| 
63375
 | 
     1  | 
(* Author: Florian Haftmann, TU Muenchen *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
section \<open>Permutations as abstract type\<close>
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Perm
  | 
| 
 | 
     6  | 
imports Main
  | 
| 
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
text \<open>
  | 
| 
 | 
    10  | 
  This theory introduces basics about permutations, i.e. almost
  | 
| 
 | 
    11  | 
  everywhere fix bijections.  But it is by no means complete.
  | 
| 
 | 
    12  | 
  Grieviously missing are cycles since these would require more
  | 
| 
 | 
    13  | 
  elaboration, e.g. the concept of distinct lists equivalent
  | 
| 
 | 
    14  | 
  under rotation, which maybe would also deserve its own theory.
  | 
| 
64911
 | 
    15  | 
  But see theory \<open>src/HOL/ex/Perm_Fragments.thy\<close> for
  | 
| 
63375
 | 
    16  | 
  fragments on that.
  | 
| 
 | 
    17  | 
\<close>
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
subsection \<open>Abstract type of permutations\<close>
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
typedef 'a perm = "{f :: 'a \<Rightarrow> 'a. bij f \<and> finite {a. f a \<noteq> a}}"
 | 
| 
 | 
    22  | 
  morphisms "apply" Perm
  | 
| 
63433
 | 
    23  | 
proof
  | 
| 
 | 
    24  | 
  show "id \<in> ?perm" by simp
  | 
| 
 | 
    25  | 
qed
  | 
| 
63375
 | 
    26  | 
  | 
| 
 | 
    27  | 
setup_lifting type_definition_perm
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
notation "apply" (infixl "\<langle>$\<rangle>" 999)
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma bij_apply [simp]:
  | 
| 
 | 
    32  | 
  "bij (apply f)"
  | 
| 
 | 
    33  | 
  using "apply" [of f] by simp
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma perm_eqI:
  | 
| 
 | 
    36  | 
  assumes "\<And>a. f \<langle>$\<rangle> a = g \<langle>$\<rangle> a"
  | 
| 
 | 
    37  | 
  shows "f = g"
  | 
| 
 | 
    38  | 
  using assms by transfer (simp add: fun_eq_iff)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
lemma perm_eq_iff:
  | 
| 
 | 
    41  | 
  "f = g \<longleftrightarrow> (\<forall>a. f \<langle>$\<rangle> a = g \<langle>$\<rangle> a)"
  | 
| 
 | 
    42  | 
  by (auto intro: perm_eqI)
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
lemma apply_inj:
  | 
| 
 | 
    45  | 
  "f \<langle>$\<rangle> a = f \<langle>$\<rangle> b \<longleftrightarrow> a = b"
  | 
| 
 | 
    46  | 
  by (rule inj_eq) (rule bij_is_inj, simp)
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lift_definition affected :: "'a perm \<Rightarrow> 'a set"
  | 
| 
 | 
    49  | 
  is "\<lambda>f. {a. f a \<noteq> a}" .
 | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma in_affected:
  | 
| 
 | 
    52  | 
  "a \<in> affected f \<longleftrightarrow> f \<langle>$\<rangle> a \<noteq> a"
  | 
| 
 | 
    53  | 
  by transfer simp
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
lemma finite_affected [simp]:
  | 
| 
 | 
    56  | 
  "finite (affected f)"
  | 
| 
 | 
    57  | 
  by transfer simp
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma apply_affected [simp]:
  | 
| 
 | 
    60  | 
  "f \<langle>$\<rangle> a \<in> affected f \<longleftrightarrow> a \<in> affected f"
  | 
| 
 | 
    61  | 
proof transfer
  | 
| 
 | 
    62  | 
  fix f :: "'a \<Rightarrow> 'a" and a :: 'a
  | 
| 
 | 
    63  | 
  assume "bij f \<and> finite {b. f b \<noteq> b}"
 | 
| 
 | 
    64  | 
  then have "bij f" by simp
  | 
| 
 | 
    65  | 
  interpret bijection f by standard (rule \<open>bij f\<close>)
  | 
| 
 | 
    66  | 
  have "f a \<in> {a. f a = a} \<longleftrightarrow> a \<in> {a. f a = a}" (is "?P \<longleftrightarrow> ?Q")
 | 
| 
 | 
    67  | 
    by auto
  | 
| 
 | 
    68  | 
  then show "f a \<in> {a. f a \<noteq> a} \<longleftrightarrow> a \<in> {a. f a \<noteq> a}"
 | 
| 
 | 
    69  | 
    by simp
  | 
| 
 | 
    70  | 
qed
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma card_affected_not_one:
  | 
| 
 | 
    73  | 
  "card (affected f) \<noteq> 1"
  | 
| 
 | 
    74  | 
proof
  | 
| 
 | 
    75  | 
  interpret bijection "apply f"
  | 
| 
 | 
    76  | 
    by standard (rule bij_apply)
  | 
| 
 | 
    77  | 
  assume "card (affected f) = 1"
  | 
| 
 | 
    78  | 
  then obtain a where *: "affected f = {a}"
 | 
| 
 | 
    79  | 
    by (rule card_1_singletonE)
  | 
| 
63540
 | 
    80  | 
  then have **: "f \<langle>$\<rangle> a \<noteq> a"
  | 
| 
68406
 | 
    81  | 
    by (simp flip: in_affected)
  | 
| 
63540
 | 
    82  | 
  with * have "f \<langle>$\<rangle> a \<notin> affected f"
  | 
| 
63375
 | 
    83  | 
    by simp
  | 
| 
 | 
    84  | 
  then have "f \<langle>$\<rangle> (f \<langle>$\<rangle> a) = f \<langle>$\<rangle> a"
  | 
| 
 | 
    85  | 
    by (simp add: in_affected)
  | 
| 
 | 
    86  | 
  then have "inv (apply f) (f \<langle>$\<rangle> (f \<langle>$\<rangle> a)) = inv (apply f) (f \<langle>$\<rangle> a)"
  | 
| 
 | 
    87  | 
    by simp
  | 
| 
63540
 | 
    88  | 
  with ** show False by simp
  | 
| 
63375
 | 
    89  | 
qed
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
subsection \<open>Identity, composition and inversion\<close>
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
instantiation Perm.perm :: (type) "{monoid_mult, inverse}"
 | 
| 
 | 
    95  | 
begin
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
lift_definition one_perm :: "'a perm"
  | 
| 
 | 
    98  | 
  is id
  | 
| 
 | 
    99  | 
  by simp
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
lemma apply_one [simp]:
