| author | wenzelm | 
| Thu, 13 Jan 2011 17:39:35 +0100 | |
| changeset 41537 | 3837045cc8a1 | 
| parent 37765 | 26bdfb7b680b | 
| child 45605 | a89b4bc311a5 | 
| permissions | -rw-r--r-- | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 1 | (* Author: Jacques D. Fleuriot, University of Edinburgh | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 2 | Conversion to Isar and new proofs by Lawrence C Paulson, 2004 | 
| 35328 | 3 | |
| 4 | Replaced by ~~/src/HOL/Multivariate_Analysis/Real_Integral.thy . | |
| 13958 | 5 | *) | 
| 6 | ||
| 35328 | 7 | header{*Theory of Integration on real intervals*}
 | 
| 8 | ||
| 9 | theory Gauge_Integration | |
| 10 | imports Complex_Main | |
| 11 | begin | |
| 12 | ||
| 13 | text {*
 | |
| 13958 | 14 | |
| 35328 | 15 | \textbf{Attention}: This theory defines the Integration on real
 | 
| 16 | intervals. This is just a example theory for historical / expository interests. | |
| 17 | A better replacement is found in the Multivariate Analysis library. This defines | |
| 18 | the gauge integral on real vector spaces and in the Real Integral theory | |
| 19 | is a specialization to the integral on arbitrary real intervals. The | |
| 20 | Multivariate Analysis package also provides a better support for analysis on | |
| 21 | integrals. | |
| 22 | ||
| 23 | *} | |
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 24 | |
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 25 | text{*We follow John Harrison in formalizing the Gauge integral.*}
 | 
| 13958 | 26 | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 27 | subsection {* Gauges *}
 | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 28 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20792diff
changeset | 29 | definition | 
| 31253 | 30 | gauge :: "[real set, real => real] => bool" where | 
| 37765 | 31 | "gauge E g = (\<forall>x\<in>E. 0 < g(x))" | 
| 13958 | 32 | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 33 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 34 | subsection {* Gauge-fine divisions *}
 | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 35 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 36 | inductive | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 37 | fine :: "[real \<Rightarrow> real, real \<times> real, (real \<times> real \<times> real) list] \<Rightarrow> bool" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 38 | for | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 39 | \<delta> :: "real \<Rightarrow> real" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 40 | where | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 41 | fine_Nil: | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 42 | "fine \<delta> (a, a) []" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 43 | | fine_Cons: | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 44 | "\<lbrakk>fine \<delta> (b, c) D; a < b; a \<le> x; x \<le> b; b - a < \<delta> x\<rbrakk> | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 45 | \<Longrightarrow> fine \<delta> (a, c) ((a, x, b) # D)" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 46 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 47 | lemmas fine_induct [induct set: fine] = | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 48 | fine.induct [of "\<delta>" "(a,b)" "D" "split P", unfolded split_conv, standard] | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 49 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 50 | lemma fine_single: | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 51 | "\<lbrakk>a < b; a \<le> x; x \<le> b; b - a < \<delta> x\<rbrakk> \<Longrightarrow> fine \<delta> (a, b) [(a, x, b)]" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 52 | by (rule fine_Cons [OF fine_Nil]) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 53 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 54 | lemma fine_append: | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 55 | "\<lbrakk>fine \<delta> (a, b) D; fine \<delta> (b, c) D'\<rbrakk> \<Longrightarrow> fine \<delta> (a, c) (D @ D')" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 56 | by (induct set: fine, simp, simp add: fine_Cons) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 57 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 58 | lemma fine_imp_le: "fine \<delta> (a, b) D \<Longrightarrow> a \<le> b" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 59 | by (induct set: fine, simp_all) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 60 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 61 | lemma nonempty_fine_imp_less: "\<lbrakk>fine \<delta> (a, b) D; D \<noteq> []\<rbrakk> \<Longrightarrow> a < b" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 62 | apply (induct set: fine, simp) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 63 | apply (drule fine_imp_le, simp) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 64 | done | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 65 | |
