&Q | R)"
 | 
|  |     66 |   by fast_prop
 | 
|  |     67 | 
 | 
|  |     68 | lemma "|- P&Q | ~P&R  <->  (P-->Q)&(~P-->R)"
 | 
|  |     69 |   by fast_prop
 | 
|  |     70 | 
 | 
|  |     71 | lemma "|- (P-->Q) | (P-->R)  <->  (P --> Q | R)"
 | 
|  |     72 |   by fast_prop
 | 
|  |     73 | 
 | 
|  |     74 | 
 | 
|  |     75 | (*If and only if*)
 | 
|  |     76 | 
 | 
|  |     77 | lemma "|- (P<->Q) <-> (Q<->P)"
 | 
|  |     78 |   by fast_prop
 | 
|  |     79 | 
 | 
|  |     80 | lemma "|- ~ (P <-> ~P)"
 | 
|  |     81 |   by fast_prop
 | 
|  |     82 | 
 | 
|  |     83 | 
 | 
|  |     84 | (*Sample problems from 
 | 
|  |     85 |   F. J. Pelletier, 
 | 
|  |     86 |   Seventy-Five Problems for Testing Automatic Theorem Provers,
 | 
|  |     87 |   J. Automated Reasoning 2 (1986), 191-216.
 | 
|  |     88 |   Errata, JAR 4 (1988), 236-236.
 | 
|  |     89 | *)
 | 
|  |     90 | 
 | 
|  |     91 | (*1*)
 | 
|  |     92 | lemma "|- (P-->Q)  <->  (~Q --> ~P)"
 | 
|  |     93 |   by fast_prop
 | 
|  |     94 | 
 | 
|  |     95 | (*2*)
 | 
|  |     96 | lemma "|- ~ ~ P  <->  P"
 | 
|  |     97 |   by fast_prop
 | 
|  |     98 | 
 | 
|  |     99 | (*3*)
 | 
|  |    100 | lemma "|- ~(P-->Q) --> (Q-->P)"
 | 
|  |    101 |   by fast_prop
 | 
|  |    102 | 
 | 
|  |    103 | (*4*)
 | 
|  |    104 | lemma "|- (~P-->Q)  <->  (~Q --> P)"
 | 
|  |    105 |   by fast_prop
 | 
|  |    106 | 
 | 
|  |    107 | (*5*)
 | 
|  |    108 | lemma "|- ((P|Q)-->(P|R)) --> (P|(Q-->R))"
 | 
|  |    109 |   by fast_prop
 | 
|  |    110 | 
 | 
|  |    111 | (*6*)
 | 
|  |    112 | lemma "|- P | ~ P"
 | 
|  |    113 |   by fast_prop
 | 
|  |    114 | 
 | 
|  |    115 | (*7*)
 | 
|  |    116 | lemma "|- P | ~ ~ ~ P"
 | 
|  |    117 |   by fast_prop
 | 
|  |    118 | 
 | 
|  |    119 | (*8.  Peirce's law*)
 | 
|  |    120 | lemma "|- ((P-->Q) --> P)  -->  P"
 | 
|  |    121 |   by fast_prop
 | 
|  |    122 | 
 | 
|  |    123 | (*9*)
 | 
|  |    124 | lemma "|- ((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
 | 
|  |    125 |   by fast_prop
 | 
|  |    126 | 
 | 
|  |    127 | (*10*)
 | 
|  |    128 | lemma "Q-->R, R-->P&Q, P-->(Q|R) |- P<->Q"
 | 
|  |    129 |   by fast_prop
 | 
|  |    130 | 
 | 
|  |    131 | (*11.  Proved in each direction (incorrectly, says Pelletier!!)  *)
 | 
|  |    132 | lemma "|- P<->P"
 | 
|  |    133 |   by fast_prop
 | 
|  |    134 | 
 | 
|  |    135 | (*12.  "Dijkstra's law"*)
 | 
|  |    136 | lemma "|- ((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))"
 | 
|  |    137 |   by fast_prop
 | 
|  |    138 | 
 | 
|  |    139 | (*13.  Distributive law*)
 | 
|  |    140 | lemma "|- P | (Q & R)  <-> (P | Q) & (P | R)"
 | 
|  |    141 |   by fast_prop
 | 
|  |    142 | 
 | 
|  |    143 | (*14*)
 | 
|  |    144 | lemma "|- (P <-> Q) <-> ((Q | ~P) & (~Q|P))"
 | 
|  |    145 |   by fast_prop
 | 
|  |    146 | 
 | 
|  |    147 | (*15*)
 | 
|  |    148 | lemma "|- (P --> Q) <-> (~P | Q)"
 | 
|  |    149 |   by fast_prop
 | 
|  |    150 | 
 | 
|  |    151 | (*16*)
 | 
|  |    152 | lemma "|- (P-->Q) | (Q-->P)"
 | 
|  |    153 |   by fast_prop
 | 
|  |    154 | 
 | 
|  |    155 | (*17*)
 | 
|  |    156 | lemma "|- ((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"
 | 
|  |    157 |   by fast_prop
 | 
|  |    158 | 
 | 
|  |    159 | end
 |