| 43124 |      1 | (* Author: Florian Haftmann, TU Muenchen *)
 | 
|  |      2 | 
 | 
|  |      3 | header {* Implementation of mappings with Red-Black Trees *}
 | 
|  |      4 | 
 | 
|  |      5 | (*<*)
 | 
|  |      6 | theory RBT_Mapping
 | 
|  |      7 | imports RBT Mapping
 | 
|  |      8 | begin
 | 
|  |      9 | 
 | 
|  |     10 | subsection {* Implementation of mappings *}
 | 
|  |     11 | 
 | 
|  |     12 | definition Mapping :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) mapping" where
 | 
|  |     13 |   "Mapping t = Mapping.Mapping (lookup t)"
 | 
|  |     14 | 
 | 
|  |     15 | code_datatype Mapping
 | 
|  |     16 | 
 | 
|  |     17 | lemma lookup_Mapping [simp, code]:
 | 
|  |     18 |   "Mapping.lookup (Mapping t) = lookup t"
 | 
|  |     19 |   by (simp add: Mapping_def)
 | 
|  |     20 | 
 | 
|  |     21 | lemma empty_Mapping [code]:
 | 
|  |     22 |   "Mapping.empty = Mapping empty"
 | 
|  |     23 |   by (rule mapping_eqI) simp
 | 
|  |     24 | 
 | 
|  |     25 | lemma is_empty_Mapping [code]:
 | 
|  |     26 |   "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t"
 | 
|  |     27 |   by (simp add: rbt_eq_iff Mapping.is_empty_empty Mapping_def)
 | 
|  |     28 | 
 | 
|  |     29 | lemma insert_Mapping [code]:
 | 
|  |     30 |   "Mapping.update k v (Mapping t) = Mapping (insert k v t)"
 | 
|  |     31 |   by (rule mapping_eqI) simp
 | 
|  |     32 | 
 | 
|  |     33 | lemma delete_Mapping [code]:
 | 
|  |     34 |   "Mapping.delete k (Mapping t) = Mapping (delete k t)"
 | 
|  |     35 |   by (rule mapping_eqI) simp
 | 
|  |     36 | 
 | 
|  |     37 | lemma map_entry_Mapping [code]:
 | 
|  |     38 |   "Mapping.map_entry k f (Mapping t) = Mapping (map_entry k f t)"
 | 
|  |     39 |   by (rule mapping_eqI) simp
 | 
|  |     40 | 
 | 
|  |     41 | lemma keys_Mapping [code]:
 | 
|  |     42 |   "Mapping.keys (Mapping t) = set (keys t)"
 | 
|  |     43 |   by (simp add: RBT.keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys)
 | 
|  |     44 | 
 | 
|  |     45 | lemma ordered_keys_Mapping [code]:
 | 
|  |     46 |   "Mapping.ordered_keys (Mapping t) = keys t"
 | 
|  |     47 |   by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping)
 | 
|  |     48 | 
 | 
|  |     49 | lemma Mapping_size_card_keys: (*FIXME*)
 | 
|  |     50 |   "Mapping.size m = card (Mapping.keys m)"
 | 
|  |     51 |   by (simp add: Mapping.size_def Mapping.keys_def)
 | 
|  |     52 | 
 | 
|  |     53 | lemma size_Mapping [code]:
 | 
|  |     54 |   "Mapping.size (Mapping t) = length (keys t)"
 | 
|  |     55 |   by (simp add: Mapping_size_card_keys keys_Mapping distinct_card)
 | 
|  |     56 | 
 | 
|  |     57 | lemma tabulate_Mapping [code]:
 | 
|  |     58 |   "Mapping.tabulate ks f = Mapping (bulkload (List.map (\<lambda>k. (k, f k)) ks))"
 | 
|  |     59 |   by (rule mapping_eqI) (simp add: map_of_map_restrict)
 | 
|  |     60 | 
 | 
|  |     61 | lemma bulkload_Mapping [code]:
 | 
|  |     62 |   "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
 | 
|  |     63 |   by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
 | 
|  |     64 | 
 | 
|  |     65 | lemma equal_Mapping [code]:
 | 
|  |     66 |   "HOL.equal (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2"
 | 
|  |     67 |   by (simp add: equal Mapping_def entries_lookup)
 | 
|  |     68 | 
 | 
|  |     69 | lemma [code nbe]:
 | 
|  |     70 |   "HOL.equal (x :: (_, _) mapping) x \<longleftrightarrow> True"
 | 
|  |     71 |   by (fact equal_refl)
 | 
|  |     72 | 
 | 
|  |     73 | 
 | 
|  |     74 | hide_const (open) impl_of lookup empty insert delete
 | 
|  |     75 |   entries keys bulkload map_entry map fold
 | 
|  |     76 | (*>*)
 | 
|  |     77 | 
 | 
|  |     78 | text {* 
 | 
|  |     79 |   This theory defines abstract red-black trees as an efficient
 | 
|  |     80 |   representation of finite maps, backed by the implementation
 | 
|  |     81 |   in @{theory RBT_Impl}.