| 35441 | 66 | lemma fine_Nil_iff: "fine \<delta> (a, b) [] \<longleftrightarrow> a = b" | 
| 67 | by (auto elim: fine.cases intro: fine.intros) | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 68 | |
| 35441 | 69 | lemma fine_same_iff: "fine \<delta> (a, a) D \<longleftrightarrow> D = []" | 
| 70 | proof | |
| 71 | assume "fine \<delta> (a, a) D" thus "D = []" | |
| 72 | by (metis nonempty_fine_imp_less less_irrefl) | |
| 73 | next | |
| 74 | assume "D = []" thus "fine \<delta> (a, a) D" | |
| 75 | by (simp add: fine_Nil) | |
| 76 | qed | |
| 77 | ||
| 78 | lemma empty_fine_imp_eq: "\<lbrakk>fine \<delta> (a, b) D; D = []\<rbrakk> \<Longrightarrow> a = b" | |
| 79 | by (simp add: fine_Nil_iff) | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 80 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 81 | lemma mem_fine: | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 82 | "\<lbrakk>fine \<delta> (a, b) D; (u, x, v) \<in> set D\<rbrakk> \<Longrightarrow> u < v \<and> u \<le> x \<and> x \<le> v" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 83 | by (induct set: fine, simp, force) | 
| 13958 | 84 | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 85 | lemma mem_fine2: "\<lbrakk>fine \<delta> (a, b) D; (u, z, v) \<in> set D\<rbrakk> \<Longrightarrow> a \<le> u \<and> v \<le> b" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 86 | apply (induct arbitrary: z u v set: fine, auto) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 87 | apply (simp add: fine_imp_le) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 88 | apply (erule order_trans [OF less_imp_le], simp) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 89 | done | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 90 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 91 | lemma mem_fine3: "\<lbrakk>fine \<delta> (a, b) D; (u, z, v) \<in> set D\<rbrakk> \<Longrightarrow> v - u < \<delta> z" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 92 | by (induct arbitrary: z u v set: fine) auto | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 93 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 94 | lemma BOLZANO: | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 95 | fixes P :: "real \<Rightarrow> real \<Rightarrow> bool" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 96 | assumes 1: "a \<le> b" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 97 | assumes 2: "\<And>a b c. \<lbrakk>P a b; P b c; a \<le> b; b \<le> c\<rbrakk> \<Longrightarrow> P a c" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 98 | assumes 3: "\<And>x. \<exists>d>0. \<forall>a b. a \<le> x & x \<le> b & (b-a) < d \<longrightarrow> P a b" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 99 | shows "P a b" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 100 | apply (subgoal_tac "split P (a,b)", simp) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 101 | apply (rule lemma_BOLZANO [OF _ _ 1]) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 102 | apply (clarify, erule (3) 2) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 103 | apply (clarify, rule 3) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 104 | done | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 105 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 106 | text{*We can always find a division that is fine wrt any gauge*}
 | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 107 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 108 | lemma fine_exists: | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 109 |   assumes "a \<le> b" and "gauge {a..b} \<delta>" shows "\<exists>D. fine \<delta> (a, b) D"
 | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 110 | proof - | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 111 |   {
 | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 112 | fix u v :: real assume "u \<le> v" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 113 | have "a \<le> u \<Longrightarrow> v \<le> b \<Longrightarrow> \<exists>D. fine \<delta> (u, v) D" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 114 | apply (induct u v rule: BOLZANO, rule `u \<le> v`) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 115 | apply (simp, fast intro: fine_append) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 116 | apply (case_tac "a \<le> x \<and> x \<le> b") | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 117 | apply (rule_tac x="\<delta> x" in exI) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 118 | apply (rule conjI) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 119 |         apply (simp add: `gauge {a..b} \<delta>` [unfolded gauge_def])
 | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 120 | apply (clarify, rename_tac u v) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 121 | apply (case_tac "u = v") | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 122 | apply (fast intro: fine_Nil) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 123 | apply (subgoal_tac "u < v", fast intro: fine_single, simp) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 124 | apply (rule_tac x="1" in exI, clarsimp) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 125 | done | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 126 | } | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 127 | with `a \<le> b` show ?thesis by auto | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 128 | qed | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 129 | |
| 31364 | 130 | lemma fine_covers_all: | 
| 131 | assumes "fine \<delta> (a, c) D" and "a < x" and "x \<le> c" | |
| 132 | shows "\<exists> N < length D. \<forall> d t e. D ! N = (d,t,e) \<longrightarrow> d < x \<and> x \<le> e" | |
| 133 | using assms | |
| 134 | proof (induct set: fine) | |
| 135 | case (2 b c D a t) | |
| 136 | thus ?case | |
| 137 | proof (cases "b < x") | |
| 138 | case True | |
| 139 | with 2 obtain N where *: "N < length D" | |
| 140 | and **: "\<And> d t e. D ! N = (d,t,e) \<Longrightarrow> d < x \<and> x \<le> e" by auto | |
| 141 | hence "Suc N < length ((a,t,b)#D) \<and> | |
| 142 | (\<forall> d t' e. ((a,t,b)#D) ! Suc N = (d,t',e) \<longrightarrow> d < x \<and> x \<le> e)" by auto | |
| 143 | thus ?thesis by auto | |
| 144 | next | |
| 145 | case False with 2 | |
| 146 | have "0 < length ((a,t,b)#D) \<and> | |
| 147 | (\<forall> d t' e. ((a,t,b)#D) ! 0 = (d,t',e) \<longrightarrow> d < x \<and> x \<le> e)" by auto | |
| 148 | thus ?thesis by auto | |
| 149 | qed | |
| 150 | qed auto | |
| 151 | ||
| 152 | lemma fine_append_split: | |
| 153 | assumes "fine \<delta> (a,b) D" and "D2 \<noteq> []" and "D = D1 @ D2" | |
| 154 | shows "fine \<delta> (a,fst (hd D2)) D1" (is "?fine1") | |
| 155 | and "fine \<delta> (fst (hd D2), b) D2" (is "?fine2") | |
| 156 | proof - | |
| 157 | from assms | |
| 158 | have "?fine1 \<and> ?fine2" | |
| 159 | proof (induct arbitrary: D1 D2) | |
| 160 | case (2 b c D a' x D1 D2) | |
| 161 | note induct = this | |
| 162 | ||
| 163 | thus ?case | |
| 164 | proof (cases D1) | |
| 165 | case Nil | |
| 166 | hence "fst (hd D2) = a'" using 2 by auto | |
| 167 | with fine_Cons[OF `fine \<delta> (b,c) D` induct(3,4,5)] Nil induct | |
| 168 | show ?thesis by (auto intro: fine_Nil) | |
| 169 | next | |
| 170 | case (Cons d1 D1') | |
| 171 | with induct(2)[OF `D2 \<noteq> []`, of D1'] induct(8) | |
| 172 | have "fine \<delta> (b, fst (hd D2)) D1'" and "fine \<delta> (fst (hd D2), c) D2" and | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 173 | "d1 = (a', x, b)" by auto | 
| 31364 | 174 | with fine_Cons[OF this(1) induct(3,4,5), OF induct(6)] Cons | 
| 175 | show ?thesis by auto | |
| 176 | qed | |
| 177 | qed auto | |
| 178 | thus ?fine1 and ?fine2 by auto | |
| 179 | qed | |
| 180 | ||
| 181 | lemma fine_\<delta>_expand: | |
| 182 | assumes "fine \<delta> (a,b) D" | |
| 35441 | 183 | and "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<delta> x \<le> \<delta>' x" | 
| 31364 | 184 | shows "fine \<delta>' (a,b) D" | 
| 185 | using assms proof induct | |
| 186 | case 1 show ?case by (rule fine_Nil) | |
| 187 | next | |
| 188 | case (2 b c D a x) | |
| 189 | show ?case | |
| 190 | proof (rule fine_Cons) | |
| 191 | show "fine \<delta>' (b,c) D" using 2 by auto | |
| 192 | from fine_imp_le[OF 2(1)] 2(6) `x \<le> b` | |
| 193 | show "b - a < \<delta>' x" | |
| 194 | using 2(7)[OF `a \<le> x`] by auto | |
| 195 | qed (auto simp add: 2) | |
| 196 | qed | |
| 197 | ||
| 198 | lemma fine_single_boundaries: | |
| 199 | assumes "fine \<delta> (a,b) D" and "D = [(d, t, e)]" | |
| 200 | shows "a = d \<and> b = e" | |
| 201 | using assms proof induct | |
| 202 | case (2 b c D a x) | |
| 203 | hence "D = []" and "a = d" and "b = e" by auto | |
| 204 | moreover | |
| 205 | from `fine \<delta> (b,c) D` `D = []` have "b = c" | |
| 206 | by (rule empty_fine_imp_eq) | |
| 207 | ultimately show ?case by simp | |
| 208 | qed auto | |
| 209 | ||
| 35328 | 210 | lemma fine_listsum_eq_diff: | 
| 211 | fixes f :: "real \<Rightarrow> real" | |
| 212 | shows "fine \<delta> (a, b) D \<Longrightarrow> (\<Sum>(u, x, v)\<leftarrow>D. f v - f u) = f b - f a" | |
| 213 | by (induct set: fine) simp_all | |
| 214 | ||
| 215 | text{*Lemmas about combining gauges*}
 | |
| 216 | ||
| 217 | lemma gauge_min: | |
| 218 | "[| gauge(E) g1; gauge(E) g2 |] | |
| 219 | ==> gauge(E) (%x. min (g1(x)) (g2(x)))" | |
| 220 | by (simp add: gauge_def) | |
| 221 | ||
| 222 | lemma fine_min: | |
| 223 | "fine (%x. min (g1(x)) (g2(x))) (a,b) D | |
| 224 | ==> fine(g1) (a,b) D & fine(g2) (a,b) D" | |
| 225 | apply (erule fine.induct) | |
| 226 | apply (simp add: fine_Nil) | |
| 227 | apply (simp add: fine_Cons) | |
| 228 | done | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 229 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 230 | subsection {* Riemann sum *}
 | 
| 13958 | 231 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20792diff