  | 
| 
 | 
   102  | 
  "apply 1 = id"
  | 
| 
 | 
   103  | 
  by (fact one_perm.rep_eq)
  | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
lemma affected_one [simp]:
  | 
| 
 | 
   106  | 
  "affected 1 = {}"
 | 
| 
 | 
   107  | 
  by transfer simp
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
lemma affected_empty_iff [simp]:
  | 
| 
 | 
   110  | 
  "affected f = {} \<longleftrightarrow> f = 1"
 | 
| 
 | 
   111  | 
  by transfer auto
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
lift_definition times_perm :: "'a perm \<Rightarrow> 'a perm \<Rightarrow> 'a perm"
  | 
| 
 | 
   114  | 
  is comp
  | 
| 
 | 
   115  | 
proof
  | 
| 
 | 
   116  | 
  fix f g :: "'a \<Rightarrow> 'a"
  | 
| 
 | 
   117  | 
  assume "bij f \<and> finite {a. f a \<noteq> a}"
 | 
| 
 | 
   118  | 
    "bij g \<and>finite {a. g a \<noteq> a}"
 | 
| 
 | 
   119  | 
  then have "finite ({a. f a \<noteq> a} \<union> {a. g a \<noteq> a})"
 | 
| 
 | 
   120  | 
    by simp
  | 
| 
 | 
   121  | 
  moreover have "{a. (f \<circ> g) a \<noteq> a} \<subseteq> {a. f a \<noteq> a} \<union> {a. g a \<noteq> a}"
 | 
| 
 | 
   122  | 
    by auto
  | 
| 
 | 
   123  | 
  ultimately show "finite {a. (f \<circ> g) a \<noteq> a}"
 | 
| 
 | 
   124  | 
    by (auto intro: finite_subset)
  | 
| 
 | 
   125  | 
qed (auto intro: bij_comp)
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
lemma apply_times:
  | 
| 
 | 
   128  | 
  "apply (f * g) = apply f \<circ> apply g"
  | 
| 
 | 
   129  | 
  by (fact times_perm.rep_eq)
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
lemma apply_sequence:
  | 
| 
 | 
   132  | 
  "f \<langle>$\<rangle> (g \<langle>$\<rangle> a) = apply (f * g) a"
  | 
| 
 | 
   133  | 
  by (simp add: apply_times)
  | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
lemma affected_times [simp]:
  | 
| 
 | 
   136  | 
  "affected (f * g) \<subseteq> affected f \<union> affected g"
  | 
| 
 | 
   137  | 
  by transfer auto
  | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
lift_definition inverse_perm :: "'a perm \<Rightarrow> 'a perm"
  | 
| 
 | 
   140  | 
  is inv
  | 
| 
 | 
   141  | 
proof transfer
  | 
| 
 | 
   142  | 
  fix f :: "'a \<Rightarrow> 'a" and a
  | 
| 
 | 
   143  | 
  assume "bij f \<and> finite {b. f b \<noteq> b}"
 | 
| 
 | 
   144  | 
  then have "bij f" and fin: "finite {b. f b \<noteq> b}"
 | 
| 
 | 
   145  | 
    by auto
  | 
| 
 | 
   146  | 
  interpret bijection f by standard (rule \<open>bij f\<close>)
  | 
| 
 | 
   147  | 
  from fin show "bij (inv f) \<and> finite {a. inv f a \<noteq> a}"
 | 
| 
 | 
   148  | 
    by (simp add: bij_inv)
  | 
| 
 | 
   149  | 
qed
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
instance
  | 
| 
 | 
   152  | 
  by standard (transfer; simp add: comp_assoc)+
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
end
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
lemma apply_inverse:
  | 
| 
 | 
   157  | 
  "apply (inverse f) = inv (apply f)"
  | 
| 
 | 
   158  | 
  by (fact inverse_perm.rep_eq)
  | 
| 
 | 
   159  | 
  | 
| 
 | 
   160  | 
lemma affected_inverse [simp]:
  | 
| 
 | 
   161  | 
  "affected (inverse f) = affected f"
  | 
| 
 | 
   162  | 
proof transfer
  | 
| 
 | 
   163  | 
  fix f :: "'a \<Rightarrow> 'a" and a
  | 
| 
 | 
   164  | 
  assume "bij f \<and> finite {b. f b \<noteq> b}"
 | 
| 
 | 
   165  | 
  then have "bij f" by simp
  | 
| 
 | 
   166  | 
  interpret bijection f by standard (rule \<open>bij f\<close>)
  | 
| 
 | 
   167  | 
  show "{a. inv f a \<noteq> a} = {a. f a \<noteq> a}"
 | 
| 
 | 
   168  | 
    by simp
  | 
| 
 | 
   169  | 
qed
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
global_interpretation perm: group times "1::'a perm" inverse
  | 
| 
 | 
   172  | 
proof
  | 
| 
 | 
   173  | 
  fix f :: "'a perm"
  | 
| 
 | 
   174  | 
  show "1 * f = f"
  | 
| 
 | 
   175  | 
    by transfer simp
  | 
| 
 | 
   176  | 
  show "inverse f * f = 1"
  | 
| 
 | 
   177  | 
  proof transfer
  | 
| 
 | 
   178  | 
    fix f :: "'a \<Rightarrow> 'a" and a
  | 
| 
 | 
   179  | 
    assume "bij f \<and> finite {b. f b \<noteq> b}"
 | 
| 
 | 
   180  | 
    then have "bij f" by simp
  | 
| 
 | 
   181  | 
    interpret bijection f by standard (rule \<open>bij f\<close>)
  | 
| 
 | 
   182  | 
    show "inv f \<circ> f = id"
  | 
| 
 | 
   183  | 
      by simp
  | 
| 
 | 
   184  | 
  qed
  | 
| 
 | 
   185  | 
qed
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
declare perm.inverse_distrib_swap [simp]
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
lemma perm_mult_commute:
  | 
| 
 | 
   190  | 
  assumes "affected f \<inter> affected g = {}"
 | 
| 
 | 
   191  | 
  shows "g * f = f * g"
  | 
| 
 | 
   192  | 
proof (rule perm_eqI)
  | 
| 
 | 
   193  | 
  fix a
  | 
| 
 | 
   194  | 
  from assms have *: "a \<in> affected f \<Longrightarrow> a \<notin> affected g"
  | 
| 
 | 
   195  | 
    "a \<in> affected g \<Longrightarrow> a \<notin> affected f" for a
  | 
| 
 | 
   196  | 
    by auto
  | 
| 
 | 
   197  | 
  consider "a \<in> affected f \<and> a \<notin> affected g
  | 
| 
 | 
   198  | 
        \<and> f \<langle>$\<rangle> a \<in> affected f"
  | 
| 
 | 
   199  | 
    | "a \<notin> affected f \<and> a \<in> affected g
  | 
| 
 | 
   200  | 
        \<and> f \<langle>$\<rangle> a \<notin> affected f"
  | 
| 
 | 
   201  | 
    | "a \<notin> affected f \<and> a \<notin> affected g"
  | 
| 
 | 
   202  | 
    using assms by auto
  | 
| 
 | 
   203  | 