 | 
|  |     82 | *}
 | 
|  |     83 | 
 | 
|  |     84 | subsection {* Data type and invariant *}
 | 
|  |     85 | 
 | 
|  |     86 | text {*
 | 
|  |     87 |   The type @{typ "('k, 'v) RBT_Impl.rbt"} denotes red-black trees with
 | 
|  |     88 |   keys of type @{typ "'k"} and values of type @{typ "'v"}. To function
 | 
|  |     89 |   properly, the key type musorted belong to the @{text "linorder"}
 | 
|  |     90 |   class.
 | 
|  |     91 | 
 | 
|  |     92 |   A value @{term t} of this type is a valid red-black tree if it
 | 
|  |     93 |   satisfies the invariant @{text "is_rbt t"}.  The abstract type @{typ
 | 
|  |     94 |   "('k, 'v) rbt"} always obeys this invariant, and for this reason you
 | 
|  |     95 |   should only use this in our application.  Going back to @{typ "('k,
 | 
|  |     96 |   'v) RBT_Impl.rbt"} may be necessary in proofs if not yet proven
 | 
|  |     97 |   properties about the operations must be established.
 | 
|  |     98 | 
 | 
|  |     99 |   The interpretation function @{const "RBT.lookup"} returns the partial
 | 
|  |    100 |   map represented by a red-black tree:
 | 
|  |    101 |   @{term_type[display] "RBT.lookup"}
 | 
|  |    102 | 
 | 
|  |    103 |   This function should be used for reasoning about the semantics of the RBT
 | 
|  |    104 |   operations. Furthermore, it implements the lookup functionality for
 | 
|  |    105 |   the data structure: It is executable and the lookup is performed in
 | 
|  |    106 |   $O(\log n)$.  
 | 
|  |    107 | *}
 | 
|  |    108 | 
 | 
|  |    109 | subsection {* Operations *}
 | 
|  |    110 | 
 | 
|  |    111 | text {*
 | 
|  |    112 |   Currently, the following operations are supported:
 | 
|  |    113 | 
 | 
|  |    114 |   @{term_type [display] "RBT.empty"}
 | 
|  |    115 |   Returns the empty tree. $O(1)$
 | 
|  |    116 | 
 | 
|  |    117 |   @{term_type [display] "RBT.insert"}
 | 
|  |    118 |   Updates the map at a given position. $O(\log n)$
 | 
|  |    119 | 
 | 
|  |    120 |   @{term_type [display] "RBT.delete"}
 | 
|  |    121 |   Deletes a map entry at a given position. $O(\log n)$
 | 
|  |    122 | 
 | 
|  |    123 |   @{term_type [display] "RBT.entries"}
 | 
|  |    124 |   Return a corresponding key-value list for a tree.