changeset | 232 | definition | 
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 233 | rsum :: "[(real \<times> real \<times> real) list, real \<Rightarrow> real] \<Rightarrow> real" where | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 234 | "rsum D f = (\<Sum>(u, x, v)\<leftarrow>D. f x * (v - u))" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 235 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 236 | lemma rsum_Nil [simp]: "rsum [] f = 0" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 237 | unfolding rsum_def by simp | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 238 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 239 | lemma rsum_Cons [simp]: "rsum ((u, x, v) # D) f = f x * (v - u) + rsum D f" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 240 | unfolding rsum_def by simp | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 241 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 242 | lemma rsum_zero [simp]: "rsum D (\<lambda>x. 0) = 0" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 243 | by (induct D, auto) | 
| 13958 | 244 | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 245 | lemma rsum_left_distrib: "rsum D f * c = rsum D (\<lambda>x. f x * c)" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 246 | by (induct D, auto simp add: algebra_simps) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 247 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 248 | lemma rsum_right_distrib: "c * rsum D f = rsum D (\<lambda>x. c * f x)" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 249 | by (induct D, auto simp add: algebra_simps) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 250 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 251 | lemma rsum_add: "rsum D (\<lambda>x. f x + g x) = rsum D f + rsum D g" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 252 | by (induct D, auto simp add: algebra_simps) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 253 | |
| 31364 | 254 | lemma rsum_append: "rsum (D1 @ D2) f = rsum D1 f + rsum D2 f" | 
| 255 | unfolding rsum_def map_append listsum_append .. | |
| 256 | ||
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 257 | |
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 258 | subsection {* Gauge integrability (definite) *}
 | 
| 13958 | 259 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20792diff
changeset | 260 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20792diff
changeset | 261 | Integral :: "[(real*real),real=>real,real] => bool" where | 
| 37765 | 262 | "Integral = (%(a,b) f k. \<forall>e > 0. | 
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 263 |                                (\<exists>\<delta>. gauge {a .. b} \<delta> &
 | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 264 | (\<forall>D. fine \<delta> (a,b) D --> | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 265 | \<bar>rsum D f - k\<bar> < e)))" | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 266 | |
| 35441 | 267 | lemma Integral_eq: | 
| 268 | "Integral (a, b) f k \<longleftrightarrow> | |
| 269 |     (\<forall>e>0. \<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a,b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e))"
 | |
| 270 | unfolding Integral_def by simp | |
| 271 | ||
| 272 | lemma IntegralI: | |
| 273 | assumes "\<And>e. 0 < e \<Longrightarrow> | |
| 274 |     \<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e)"
 | |
| 275 | shows "Integral (a, b) f k" | |
| 276 | using assms unfolding Integral_def by auto | |
| 277 | ||
| 278 | lemma IntegralE: | |
| 279 | assumes "Integral (a, b) f k" and "0 < e" | |
| 280 |   obtains \<delta> where "gauge {a..b} \<delta>" and "\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e"
 | |
| 281 | using assms unfolding Integral_def by auto | |
| 282 | ||
| 31252 | 283 | lemma Integral_def2: | 
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 284 |   "Integral = (%(a,b) f k. \<forall>e>0. (\<exists>\<delta>. gauge {a..b} \<delta> &
 | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 285 | (\<forall>D. fine \<delta> (a,b) D --> | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 286 | \<bar>rsum D f - k\<bar> \<le> e)))" | 
| 31252 | 287 | unfolding Integral_def | 
| 288 | apply (safe intro!: ext) | |
| 289 | apply (fast intro: less_imp_le) | |
| 290 | apply (drule_tac x="e/2" in spec) | |
| 291 | apply force | |
| 292 | done | |
| 293 | ||
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 294 | text{*The integral is unique if it exists*}
 | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 295 | |
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 296 | lemma Integral_unique: | 
| 35441 | 297 | assumes le: "a \<le> b" | 
| 298 | assumes 1: "Integral (a, b) f k1" | |
| 299 | assumes 2: "Integral (a, b) f k2" | |
| 300 | shows "k1 = k2" | |
| 301 | proof (rule ccontr) | |
| 302 | assume "k1 \<noteq> k2" | |