  then show "(g * f) \<langle>$\<rangle> a = (f * g) \<langle>$\<rangle> a"
  | 
| 
 | 
   204  | 
  proof cases
  | 
| 
63540
 | 
   205  | 
    case 1
  | 
| 
 | 
   206  | 
    with * have "f \<langle>$\<rangle> a \<notin> affected g"
  | 
| 
63375
 | 
   207  | 
      by auto
  | 
| 
63540
 | 
   208  | 
    with 1 show ?thesis by (simp add: in_affected apply_times)
  | 
| 
63375
 | 
   209  | 
  next
  | 
| 
63540
 | 
   210  | 
    case 2
  | 
| 
 | 
   211  | 
    with * have "g \<langle>$\<rangle> a \<notin> affected f"
  | 
| 
63375
 | 
   212  | 
      by auto
  | 
| 
63540
 | 
   213  | 
    with 2 show ?thesis by (simp add: in_affected apply_times)
  | 
| 
63375
 | 
   214  | 
  next
  | 
| 
63540
 | 
   215  | 
    case 3
  | 
| 
 | 
   216  | 
    then show ?thesis by (simp add: in_affected apply_times)
  | 
| 
63375
 | 
   217  | 
  qed
  | 
| 
 | 
   218  | 
qed
  | 
| 
 | 
   219  | 
  | 
| 
 | 
   220  | 
lemma apply_power:
  | 
| 
 | 
   221  | 
  "apply (f ^ n) = apply f ^^ n"
  | 
| 
 | 
   222  | 
  by (induct n) (simp_all add: apply_times)
  | 
| 
 | 
   223  | 
  | 
| 
 | 
   224  | 
lemma perm_power_inverse:
  | 
| 
 | 
   225  | 
  "inverse f ^ n = inverse ((f :: 'a perm) ^ n)"
  | 
| 
 | 
   226  | 
proof (induct n)
  | 
| 
 | 
   227  | 
  case 0 then show ?case by simp
  | 
| 
 | 
   228  | 
next
  | 
| 
 | 
   229  | 
  case (Suc n)
  | 
| 
 | 
   230  | 
  then show ?case
  | 
| 
 | 
   231  | 
    unfolding power_Suc2 [of f] by simp
  | 
| 
 | 
   232  | 
qed
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
subsection \<open>Orbit and order of elements\<close>
  | 
| 
 | 
   236  | 
  | 
| 
 | 
   237  | 
definition orbit :: "'a perm \<Rightarrow> 'a \<Rightarrow> 'a set"
  | 
| 
 | 
   238  | 
where
  | 
| 
 | 
   239  | 
  "orbit f a = range (\<lambda>n. (f ^ n) \<langle>$\<rangle> a)"
  | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
lemma in_orbitI:
  | 
| 
 | 
   242  | 
  assumes "(f ^ n) \<langle>$\<rangle> a = b"
  | 
| 
 | 
   243  | 
  shows "b \<in> orbit f a"
  | 
| 
 | 
   244  | 
  using assms by (auto simp add: orbit_def)
  | 
| 
 | 
   245  | 
  | 
| 
 | 
   246  | 
lemma apply_power_self_in_orbit [simp]:
  | 
| 
 | 
   247  | 
  "(f ^ n) \<langle>$\<rangle> a \<in> orbit f a"
  | 
| 
 | 
   248  | 
  by (rule in_orbitI) rule
  | 
| 
 | 
   249  | 
  | 
| 
 | 
   250  | 
lemma in_orbit_self [simp]:
  | 
| 
 | 
   251  | 
  "a \<in> orbit f a"
  | 
| 
 | 
   252  | 
  using apply_power_self_in_orbit [of _ 0] by simp
  | 
| 
 | 
   253  | 
  | 
| 
 | 
   254  | 
lemma apply_self_in_orbit [simp]:
  | 
| 
 | 
   255  | 
  "f \<langle>$\<rangle> a \<in> orbit f a"
  | 
| 
 | 
   256  | 
  using apply_power_self_in_orbit [of _ 1] by simp
  | 
| 
 | 
   257  | 
  | 
| 
 | 
   258  | 
lemma orbit_not_empty [simp]:
  | 
| 
 | 
   259  | 
  "orbit f a \<noteq> {}"
 | 
| 
 | 
   260  | 
  using in_orbit_self [of a f] by blast
  | 
| 
 | 
   261  | 
  | 
| 
 | 
   262  | 
lemma not_in_affected_iff_orbit_eq_singleton:
  | 
| 
 | 
   263  | 
  "a \<notin> affected f \<longleftrightarrow> orbit f a = {a}" (is "?P \<longleftrightarrow> ?Q")
 | 
| 
 | 
   264  | 
proof
  | 
| 
 | 
   265  | 
  assume ?P
  | 
| 
 | 
   266  | 
  then have "f \<langle>$\<rangle> a = a"
  | 
| 
 | 
   267  | 
    by (simp add: in_affected)
  | 
| 
 | 
   268  | 
  then have "(f ^ n) \<langle>$\<rangle> a = a" for n
  | 
| 
 | 
   269  | 
    by (induct n) (simp_all add: apply_times)
  | 
| 
 | 
   270  | 
  then show ?Q
  | 
| 
 | 
   271  | 
    by (auto simp add: orbit_def)
  | 
| 
 | 
   272  | 
next
  | 
| 
 | 
   273  | 
  assume ?Q
  | 
| 
 | 
   274  | 
  then show ?P
  | 
| 
 | 
   275  | 
    by (auto simp add: orbit_def in_affected dest: range_eq_singletonD [of _ _ 1])
  | 
| 
 | 
   276  | 
qed
  | 
| 
 | 
   277  | 
  | 
| 
 | 
   278  | 
definition order :: "'a perm \<Rightarrow> 'a \<Rightarrow> nat"
  | 
| 
 | 
   279  | 
where
  | 
| 
63993
 | 
   280  | 
  "order f = card \<circ> orbit f"
  | 
| 
63375
 | 
   281  | 
  | 
| 
 | 
   282  | 
lemma orbit_subset_eq_affected:
  | 
| 
 | 
   283  | 
  assumes "a \<in> affected f"
  | 
| 
 | 
   284  | 
  shows "orbit f a \<subseteq> affected f"
  | 
| 
 | 
   285  | 
proof (rule ccontr)
  | 
| 
 | 
   286  | 
  assume "\<not> orbit f a \<subseteq> affected f"
  | 
| 
 | 
   287  | 
  then obtain b where "b \<in> orbit f a" and "b \<notin> affected f"
  | 
| 
 | 
   288  | 
    by auto
  | 
| 
 | 
   289  | 
  then have "b \<in> range (\<lambda>n. (f ^ n) \<langle>$\<rangle> a)"
  | 
| 
 | 
   290  | 
    by (simp add: orbit_def)
  | 
| 
 | 
   291  | 
  then obtain n where "b = (f ^ n) \<langle>$\<rangle> a"
  | 
| 
 | 
   292  | 
    by blast
  | 
| 
 | 
   293  | 
  with \<open>b \<notin> affected f\<close>
  | 
| 
 | 
   294  | 
  have "(f ^ n) \<langle>$\<rangle> a \<notin> affected f"
  | 
| 
 | 
   295  | 
    by simp
  | 
| 
 | 
   296  | 
  then have "f \<langle>$\<rangle> a \<notin> affected f"
  | 
| 
 | 
   297  | 
    by (induct n) (simp_all add: apply_times)
  | 
| 
 | 
   298  | 
  with assms show False
  | 
| 
 | 
   299  | 
    by simp
  | 
| 
 | 
   300  | 
qed
  | 
| 
 | 
   301  | 
  | 
| 
 | 
   302  | 
lemma finite_orbit [simp]:
  | 
| 
 | 
   303  | 
  "finite (orbit f a)"
  | 
| 
 | 
   304  | 
proof (cases "a \<in> affected f")
  | 
| 
 | 
   305  | 
  case False then show ?thesis
  | 
| 
 | 
   306  | 
    by (simp add: not_in_affected_iff_orbit_eq_singleton)
  | 
| 
 | 
   307  | 
next
  | 
| 
 | 
   308  | 
  case True then have "orbit f a \<subseteq> affected f"