 | 
|  |    125 | 
 | 
|  |    126 |   @{term_type [display] "RBT.bulkload"}
 | 
|  |    127 |   Builds a tree from a key-value list.
 | 
|  |    128 | 
 | 
|  |    129 |   @{term_type [display] "RBT.map_entry"}
 | 
|  |    130 |   Maps a single entry in a tree.
 | 
|  |    131 | 
 | 
|  |    132 |   @{term_type [display] "RBT.map"}
 | 
|  |    133 |   Maps all values in a tree. $O(n)$
 | 
|  |    134 | 
 | 
|  |    135 |   @{term_type [display] "RBT.fold"}
 | 
|  |    136 |   Folds over all entries in a tree. $O(n)$
 | 
|  |    137 | *}
 | 
|  |    138 | 
 | 
|  |    139 | 
 | 
|  |    140 | subsection {* Invariant preservation *}
 | 
|  |    141 | 
 | 
|  |    142 | text {*
 | 
|  |    143 |   \noindent
 | 
|  |    144 |   @{thm Empty_is_rbt}\hfill(@{text "Empty_is_rbt"})
 | 
|  |    145 | 
 | 
|  |    146 |   \noindent
 | 
|  |    147 |   @{thm insert_is_rbt}\hfill(@{text "insert_is_rbt"})
 | 
|  |    148 | 
 | 
|  |    149 |   \noindent
 | 
|  |    150 |   @{thm delete_is_rbt}\hfill(@{text "delete_is_rbt"})
 | 
|  |    151 | 
 | 
|  |    152 |   \noindent
 | 
|  |    153 |   @{thm bulkload_is_rbt}\hfill(@{text "bulkload_is_rbt"})
 | 
|  |    154 | 
 | 
|  |    155 |   \noindent
 | 
|  |    156 |   @{thm map_entry_is_rbt}\hfill(@{text "map_entry_is_rbt"})
 | 
|  |    157 | 
 | 
|  |    158 |   \noindent
 | 
|  |    159 |   @{thm map_is_rbt}\hfill(@{text "map_is_rbt"})
 | 
|  |    160 | 
 | 
|  |    161 |   \noindent
 | 
|  |    162 |   @{thm union_is_rbt}\hfill(@{text "union_is_rbt"})
 | 
|  |    163 | *}
 | 
|  |    164 | 
 | 
|  |    165 | 
 | 
|  |    166 | subsection {* Map Semantics *}
 | 
|  |    167 | 
 | 
|  |    168 | text {*
 | 
|  |    169 |   \noindent
 | 
|  |    170 |   \underline{@{text "lookup_empty"}}
 | 
|  |    171 |   @{thm [display] lookup_empty}
 | 
|  |    172 |   \vspace{1ex}
 | 
|  |    173 | 
 | 
|  |    174 |   \noindent
 | 
|  |    175 |   \underline{@{text "lookup_insert"}}
 | 
|  |    176 |   @{thm [display] lookup_insert}
 | 
|  |    177 |   \vspace{1ex}
 | 
|  |    178 | 
 | 
|  |    179 |   \noindent
 | 
|  |    180 |   \underline{@{text "lookup_delete"}}
 | 
|  |    181 |   @{thm [display] lookup_delete}
 | 
|  |    182 |   \vspace{1ex}
 | 
|  |    183 | 
 | 
|  |    184 |   \noindent
 | 
|  |    185 |   \underline{@{text "lookup_bulkload"}}
 | 
|  |    186 |   @{thm [display] lookup_bulkload}
 | 
|  |    187 |   \vspace{1ex}
 | 
|  |    188 | 
 | 
|  |    189 |   \noindent
 | 
|  |    190 |   \underline{@{text "lookup_map"}}
 | 
|  |    191 |   @{thm [display] lookup_map}
 | 
|  |    192 |   \vspace{1ex}
 | 
|  |    193 | *}
 | 
|  |    194 | 
 | 
|  |    195 | end |