| author | paulson |
| Fri, 27 Jun 2003 18:40:25 +0200 | |
| changeset 14077 | 37c964462747 |
| parent 13588 | 07b66a557487 |
| child 14264 | 3d0c6238162a |
| permissions | -rw-r--r-- |
| 13577 | 1 |
(* Title: Integ/Int.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1998 University of Cambridge |
|
5 |
||
6 |
Type "int" is a linear order |
|
7 |
*) |
|
8 |
||
9 |
theory Int = IntDef |
|
|
13588
07b66a557487
Renamed Integ/int.ML to Integ/Int_lemmas.ML to prevent confusion with Int.ML
paulson
parents:
13577
diff
changeset
|
10 |
files ("Int_lemmas.ML"):
|
| 13577 | 11 |
|
12 |
instance int :: order |
|
13 |
proof qed (assumption | rule zle_refl zle_trans zle_anti_sym int_less_le)+ |
|
14 |
||
15 |
instance int :: plus_ac0 |
|
16 |
proof qed (rule zadd_commute zadd_assoc zadd_0)+ |
|
17 |
||
18 |
instance int :: linorder |
|
19 |
proof qed (rule zle_linear) |
|
20 |
||
21 |
constdefs |
|
22 |
nat :: "int => nat" |
|
23 |
"nat(Z) == if neg Z then 0 else (THE m. Z = int m)" |
|
24 |
||
25 |
defs (overloaded) |
|
26 |
zabs_def: "abs(i::int) == if i < 0 then -i else i" |
|
27 |
||
|
13588
07b66a557487
Renamed Integ/int.ML to Integ/Int_lemmas.ML to prevent confusion with Int.ML
paulson
parents:
13577
diff
changeset
|
28 |
use "Int_lemmas.ML" |
| 13577 | 29 |
|
30 |
end |