  | 
| 
 | 
   309  | 
    by (rule orbit_subset_eq_affected)
  | 
| 
 | 
   310  | 
  then show ?thesis using finite_affected
  | 
| 
 | 
   311  | 
    by (rule finite_subset)
  | 
| 
 | 
   312  | 
qed
  | 
| 
 | 
   313  | 
  | 
| 
 | 
   314  | 
lemma orbit_1 [simp]:
  | 
| 
 | 
   315  | 
  "orbit 1 a = {a}"
 | 
| 
 | 
   316  | 
  by (auto simp add: orbit_def)
  | 
| 
 | 
   317  | 
  | 
| 
 | 
   318  | 
lemma order_1 [simp]:
  | 
| 
 | 
   319  | 
  "order 1 a = 1"
  | 
| 
 | 
   320  | 
  unfolding order_def by simp
  | 
| 
 | 
   321  | 
  | 
| 
 | 
   322  | 
lemma card_orbit_eq [simp]:
  | 
| 
 | 
   323  | 
  "card (orbit f a) = order f a"
  | 
| 
 | 
   324  | 
  by (simp add: order_def)
  | 
| 
 | 
   325  | 
  | 
| 
 | 
   326  | 
lemma order_greater_zero [simp]:
  | 
| 
 | 
   327  | 
  "order f a > 0"
  | 
| 
 | 
   328  | 
  by (simp only: card_gt_0_iff order_def comp_def) simp
  | 
| 
 | 
   329  | 
  | 
| 
 | 
   330  | 
lemma order_eq_one_iff:
  | 
| 
 | 
   331  | 
  "order f a = Suc 0 \<longleftrightarrow> a \<notin> affected f" (is "?P \<longleftrightarrow> ?Q")
  | 
| 
 | 
   332  | 
proof
  | 
| 
 | 
   333  | 
  assume ?P then have "card (orbit f a) = 1"
  | 
| 
 | 
   334  | 
    by simp
  | 
| 
 | 
   335  | 
  then obtain b where "orbit f a = {b}"
 | 
| 
 | 
   336  | 
    by (rule card_1_singletonE)
  | 
| 
 | 
   337  | 
  with in_orbit_self [of a f]
  | 
| 
 | 
   338  | 
    have "b = a" by simp
  | 
| 
 | 
   339  | 
  with \<open>orbit f a = {b}\<close> show ?Q
 | 
| 
 | 
   340  | 
    by (simp add: not_in_affected_iff_orbit_eq_singleton)
  | 
| 
 | 
   341  | 
next
  | 
| 
 | 
   342  | 
  assume ?Q
  | 
| 
 | 
   343  | 
  then have "orbit f a = {a}"
 | 
| 
 | 
   344  | 
    by (simp add: not_in_affected_iff_orbit_eq_singleton)
  | 
| 
 | 
   345  | 
  then have "card (orbit f a) = 1"
  | 
| 
 | 
   346  | 
    by simp
  | 
| 
 | 
   347  | 
  then show ?P
  | 
| 
 | 
   348  | 
    by simp
  | 
| 
 | 
   349  | 
qed
  | 
| 
 | 
   350  | 
  | 
| 
 | 
   351  | 
lemma order_greater_eq_two_iff:
  | 
| 
 | 
   352  | 
  "order f a \<ge> 2 \<longleftrightarrow> a \<in> affected f"
  | 
| 
 | 
   353  | 
  using order_eq_one_iff [of f a]
  | 
| 
 | 
   354  | 
  apply (auto simp add: neq_iff)
  | 
| 
 | 
   355  | 
  using order_greater_zero [of f a]
  | 
| 
 | 
   356  | 
  apply simp
  | 
| 
 | 
   357  | 
  done
  | 
| 
 | 
   358  | 
  | 
| 
 | 
   359  | 
lemma order_less_eq_affected:
  | 
| 
 | 
   360  | 
  assumes "f \<noteq> 1"
  | 
| 
 | 
   361  | 
  shows "order f a \<le> card (affected f)"
  | 
| 
 | 
   362  | 
proof (cases "a \<in> affected f")
  | 
| 
 | 
   363  | 
  from assms have "affected f \<noteq> {}"
 | 
| 
 | 
   364  | 
    by simp
  | 
| 
 | 
   365  | 
  then obtain B b where "affected f = insert b B"
  | 
| 
 | 
   366  | 
    by blast
  | 
| 
 | 
   367  | 
  with finite_affected [of f] have "card (affected f) \<ge> 1"
  | 
| 
 | 
   368  | 
    by (simp add: card_insert)
  | 
| 
 | 
   369  | 
  case False then have "order f a = 1"
  | 
| 
 | 
   370  | 
    by (simp add: order_eq_one_iff)
  | 
| 
 | 
   371  | 
  with \<open>card (affected f) \<ge> 1\<close> show ?thesis
  | 
| 
 | 
   372  | 
    by simp
  | 
| 
 | 
   373  | 
next
  | 
| 
 | 
   374  | 
  case True
  | 
| 
 | 
   375  | 
  have "card (orbit f a) \<le> card (affected f)"
  | 
| 
 | 
   376  | 
    by (rule card_mono) (simp_all add: True orbit_subset_eq_affected card_mono)
  | 
| 
 | 
   377  | 
  then show ?thesis
  | 
| 
 | 
   378  | 
    by simp
  | 
| 
 | 
   379  | 
qed
  | 
| 
 | 
   380  | 
  | 
| 
 | 
   381  | 
lemma affected_order_greater_eq_two:
  | 
| 
 | 
   382  | 
  assumes "a \<in> affected f"
  | 
| 
 | 
   383  | 
  shows "order f a \<ge> 2"
  | 
| 
 | 
   384  | 
proof (rule ccontr)
  | 
| 
 | 
   385  | 
  assume "\<not> 2 \<le> order f a"
  | 
| 
 | 
   386  | 
  then have "order f a < 2"
  | 
| 
 | 
   387  | 
    by (simp add: not_le)
  | 
| 
 | 
   388  | 
  with order_greater_zero [of f a] have "order f a = 1"
  | 
| 
 | 
   389  | 
    by arith
  | 
| 
 | 
   390  | 
  with assms show False
  | 
| 
 | 
   391  | 
    by (simp add: order_eq_one_iff)
  | 
| 
 | 
   392  | 
qed
  | 
| 
 | 
   393  | 
  | 
| 
 | 
   394  | 
lemma order_witness_unfold:
  | 
| 
 | 
   395  | 
  assumes "n > 0" and "(f ^ n) \<langle>$\<rangle> a = a"
  | 
| 
 | 
   396  | 
  shows "order f a = card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n})"
 | 
| 
 | 
   397  | 
proof  -
  | 
| 
 | 
   398  | 
  have "orbit f a = (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n}" (is "_ = ?B")
 | 
| 
 | 
   399  | 
  proof (rule set_eqI, rule)
  | 
| 
 | 
   400  | 
    fix b
  | 
| 
 | 
   401  | 
    assume "b \<in> orbit f a"
  | 
| 
 | 
   402  | 
    then obtain m where "(f ^ m) \<langle>$\<rangle> a = b"
  | 
| 
 | 
   403  | 
      by (auto simp add: orbit_def)
  | 
| 
 | 
   404  | 
    then have "b = (f ^ (m mod n + n * (m div n))) \<langle>$\<rangle> a"
  | 
| 
 | 
   405  | 
      by simp
  | 
| 
 | 
   406  | 
    also have "\<dots> = (f ^ (m mod n)) \<langle>$\<rangle> ((f ^ (n * (m div n))) \<langle>$\<rangle> a)"
  | 
| 
 | 
   407  | 
      by (simp only: power_add apply_times) simp
  | 
| 
 | 
   408  | 
    also have "(f ^ (n * q)) \<langle>$\<rangle> a = a" for q
  | 
| 
 | 
   409  | 
      by (induct q)
  | 
| 
 | 
   410  | 
        (simp_all add: power_add apply_times assms)
  | 
| 
 | 
   411  | 
    finally have "b = (f ^ (m mod n)) \<langle>$\<rangle> a" .