| 303 | hence e: "0 < \<bar>k1 - k2\<bar> / 2" by simp | |
| 304 |   obtain d1 where "gauge {a..b} d1" and
 | |
| 305 | d1: "\<forall>D. fine d1 (a, b) D \<longrightarrow> \<bar>rsum D f - k1\<bar> < \<bar>k1 - k2\<bar> / 2" | |
| 306 | using 1 e by (rule IntegralE) | |
| 307 |   obtain d2 where "gauge {a..b} d2" and
 | |
| 308 | d2: "\<forall>D. fine d2 (a, b) D \<longrightarrow> \<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2" | |
| 309 | using 2 e by (rule IntegralE) | |
| 310 |   have "gauge {a..b} (\<lambda>x. min (d1 x) (d2 x))"
 | |
| 311 |     using `gauge {a..b} d1` and `gauge {a..b} d2`
 | |
| 312 | by (rule gauge_min) | |
| 313 | then obtain D where "fine (\<lambda>x. min (d1 x) (d2 x)) (a, b) D" | |
| 314 | using fine_exists [OF le] by fast | |
| 315 | hence "fine d1 (a, b) D" and "fine d2 (a, b) D" | |
| 316 | by (auto dest: fine_min) | |
| 317 | hence "\<bar>rsum D f - k1\<bar> < \<bar>k1 - k2\<bar> / 2" and "\<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2" | |
| 318 | using d1 d2 by simp_all | |
| 319 | hence "\<bar>rsum D f - k1\<bar> + \<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2 + \<bar>k1 - k2\<bar> / 2" | |
| 320 | by (rule add_strict_mono) | |
| 321 | thus False by auto | |
| 322 | qed | |
| 323 | ||
| 324 | lemma Integral_zero: "Integral(a,a) f 0" | |
| 325 | apply (rule IntegralI) | |
| 326 | apply (rule_tac x = "\<lambda>x. 1" in exI) | |
| 327 | apply (simp add: fine_same_iff gauge_def) | |
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 328 | done | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 329 | |
| 35441 | 330 | lemma Integral_same_iff [simp]: "Integral (a, a) f k \<longleftrightarrow> k = 0" | 
| 331 | by (auto intro: Integral_zero Integral_unique) | |
| 332 | ||
| 333 | lemma Integral_zero_fun: "Integral (a,b) (\<lambda>x. 0) 0" | |
| 334 | apply (rule IntegralI) | |
| 335 | apply (rule_tac x="\<lambda>x. 1" in exI, simp add: gauge_def) | |
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 336 | done | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 337 | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 338 | lemma fine_rsum_const: "fine \<delta> (a,b) D \<Longrightarrow> rsum D (\<lambda>x. c) = (c * (b - a))" | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 339 | unfolding rsum_def | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 340 | by (induct set: fine, auto simp add: algebra_simps) | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 341 | |
| 35441 | 342 | lemma Integral_mult_const: "a \<le> b \<Longrightarrow> Integral(a,b) (\<lambda>x. c) (c * (b - a))" | 
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 343 | apply (cases "a = b", simp) | 
| 35441 | 344 | apply (rule IntegralI) | 
| 345 | apply (rule_tac x = "\<lambda>x. b - a" in exI) | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 346 | apply (rule conjI, simp add: gauge_def) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 347 | apply (clarify) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 348 | apply (subst fine_rsum_const, assumption, simp) | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 349 | done | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 350 | |
| 35441 | 351 | lemma Integral_eq_diff_bounds: "a \<le> b \<Longrightarrow> Integral(a,b) (\<lambda>x. 1) (b - a)" | 
| 352 | using Integral_mult_const [of a b 1] by simp | |
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 353 | |
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 354 | lemma Integral_mult: | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 355 | "[| a \<le> b; Integral(a,b) f k |] ==> Integral(a,b) (%x. c * f x) (c * k)" | 
| 35441 | 356 | apply (auto simp add: order_le_less) | 
| 357 | apply (cases "c = 0", simp add: Integral_zero_fun) | |
| 358 | apply (rule IntegralI) | |
| 359 | apply (erule_tac e="e / \<bar>c\<bar>" in IntegralE, simp add: divide_pos_pos) | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 360 | apply (rule_tac x="\<delta>" in exI, clarify) | 
| 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 361 | apply (drule_tac x="D" in spec, clarify) | 
| 31257 | 362 | apply (simp add: pos_less_divide_eq abs_mult [symmetric] | 
| 363 | algebra_simps rsum_right_distrib) | |
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 364 | done | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 365 | |
| 31364 | 366 | lemma Integral_add: | 
| 367 | assumes "Integral (a, b) f x1" | |
| 368 | assumes "Integral (b, c) f x2" | |
| 369 | assumes "a \<le> b" and "b \<le> c" | |
| 370 | shows "Integral (a, c) f (x1 + x2)" | |
| 35441 | 371 | proof (cases "a < b \<and> b < c", rule IntegralI) | 
| 31364 | 372 | fix \<epsilon> :: real assume "0 < \<epsilon>" | 
| 373 | hence "0 < \<epsilon> / 2" by auto | |
| 374 | ||
| 375 | assume "a < b \<and> b < c" | |
| 376 | hence "a < b" and "b < c" by auto | |
| 377 | ||
| 378 |   obtain \<delta>1 where \<delta>1_gauge: "gauge {a..b} \<delta>1"
 | |