  | 
| 
 | 
   412  | 
    moreover from \<open>n > 0\<close>
  | 
| 
 | 
   413  | 
    have "m mod n < n" 
  | 
| 
 | 
   414  | 
      by simp
  | 
| 
 | 
   415  | 
    ultimately show "b \<in> ?B"
  | 
| 
 | 
   416  | 
      by auto
  | 
| 
 | 
   417  | 
  next
  | 
| 
 | 
   418  | 
    fix b
  | 
| 
 | 
   419  | 
    assume "b \<in> ?B"
  | 
| 
 | 
   420  | 
    then obtain m where "(f ^ m) \<langle>$\<rangle> a = b"
  | 
| 
 | 
   421  | 
      by blast
  | 
| 
 | 
   422  | 
    then show "b \<in> orbit f a"
  | 
| 
 | 
   423  | 
      by (rule in_orbitI)
  | 
| 
 | 
   424  | 
  qed
  | 
| 
 | 
   425  | 
  then have "card (orbit f a) = card ?B"
  | 
| 
 | 
   426  | 
    by (simp only:)
  | 
| 
 | 
   427  | 
  then show ?thesis
  | 
| 
 | 
   428  | 
    by simp
  | 
| 
 | 
   429  | 
qed
  | 
| 
 | 
   430  | 
    
  | 
| 
 | 
   431  | 
lemma inj_on_apply_range:
  | 
| 
 | 
   432  | 
  "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<order f a}"
 | 
| 
 | 
   433  | 
proof -
  | 
| 
 | 
   434  | 
  have "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<n}"
 | 
| 
 | 
   435  | 
    if "n \<le> order f a" for n
  | 
| 
 | 
   436  | 
  using that proof (induct n)
  | 
| 
 | 
   437  | 
    case 0 then show ?case by simp
  | 
| 
 | 
   438  | 
  next
  | 
| 
 | 
   439  | 
    case (Suc n)
  | 
| 
 | 
   440  | 
    then have prem: "n < order f a"
  | 
| 
 | 
   441  | 
      by simp
  | 
| 
 | 
   442  | 
    with Suc.hyps have hyp: "inj_on (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) {..<n}"
 | 
| 
 | 
   443  | 
      by simp
  | 
| 
 | 
   444  | 
    have "(f ^ n) \<langle>$\<rangle> a \<notin> (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {..<n}"
 | 
| 
 | 
   445  | 
    proof
  | 
| 
 | 
   446  | 
      assume "(f ^ n) \<langle>$\<rangle> a \<in> (\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {..<n}"
 | 
| 
 | 
   447  | 
      then obtain m where *: "(f ^ m) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a" and "m < n"
  | 
| 
 | 
   448  | 
        by auto
  | 
| 
 | 
   449  | 
      interpret bijection "apply (f ^ m)"
  | 
| 
 | 
   450  | 
        by standard simp
  | 
| 
 | 
   451  | 
      from \<open>m < n\<close> have "n = m + (n - m)"
  | 
| 
 | 
   452  | 
        and nm: "0 < n - m" "n - m \<le> n"
  | 
| 
 | 
   453  | 
        by arith+
  | 
| 
 | 
   454  | 
      with * have "(f ^ m) \<langle>$\<rangle> a = (f ^ (m + (n - m))) \<langle>$\<rangle> a"
  | 
| 
 | 
   455  | 
        by simp
  | 
| 
 | 
   456  | 
      then have "(f ^ m) \<langle>$\<rangle> a = (f ^ m) \<langle>$\<rangle> ((f ^ (n - m)) \<langle>$\<rangle> a)"
  | 
| 
 | 
   457  | 
        by (simp add: power_add apply_times)
  | 
| 
 | 
   458  | 
      then have "(f ^ (n - m)) \<langle>$\<rangle> a = a"
  | 
| 
 | 
   459  | 
        by simp
  | 
| 
 | 
   460  | 
      with \<open>n - m > 0\<close>
  | 
| 
 | 
   461  | 
      have "order f a = card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n - m})"
 | 
| 
 | 
   462  | 
         by (rule order_witness_unfold)
  | 
| 
 | 
   463  | 
      also have "card ((\<lambda>m. (f ^ m) \<langle>$\<rangle> a) ` {0..<n - m}) \<le> card {0..<n - m}"
 | 
| 
 | 
   464  | 
        by (rule card_image_le) simp
  | 
| 
 | 
   465  | 
      finally have "order f a \<le> n - m"
  | 
| 
 | 
   466  | 
        by simp
  | 
| 
 | 
   467  | 
      with prem show False by simp
  | 
| 
 | 
   468  | 
    qed
  | 
| 
 | 
   469  | 
    with hyp show ?case
  | 
| 
 | 
   470  | 
      by (simp add: lessThan_Suc)
  | 
| 
 | 
   471  | 
  qed
  | 
| 
 | 
   472  | 
  then show ?thesis by simp
  | 
| 
 | 
   473  | 
qed
  | 
| 
 | 
   474  | 
  | 
| 
 | 
   475  | 
lemma orbit_unfold_image:
  | 
| 
 | 
   476  | 
  "orbit f a = (\<lambda>n. (f ^ n) \<langle>$\<rangle> a) ` {..<order f a}" (is "_ = ?A")
 | 
| 
 | 
   477  | 
proof (rule sym, rule card_subset_eq)
  | 
| 
 | 
   478  | 
  show "finite (orbit f a)"
  | 
| 
 | 
   479  | 
    by simp
  | 
| 
 | 
   480  | 
  show "?A \<subseteq> orbit f a"
  | 
| 
 | 
   481  | 
    by (auto simp add: orbit_def)
  | 
| 
 | 
   482  | 
  from inj_on_apply_range [of f a]
  | 
| 
 | 
   483  | 
  have "card ?A = order f a"
  | 
| 
 | 
   484  | 
    by (auto simp add: card_image)
  | 
| 
 | 
   485  | 
  then show "card ?A = card (orbit f a)"
  | 
| 
 | 
   486  | 
    by simp
  | 
| 
 | 
   487  | 
qed
  | 
| 
 | 
   488  | 
  | 
| 
 | 
   489  | 
lemma in_orbitE:
  | 
| 
 | 
   490  | 
  assumes "b \<in> orbit f a"
  | 
| 
 | 
   491  | 
  obtains n where "b = (f ^ n) \<langle>$\<rangle> a" and "n < order f a"
  | 
| 
 | 
   492  | 
  using assms unfolding orbit_unfold_image by blast
  | 
| 
 | 
   493  | 
  | 
| 
 | 
   494  | 
lemma apply_power_order [simp]:
  | 
| 
 | 
   495  | 
  "(f ^ order f a) \<langle>$\<rangle> a = a"
  | 
| 
 | 
   496  | 
proof -
  | 
| 
 | 
   497  | 