| 35441 | 379 | and I1: "\<And> D. fine \<delta>1 (a,b) D \<Longrightarrow> \<bar> rsum D f - x1 \<bar> < (\<epsilon> / 2)" | 
| 380 | using IntegralE [OF `Integral (a, b) f x1` `0 < \<epsilon>/2`] by auto | |
| 31364 | 381 | |
| 382 |   obtain \<delta>2 where \<delta>2_gauge: "gauge {b..c} \<delta>2"
 | |
| 35441 | 383 | and I2: "\<And> D. fine \<delta>2 (b,c) D \<Longrightarrow> \<bar> rsum D f - x2 \<bar> < (\<epsilon> / 2)" | 
| 384 | using IntegralE [OF `Integral (b, c) f x2` `0 < \<epsilon>/2`] by auto | |
| 31364 | 385 | |
| 386 | def \<delta> \<equiv> "\<lambda> x. if x < b then min (\<delta>1 x) (b - x) | |
| 387 | else if x = b then min (\<delta>1 b) (\<delta>2 b) | |
| 388 | else min (\<delta>2 x) (x - b)" | |
| 389 | ||
| 390 |   have "gauge {a..c} \<delta>"
 | |
| 391 | using \<delta>1_gauge \<delta>2_gauge unfolding \<delta>_def gauge_def by auto | |
| 35441 | 392 | |
| 31364 | 393 |   moreover {
 | 
| 394 | fix D :: "(real \<times> real \<times> real) list" | |
| 395 | assume fine: "fine \<delta> (a,c) D" | |
| 396 | from fine_covers_all[OF this `a < b` `b \<le> c`] | |
| 397 | obtain N where "N < length D" | |
| 398 | and *: "\<forall> d t e. D ! N = (d, t, e) \<longrightarrow> d < b \<and> b \<le> e" | |
| 399 | by auto | |
| 400 | obtain d t e where D_eq: "D ! N = (d, t, e)" by (cases "D!N", auto) | |
| 401 | with * have "d < b" and "b \<le> e" by auto | |
| 402 | have in_D: "(d, t, e) \<in> set D" | |
| 403 | using D_eq[symmetric] using `N < length D` by auto | |
| 404 | ||
| 405 | from mem_fine[OF fine in_D] | |
| 406 | have "d < e" and "d \<le> t" and "t \<le> e" by auto | |
| 407 | ||
| 408 | have "t = b" | |
| 409 | proof (rule ccontr) | |
| 410 | assume "t \<noteq> b" | |
| 411 | with mem_fine3[OF fine in_D] `b \<le> e` `d \<le> t` `t \<le> e` `d < b` \<delta>_def | |
| 412 | show False by (cases "t < b") auto | |
| 413 | qed | |
| 414 | ||
| 415 | let ?D1 = "take N D" | |
| 416 | let ?D2 = "drop N D" | |
| 417 | def D1 \<equiv> "take N D @ [(d, t, b)]" | |
| 418 | def D2 \<equiv> "(if b = e then [] else [(b, t, e)]) @ drop (Suc N) D" | |
| 419 | ||
| 420 | have "D \<noteq> []" using `N < length D` by auto | |
| 421 | from hd_drop_conv_nth[OF this `N < length D`] | |
| 422 | have "fst (hd ?D2) = d" using `D ! N = (d, t, e)` by auto | |
| 423 | with fine_append_split[OF _ _ append_take_drop_id[symmetric]] | |
| 424 | have fine1: "fine \<delta> (a,d) ?D1" and fine2: "fine \<delta> (d,c) ?D2" | |
| 425 | using `N < length D` fine by auto | |
| 426 | ||
| 427 | have "fine \<delta>1 (a,b) D1" unfolding D1_def | |
| 428 | proof (rule fine_append) | |
| 429 | show "fine \<delta>1 (a, d) ?D1" | |
| 430 | proof (rule fine1[THEN fine_\<delta>_expand]) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 431 | fix x assume "a \<le> x" "x \<le> d" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 432 | hence "x \<le> b" using `d < b` `x \<le> d` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 433 | thus "\<delta> x \<le> \<delta>1 x" unfolding \<delta>_def by auto | 
| 31364 | 434 | qed | 
| 435 | ||
| 436 | have "b - d < \<delta>1 t" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 437 | using mem_fine3[OF fine in_D] \<delta>_def `b \<le> e` `t = b` by auto | 
| 31364 | 438 | from `d < b` `d \<le> t` `t = b` this | 
| 439 | show "fine \<delta>1 (d, b) [(d, t, b)]" using fine_single by auto | |
| 440 | qed | |
| 441 | note rsum1 = I1[OF this] | |
| 442 | ||
| 443 | have drop_split: "drop N D = [D ! N] @ drop (Suc N) D" | |
| 444 | using nth_drop'[OF `N < length D`] by simp | |
| 445 | ||
| 446 | have fine2: "fine \<delta>2 (e,c) (drop (Suc N) D)" | |
| 447 | proof (cases "drop (Suc N) D = []") | |
| 448 | case True | |
| 449 | note * = fine2[simplified drop_split True D_eq append_Nil2] | |
| 450 | have "e = c" using fine_single_boundaries[OF * refl] by auto | |
| 451 | thus ?thesis unfolding True using fine_Nil by auto | |
| 452 | next | |
| 453 | case False | |
| 454 | note * = fine_append_split[OF fine2 False drop_split] | |
| 455 | from fine_single_boundaries[OF *(1)] | |
| 456 | have "fst (hd (drop (Suc N) D)) = e" using D_eq by auto | |
| 457 | with *(2) have "fine \<delta> (e,c) (drop (Suc N) D)" by auto | |
| 458 | thus ?thesis | |
| 459 | proof (rule fine_\<delta>_expand) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 460 | fix x assume "e \<le> x" and "x \<le> c" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 461 | thus "\<delta> x \<le> \<delta>2 x" using `b \<le> e` unfolding \<delta>_def by auto | 
| 31364 | 462 | qed | 
| 463 | qed | |
| 464 | ||
| 465 | have "fine \<delta>2 (b, c) D2" | |
| 466 | proof (cases "e = b") | |
| 467 | case True thus ?thesis using fine2 by (simp add: D1_def D2_def) | |
| 468 | next | |
| 469 | case False | |
| 470 | have "e - b < \<delta>2 b" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 471 | using mem_fine3[OF fine in_D] \<delta>_def `d < b` `t = b` by auto | 
| 31364 | 472 | with False `t = b` `b \<le> e` | 
| 473 | show ?thesis using D2_def | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 474 | by (auto intro!: fine_append[OF _ fine2] fine_single | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
31366diff
changeset | 475 | simp del: append_Cons) | 
| 31364 | 476 | qed | 
| 477 | note rsum2 = I2[OF this] | |
| 478 | ||
| 479 | have "rsum D f = rsum (take N D) f + rsum [D ! N] f + rsum (drop (Suc N) D) f" | |
| 480 | using rsum_append[symmetric] nth_drop'[OF `N < length D`] by auto | |
| 481 | also have "\<dots> = rsum D1 f + rsum D2 f" | |
| 31366 | 482 | by (cases "b = e", auto simp add: D1_def D2_def D_eq rsum_append algebra_simps) | 
| 31364 | 483 | finally have "\<bar>rsum D f - (x1 + x2)\<bar> < \<epsilon>" | 
| 484 | using add_strict_mono[OF rsum1 rsum2] by simp | |
| 485 | } | |
| 486 |   ultimately show "\<exists> \<delta>. gauge {a .. c} \<delta> \<and>
 | |
| 487 | (\<forall>D. fine \<delta> (a,c) D \<longrightarrow> \<bar>rsum D f - (x1 + x2)\<bar> < \<epsilon>)" | |
| 488 | by blast | |
| 489 | next | |
| 490 | case False | |
| 491 | hence "a = b \<or> b = c" using `a \<le> b` and `b \<le> c` by auto | |
| 492 | thus ?thesis | |
| 493 | proof (rule disjE) | |
| 494 | assume "a = b" hence "x1 = 0" | |
| 35441 | 495 | using `Integral (a, b) f x1` by simp | 
| 496 | thus ?thesis using `a = b` `Integral (b, c) f x2` by simp | |
| 31364 | 497 | next | 
| 498 | assume "b = c" hence "x2 = 0" | |
| 35441 | 499 | using `Integral (b, c) f x2` by simp | 
| 500 | thus ?thesis using `b = c` `Integral (a, b) f x1` by simp | |
| 31364 | 501 | qed | 
| 502 | qed | |
| 31259 
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
 huffman parents: 
31257diff
changeset | 503 | |
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 504 | text{*Fundamental theorem of calculus (Part I)*}
 | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 505 | |
| 15105 | 506 | text{*"Straddle Lemma" : Swartz and Thompson: AMM 95(7) 1988 *}
 | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 507 | |
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 508 | lemma strad1: | 
| 31252 | 509 | "\<lbrakk>\<forall>z::real. z \<noteq> x \<and> \<bar>z - x\<bar> < s \<longrightarrow> | 
| 510 | \<bar>(f z - f x) / (z - x) - f' x\<bar> < e/2; | |
| 511 | 0 < s; 0 < e; a \<le> x; x \<le> b\<rbrakk> | |
| 512 | \<Longrightarrow> \<forall>z. \<bar>z - x\<bar> < s -->\<bar>f z - f x - f' x * (z - x)\<bar> \<le> e/2 * \<bar>z - x\<bar>" | |
| 513 | apply clarify | |
| 31253 | 514 | apply (case_tac "z = x", simp) | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 515 | apply (drule_tac x = z in spec) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 516 | apply (rule_tac z1 = "\<bar>inverse (z - x)\<bar>" | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 517 | in real_mult_le_cancel_iff2 [THEN iffD1]) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 518 | apply simp | 
| 35441 | 519 | apply (simp del: abs_inverse add: abs_mult [symmetric] | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 520 | mult_assoc [symmetric]) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 521 | apply (subgoal_tac "inverse (z - x) * (f z - f x - f' x * (z - x)) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 522 | = (f z - f x) / (z - x) - f' x") | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 523 | apply (simp add: abs_mult [symmetric] mult_ac diff_minus) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 524 | apply (subst mult_commute) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 525 | apply (simp add: left_distrib diff_minus) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 526 | apply (simp add: mult_assoc divide_inverse) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 527 | apply (simp add: left_distrib) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 528 | done | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 529 | |
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 530 | lemma lemma_straddle: | 
| 31252 | 531 | assumes f': "\<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x)" and "0 < e" | 
| 31253 | 532 |   shows "\<exists>g. gauge {a..b} g &
 | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 533 | (\<forall>x u v. a \<le> u & u \<le> x & x \<le> v & v \<le> b & (v - u) < g(x) | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
15093diff
changeset | 534 | --> \<bar>(f(v) - f(u)) - (f'(x) * (v - u))\<bar> \<le> e * (v - u))" | 
| 31252 | 535 | proof - | 
| 31253 | 536 |   have "\<forall>x\<in>{a..b}.
 | 
| 15360 | 537 | (\<exists>d > 0. \<forall>u v. u \<le> x & x \<le> v & (v - u) < d --> | 
| 31252 | 538 | \<bar>(f(v) - f(u)) - (f'(x) * (v - u))\<bar> \<le> e * (v - u))" | 
| 31253 | 539 | proof (clarsimp) | 
| 31252 | 540 | fix x :: real assume "a \<le> x" and "x \<le> b" | 
| 541 | with f' have "DERIV f x :> f'(x)" by simp | |
| 542 | then have "\<forall>r>0. \<exists>s>0. \<forall>z. z \<noteq> x \<and> \<bar>z - x\<bar> < s \<longrightarrow> \<bar>(f z - f x) / (z - x) - f' x\<bar> < r" | |