  have "(f ^ order f a) \<langle>$\<rangle> a \<in> orbit f a"
  | 
| 
 | 
   498  | 
    by simp
  | 
| 
 | 
   499  | 
  then obtain n where
  | 
| 
 | 
   500  | 
    *: "(f ^ order f a) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a"
  | 
| 
 | 
   501  | 
    and "n < order f a"
  | 
| 
 | 
   502  | 
    by (rule in_orbitE)
  | 
| 
 | 
   503  | 
  show ?thesis
  | 
| 
 | 
   504  | 
  proof (cases n)
  | 
| 
 | 
   505  | 
    case 0 with * show ?thesis by simp
  | 
| 
 | 
   506  | 
  next
  | 
| 
 | 
   507  | 
    case (Suc m)
  | 
| 
 | 
   508  | 
    from order_greater_zero [of f a]
  | 
| 
 | 
   509  | 
      have "Suc (order f a - 1) = order f a"
  | 
| 
 | 
   510  | 
      by arith
  | 
| 
 | 
   511  | 
    from Suc \<open>n < order f a\<close>
  | 
| 
 | 
   512  | 
      have "m < order f a"
  | 
| 
 | 
   513  | 
      by simp
  | 
| 
 | 
   514  | 
    with Suc *
  | 
| 
 | 
   515  | 
    have "(inverse f) \<langle>$\<rangle> ((f ^ Suc (order f a - 1)) \<langle>$\<rangle> a) =
  | 
| 
 | 
   516  | 
      (inverse f) \<langle>$\<rangle> ((f ^ Suc m) \<langle>$\<rangle> a)"
  | 
| 
 | 
   517  | 
      by simp
  | 
| 
 | 
   518  | 
    then have "(f ^ (order f a - 1)) \<langle>$\<rangle> a =
  | 
| 
 | 
   519  | 
      (f ^ m) \<langle>$\<rangle> a"
  | 
| 
 | 
   520  | 
      by (simp only: power_Suc apply_times)
  | 
| 
 | 
   521  | 
        (simp add: apply_sequence mult.assoc [symmetric])
  | 
| 
 | 
   522  | 
    with inj_on_apply_range
  | 
| 
 | 
   523  | 
    have "order f a - 1 = m"
  | 
| 
 | 
   524  | 
      by (rule inj_onD)
  | 
| 
 | 
   525  | 
        (simp_all add: \<open>m < order f a\<close>)
  | 
| 
 | 
   526  | 
    with Suc have "n = order f a"
  | 
| 
 | 
   527  | 
      by auto
  | 
| 
 | 
   528  | 
    with \<open>n < order f a\<close>
  | 
| 
 | 
   529  | 
    show ?thesis by simp
  | 
| 
 | 
   530  | 
  qed
  | 
| 
 | 
   531  | 
qed
  | 
| 
 | 
   532  | 
  | 
| 
 | 
   533  | 
lemma apply_power_left_mult_order [simp]:
  | 
| 
 | 
   534  | 
  "(f ^ (n * order f a)) \<langle>$\<rangle> a = a"
  | 
| 
 | 
   535  | 
  by (induct n) (simp_all add: power_add apply_times)
  | 
| 
 | 
   536  | 
  | 
| 
 | 
   537  | 
lemma apply_power_right_mult_order [simp]:
  | 
| 
 | 
   538  | 
  "(f ^ (order f a * n)) \<langle>$\<rangle> a = a"
  | 
| 
 | 
   539  | 
  by (simp add: ac_simps)
  | 
| 
 | 
   540  | 
  | 
| 
 | 
   541  | 
lemma apply_power_mod_order_eq [simp]:
  | 
| 
 | 
   542  | 
  "(f ^ (n mod order f a)) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a"
  | 
| 
 | 
   543  | 
proof -
  | 
| 
 | 
   544  | 
  have "(f ^ n) \<langle>$\<rangle> a = (f ^ (n mod order f a + order f a * (n div order f a))) \<langle>$\<rangle> a"
  | 
| 
 | 
   545  | 
    by simp
  | 
| 
 | 
   546  | 
  also have "\<dots> = (f ^ (n mod order f a) * f ^ (order f a * (n div order f a))) \<langle>$\<rangle> a"
  | 
| 
68406
 | 
   547  | 
    by (simp flip: power_add)
  | 
| 
63375
 | 
   548  | 
  finally show ?thesis
  | 
| 
 | 
   549  | 
    by (simp add: apply_times)
  | 
| 
 | 
   550  | 
qed  
  | 
| 
 | 
   551  | 
  | 
| 
 | 
   552  | 
lemma apply_power_eq_iff:
  | 
| 
 | 
   553  | 
  "(f ^ m) \<langle>$\<rangle> a = (f ^ n) \<langle>$\<rangle> a \<longleftrightarrow> m mod order f a = n mod order f a" (is "?P \<longleftrightarrow> ?Q")
  | 
| 
 | 
   554  | 
proof
  | 
| 
 | 
   555  | 
  assume ?Q
  | 
| 
 | 
   556  | 
  then have "(f ^ (m mod order f a)) \<langle>$\<rangle> a = (f ^ (n mod order f a)) \<langle>$\<rangle> a"
  | 
| 
 | 
   557  | 
    by simp
  | 
| 
 | 
   558  | 
  then show ?P
  | 
| 
 | 
   559  | 
    by simp
  | 
| 
 | 
   560  | 
next
  | 
| 
 | 
   561  | 
  assume ?P
  | 
| 
 | 
   562  | 
  then have "(f ^ (m mod order f a)) \<langle>$\<rangle> a = (f ^ (n mod order f a)) \<langle>$\<rangle> a"
  | 
| 
 | 
   563  | 
    by simp
  | 
| 
 | 
   564  | 
  with inj_on_apply_range
  | 
| 
 | 
   565  | 
  show ?Q
  | 
| 
 | 
   566  | 
    by (rule inj_onD) simp_all
  | 
| 
 | 
   567  | 
qed
  | 
| 
 | 
   568  | 
  | 
| 
 | 
   569  | 
lemma apply_inverse_eq_apply_power_order_minus_one:
  | 
| 
 | 
   570  | 
  "(inverse f) \<langle>$\<rangle> a = (f ^ (order f a - 1)) \<langle>$\<rangle> a"
  | 
| 
 | 
   571  | 
proof (cases "order f a")
  | 
| 
 | 
   572  | 
  case 0 with order_greater_zero [of f a] show ?thesis
  | 
| 
 | 
   573  | 
    by simp
  | 
| 
 | 
   574  | 
next
  | 
| 
 | 
   575  | 
  case (Suc n)
  | 
| 
 | 
   576  | 
  moreover have "(f ^ order f a) \<langle>$\<rangle> a = a"
  | 
| 
 | 
   577  | 
    by simp
  | 
| 
 | 
   578  | 
  then have *: "(inverse f) \<langle>$\<rangle> ((f ^ order f a) \<langle>$\<rangle> a) = (inverse f) \<langle>$\<rangle> a"
  | 
| 
 | 
   579  | 
    by simp
  | 
| 
 | 
   580  | 
  ultimately show ?thesis
  | 
| 
 | 
   581  | 
    by (simp add: apply_sequence mult.assoc [symmetric])
  | 