| 31338 
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
 huffman parents: 
31336diff
changeset | 543 | by (simp add: DERIV_iff2 LIM_eq) | 
| 31252 | 544 | with `0 < e` obtain s | 
| 545 | where "\<forall>z. z \<noteq> x \<and> \<bar>z - x\<bar> < s \<longrightarrow> \<bar>(f z - f x) / (z - x) - f' x\<bar> < e/2" and "0 < s" | |
| 546 | by (drule_tac x="e/2" in spec, auto) | |
| 547 | then have strad [rule_format]: | |
| 548 | "\<forall>z. \<bar>z - x\<bar> < s --> \<bar>f z - f x - f' x * (z - x)\<bar> \<le> e/2 * \<bar>z - x\<bar>" | |
| 549 | using `0 < e` `a \<le> x` `x \<le> b` by (rule strad1) | |
| 550 | show "\<exists>d>0. \<forall>u v. u \<le> x \<and> x \<le> v \<and> v - u < d \<longrightarrow> \<bar>f v - f u - f' x * (v - u)\<bar> \<le> e * (v - u)" | |
| 551 | proof (safe intro!: exI) | |
| 552 | show "0 < s" by fact | |
| 553 | next | |
| 554 | fix u v :: real assume "u \<le> x" and "x \<le> v" and "v - u < s" | |
| 555 | have "\<bar>f v - f u - f' x * (v - u)\<bar> = | |
| 556 | \<bar>(f v - f x - f' x * (v - x)) + (f x - f u - f' x * (x - u))\<bar>" | |
| 557 | by (simp add: right_diff_distrib) | |
| 558 | also have "\<dots> \<le> \<bar>f v - f x - f' x * (v - x)\<bar> + \<bar>f x - f u - f' x * (x - u)\<bar>" | |
| 559 | by (rule abs_triangle_ineq) | |
| 560 | also have "\<dots> = \<bar>f v - f x - f' x * (v - x)\<bar> + \<bar>f u - f x - f' x * (u - x)\<bar>" | |
| 561 | by (simp add: right_diff_distrib) | |
| 562 | also have "\<dots> \<le> (e/2) * \<bar>v - x\<bar> + (e/2) * \<bar>u - x\<bar>" | |
| 563 | using `u \<le> x` `x \<le> v` `v - u < s` by (intro add_mono strad, simp_all) | |
| 564 | also have "\<dots> \<le> e * (v - u) / 2 + e * (v - u) / 2" | |
| 565 | using `u \<le> x` `x \<le> v` `0 < e` by (intro add_mono, simp_all) | |
| 566 | also have "\<dots> = e * (v - u)" | |
| 567 | by simp | |
| 568 | finally show "\<bar>f v - f u - f' x * (v - u)\<bar> \<le> e * (v - u)" . | |
| 569 | qed | |
| 570 | qed | |
| 571 | thus ?thesis | |
| 31253 | 572 | by (simp add: gauge_def) (drule bchoice, auto) | 
| 31252 | 573 | qed | 
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 574 | |
| 35328 | 575 | lemma fundamental_theorem_of_calculus: | 
| 35441 | 576 | assumes "a \<le> b" | 
| 577 | assumes f': "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> DERIV f x :> f'(x)" | |
| 578 | shows "Integral (a, b) f' (f(b) - f(a))" | |
| 579 | proof (cases "a = b") | |
| 580 | assume "a = b" thus ?thesis by simp | |
| 581 | next | |
| 582 | assume "a \<noteq> b" with `a \<le> b` have "a < b" by simp | |
| 583 | show ?thesis | |
| 584 | proof (simp add: Integral_def2, clarify) | |
| 585 | fix e :: real assume "0 < e" | |
| 586 | with `a < b` have "0 < e / (b - a)" by (simp add: divide_pos_pos) | |
| 587 | ||
| 588 | from lemma_straddle [OF f' this] | |
| 589 |     obtain \<delta> where "gauge {a..b} \<delta>"
 | |
| 590 | and \<delta>: "\<And>x u v. \<lbrakk>a \<le> u; u \<le> x; x \<le> v; v \<le> b; v - u < \<delta> x\<rbrakk> \<Longrightarrow> | |
| 591 | \<bar>f v - f u - f' x * (v - u)\<bar> \<le> e * (v - u) / (b - a)" by auto | |
| 592 | ||
| 593 | have "\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f' - (f b - f a)\<bar> \<le> e" | |
| 594 | proof (clarify) | |
| 595 | fix D assume D: "fine \<delta> (a, b) D" | |
| 596 | hence "(\<Sum>(u, x, v)\<leftarrow>D. f v - f u) = f b - f a" | |
| 597 | by (rule fine_listsum_eq_diff) | |
| 598 | hence "\<bar>rsum D f' - (f b - f a)\<bar> = \<bar>rsum D f' - (\<Sum>(u, x, v)\<leftarrow>D. f v - f u)\<bar>" | |
| 599 | by simp | |
| 600 | also have "\<dots> = \<bar>(\<Sum>(u, x, v)\<leftarrow>D. f v - f u) - rsum D f'\<bar>" | |
| 601 | by (rule abs_minus_commute) | |
| 602 | also have "\<dots> = \<bar>\<Sum>(u, x, v)\<leftarrow>D. (f v - f u) - f' x * (v - u)\<bar>" | |
| 603 | by (simp only: rsum_def listsum_subtractf split_def) | |
| 604 | also have "\<dots> \<le> (\<Sum>(u, x, v)\<leftarrow>D. \<bar>(f v - f u) - f' x * (v - u)\<bar>)" | |
| 605 | by (rule ord_le_eq_trans [OF listsum_abs], simp add: o_def split_def) | |
| 606 | also have "\<dots> \<le> (\<Sum>(u, x, v)\<leftarrow>D. (e / (b - a)) * (v - u))" | |
| 607 | apply (rule listsum_mono, clarify, rename_tac u x v) | |
| 608 | using D apply (simp add: \<delta> mem_fine mem_fine2 mem_fine3) | |
| 609 | done | |
| 610 | also have "\<dots> = e" | |
| 611 | using fine_listsum_eq_diff [OF D, where f="\<lambda>x. x"] | |
| 612 | unfolding split_def listsum_const_mult | |
| 613 | using `a < b` by simp | |
| 614 | finally show "\<bar>rsum D f' - (f b - f a)\<bar> \<le> e" . | |
| 615 | qed | |
| 616 | ||
| 617 |     with `gauge {a..b} \<delta>`
 | |
| 618 |     show "\<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f' - (f b - f a)\<bar> \<le> e)"
 | |
| 619 | by auto | |
| 620 | qed | |
| 621 | qed | |
| 13958 | 622 | |
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
13958diff
changeset | 623 | end |