| 
 | 
   582  | 
qed
  | 
| 
 | 
   583  | 
  | 
| 
 | 
   584  | 
lemma apply_inverse_self_in_orbit [simp]:
  | 
| 
 | 
   585  | 
  "(inverse f) \<langle>$\<rangle> a \<in> orbit f a"
  | 
| 
 | 
   586  | 
  using apply_inverse_eq_apply_power_order_minus_one [symmetric]
  | 
| 
 | 
   587  | 
  by (rule in_orbitI)
  | 
| 
 | 
   588  | 
  | 
| 
 | 
   589  | 
lemma apply_inverse_power_eq:
  | 
| 
 | 
   590  | 
  "(inverse (f ^ n)) \<langle>$\<rangle> a = (f ^ (order f a - n mod order f a)) \<langle>$\<rangle> a"
  | 
| 
 | 
   591  | 
proof (induct n)
  | 
| 
 | 
   592  | 
  case 0 then show ?case by simp
  | 
| 
 | 
   593  | 
next
  | 
| 
 | 
   594  | 
  case (Suc n)
  | 
| 
 | 
   595  | 
  define m where "m = order f a - n mod order f a - 1"
  | 
| 
 | 
   596  | 
  moreover have "order f a - n mod order f a > 0"
  | 
| 
 | 
   597  | 
    by simp
  | 
| 
63539
 | 
   598  | 
  ultimately have *: "order f a - n mod order f a = Suc m"
  | 
| 
63375
 | 
   599  | 
    by arith
  | 
| 
63539
 | 
   600  | 
  moreover from * have m2: "order f a - Suc n mod order f a = (if m = 0 then order f a else m)"
  | 
| 
63375
 | 
   601  | 
    by (auto simp add: mod_Suc)
  | 
| 
 | 
   602  | 
  ultimately show ?case
  | 
| 
 | 
   603  | 
    using Suc
  | 
| 
 | 
   604  | 
      by (simp_all add: apply_times power_Suc2 [of _ n] power_Suc [of _ m] del: power_Suc)
  | 
| 
 | 
   605  | 
        (simp add: apply_sequence mult.assoc [symmetric])
  | 
| 
 | 
   606  | 
qed
  | 
| 
 | 
   607  | 
  | 
| 
 | 
   608  | 
lemma apply_power_eq_self_iff:
  | 
| 
 | 
   609  | 
  "(f ^ n) \<langle>$\<rangle> a = a \<longleftrightarrow> order f a dvd n"
  | 
| 
 | 
   610  | 
  using apply_power_eq_iff [of f n a 0]
  | 
| 
 | 
   611  | 
    by (simp add: mod_eq_0_iff_dvd)
  | 
| 
 | 
   612  | 
  
  | 
| 
 | 
   613  | 
lemma orbit_equiv:
  | 
| 
 | 
   614  | 
  assumes "b \<in> orbit f a"
  | 
| 
 | 
   615  | 
  shows "orbit f b = orbit f a" (is "?B = ?A")
  | 
| 
 | 
   616  | 
proof
  | 
| 
 | 
   617  | 
  from assms obtain n where "n < order f a" and b: "b = (f ^ n) \<langle>$\<rangle> a"
  | 
| 
 | 
   618  | 
    by (rule in_orbitE)
  | 
| 
 | 
   619  | 
  then show "?B \<subseteq> ?A"
  | 
| 
 | 
   620  | 
    by (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI elim!: in_orbitE)
  | 
| 
 | 
   621  | 
  from b have "(inverse (f ^ n)) \<langle>$\<rangle> b = (inverse (f ^ n)) \<langle>$\<rangle> ((f ^ n) \<langle>$\<rangle> a)"
  | 
| 
 | 
   622  | 
    by simp
  | 
| 
 | 
   623  | 
  then have a: "a = (inverse (f ^ n)) \<langle>$\<rangle> b"
  | 
| 
 | 
   624  | 
    by (simp add: apply_sequence)
  | 
| 
 | 
   625  | 
  then show "?A \<subseteq> ?B"
  | 
| 
 | 
   626  | 
    apply (auto simp add: apply_sequence power_add [symmetric] intro: in_orbitI elim!: in_orbitE)
  | 
| 
 | 
   627  | 
    unfolding apply_times comp_def apply_inverse_power_eq
  | 
| 
 | 
   628  | 
    unfolding apply_sequence power_add [symmetric]
  | 
| 
 | 
   629  | 
    apply (rule in_orbitI) apply rule
  | 
| 
 | 
   630  | 
    done
  | 
| 
 | 
   631  | 
qed
  | 
| 
 | 
   632  | 
  | 
| 
 | 
   633  | 
lemma orbit_apply [simp]:
  | 
| 
 | 
   634  | 
  "orbit f (f \<langle>$\<rangle> a) = orbit f a"
  | 
| 
 | 
   635  | 
  by (rule orbit_equiv) simp
  | 
| 
 | 
   636  | 
  
  | 
| 
 | 
   637  | 
lemma order_apply [simp]:
  | 
| 
 | 
   638  | 
  "order f (f \<langle>$\<rangle> a) = order f a"
  | 
| 
 | 
   639  | 
  by (simp only: order_def comp_def orbit_apply)
  | 
| 
 | 
   640  | 
  | 
| 
 | 
   641  | 
lemma orbit_apply_inverse [simp]:
  | 
| 
 | 
   642  | 
  "orbit f (inverse f \<langle>$\<rangle> a) = orbit f a"
  | 
| 
 | 
   643  | 
  by (rule orbit_equiv) simp
  | 
| 
 | 
   644  | 
  | 
| 
 | 
   645  | 
lemma order_apply_inverse [simp]:
  | 
| 
 | 
   646  | 
  "order f (inverse f \<langle>$\<rangle> a) = order f a"
  | 
| 
 | 
   647  | 
  by (simp only: order_def comp_def orbit_apply_inverse)
  | 
| 
 | 
   648  | 
  | 
| 
 | 
   649  | 
lemma orbit_apply_power [simp]:
  | 
| 
 | 
   650  | 
  "orbit f ((f ^ n) \<langle>$\<rangle> a) = orbit f a"
  | 
| 
 | 
   651  | 
  by (rule orbit_equiv) simp
  | 
| 
 | 
   652  | 
  | 
| 
 | 
   653  | 
lemma order_apply_power [simp]:
  | 
| 
 | 
   654  | 
  "order f ((f ^ n) \<langle>$\<rangle> a) = order f a"
  | 
| 
 | 
   655  | 
  by (simp only: order_def comp_def orbit_apply_power)
  | 
| 
 | 
   656  | 
  | 
| 
 | 
   657  | 
lemma orbit_inverse [simp]:
  | 
| 
 | 
   658  | 
  "orbit (inverse f) = orbit f"
  | 
| 
 | 
   659  | 
proof (rule ext, rule set_eqI, rule)
  | 
| 
 | 
   660  | 
  fix b a
  | 
| 
 | 
   661  | 
  assume "b \<in> orbit f a"
  | 
| 
 | 
   662  | 
  then obtain n where b: "b = (f ^ n) \<langle>$\<rangle> a" "n < order f a"
  | 
| 
 | 
   663  | 
    by (rule in_orbitE)
  | 
| 
 | 
   664  | 
  then have "b = apply (inverse (inverse f) ^ n) a"
  | 
| 
 | 
   665  | 
    by simp
  | 
| 
 | 
   666  | 
  then have "b = apply (inverse (inverse f ^ n)) a"
  | 
| 
 | 
   667  | 
    by (simp add: perm_power_inverse)
  | 
| 
 | 
   668  | 
  then have "b = apply (inverse f ^ (n * (order (inverse f ^ n) a - 1))) a"
  | 
| 
 | 
   669  | 
    by (simp add: apply_inverse_eq_apply_power_order_minus_one power_mult)
  | 
| 
 | 
   670  | 
  then show "b \<in> orbit (inverse f) a"
  | 
| 
 | 
   671  | 
    by simp
  | 
| 
 | 
   672  | 
next
  | 
| 
 | 
   673  | 
  fix b a
  | 
| 
 | 
   674  | 
  assume "b \<in> orbit (inverse f) a"
  | 
| 
 | 
   675  | 
  then show "b \<in> orbit f a"
  | 
| 
 | 
   676  | 
    by (rule in_orbitE)
  | 
| 
 | 
   677  | 
      (simp add: apply_inverse_eq_apply_power_order_minus_one
  | 
| 
 | 
   678  | 
      perm_power_inverse power_mult [symmetric])
  | 
| 
 | 
   679  | 
qed
  | 
| 
 | 
   680  | 
  | 
| 
 | 
   681  | 
lemma order_inverse [simp]:
  | 
| 
 | 
   682  | 
  "order (inverse f) = order f"
  | 
| 
 | 
   683  | 
  by (simp add: order_def)
  | 
| 
 | 
   684  | 
  | 
| 
 | 
   685  | 
lemma orbit_disjoint:
  | 
| 
 | 
   686  | 
  assumes "orbit f a \<noteq> orbit f b"
  | 
| 
 | 
   687  | 
  shows "orbit f a \<inter> orbit f b = {}"
 | 
| 
 | 
   688  | 
proof (rule ccontr)
  | 
| 
 | 
   689  | 
  assume "orbit f a \<inter> orbit f b \<noteq> {}"
 | 
| 
 | 
   690  | 
  then obtain c where "c \<in> orbit f a \<inter> orbit f b"
  | 
| 
 | 
   691  | 
    by blast
  | 
| 
 | 
   692  | 
  then have "c \<in> orbit f a" and "c \<in> orbit f b"
  | 
| 
 | 
   693  | 
    by auto
  | 
| 
 | 
   694  | 
  then obtain m n where "c = (f ^ m) \<langle>$\<rangle> a"
  | 
| 
 | 
   695  | 
    and "c = apply (f ^ n) b" by (blast elim!: in_orbitE)
  | 
| 
 | 
   696  | 
  then have "(f ^ m) \<langle>$\<rangle> a = apply (f ^ n) b"
  | 
| 
 | 
   697  | 
    by simp
  | 
| 
 | 
   698  | 
  then have "apply (inverse f ^ m) ((f ^ m) \<langle>$\<rangle> a) =
  | 
| 
 | 
   699  | 
    apply (inverse f ^ m) (apply (f ^ n) b)"
  | 
| 
 | 
   700  | 
    by simp
  | 
| 
 | 
   701  | 
  then have *: "apply (inverse f ^ m * f ^ n) b = a"
  | 
| 
 | 
   702  | 
    by (simp add: apply_sequence perm_power_inverse)
  | 
| 
 | 
   703  | 
  have "a \<in> orbit f b"
  | 
| 
 | 
   704  | 
  proof (cases n m rule: linorder_cases)
  | 
| 
 | 
   705  | 
    case equal with * show ?thesis
  | 
| 
 | 
   706  | 
      by (simp add: perm_power_inverse)
  | 
| 
 | 
   707  | 
  next
  | 
| 
 | 
   708  | 
    case less
  | 
| 
 | 
   709  | 
    moreover define q where "q = m - n"
  | 
| 
 | 
   710  | 
    ultimately have "m = q + n" by arith
  | 
| 
 | 
   711  | 
    with * have "apply (inverse f ^ q) b = a"
  | 
| 
 | 
   712  | 
      by (simp add: power_add mult.assoc perm_power_inverse)
  | 
| 
 | 
   713  | 
    then have "a \<in> orbit (inverse f) b"
  | 
| 
 | 
   714  | 
      by (rule in_orbitI)
  | 
| 
 | 
   715  | 
    then show ?thesis
  | 
| 
 | 
   716  | 
      by simp
  | 
| 
 | 
   717  | 
  next
  | 
| 
 | 
   718  | 
    case greater
  | 
| 
 | 
   719  | 
    moreover define q where "q = n - m"
  | 
| 
 | 
   720  | 
    ultimately have "n = m + q" by arith
  | 
| 
 | 
   721  | 
    with * have "apply (f ^ q) b = a"
  | 
| 
 | 
   722  | 
      by (simp add: power_add mult.assoc [symmetric] perm_power_inverse)
  | 
| 
 | 
   723  | 
    then show ?thesis
  | 
| 
 | 
   724  | 
      by (rule in_orbitI)
  | 
| 
 | 
   725  | 
  qed
  | 
| 
 | 
   726  | 
  with assms show False
  | 
| 
 | 
   727  | 
    by (auto dest: orbit_equiv)
  | 
| 
 | 
   728  | 
qed
  | 
| 
 | 
   729  | 
  | 
| 
 | 
   730  | 
  | 
| 
 | 
   731  | 
subsection \<open>Swaps\<close>
  | 
| 
 | 
   732  | 
  | 
| 
 | 
   733  | 
lift_definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> 'a perm"  ("\<langle>_\<leftrightarrow>_\<rangle>")
 | 
| 
 | 
   734  | 
  is "\<lambda>a b. Fun.swap a b id"
  | 
| 
 | 
   735  | 
proof
  | 
| 
 | 
   736  | 
  fix a b :: 'a
  | 
| 
 | 
   737  | 
  have "{c. Fun.swap a b id c \<noteq> c} \<subseteq> {a, b}"
 | 
| 
 | 
   738  | 
    by (auto simp add: Fun.swap_def)
  | 
| 
 | 
   739  | 
  then show "finite {c. Fun.swap a b id c \<noteq> c}"
 | 
| 
 | 
   740  | 
    by (rule finite_subset) simp
  | 
| 
 | 
   741  | 
qed simp
  | 
| 
 | 
   742  | 
  | 
| 
 | 
   743  | 
lemma apply_swap_simp [simp]:
  | 
| 
 | 
   744  | 
  "\<langle>a\<leftrightarrow>b\<rangle> \<langle>$\<rangle> a = b"
  | 
| 
 | 
   745  | 
  "\<langle>a\<leftrightarrow>b\<rangle> \<langle>$\<rangle> b = a"
  | 
| 
 | 
   746  | 
  by (transfer; simp)+
  | 
| 
 | 
   747  | 
  | 
| 
 | 
   748  | 
lemma apply_swap_same [simp]:
  | 
| 
 | 
   749  | 
  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> \<langle>a\<leftrightarrow>b\<rangle> \<langle>$\<rangle> c = c"
  | 
| 
 | 
   750  | 
  by transfer simp
  | 
| 
 | 
   751  | 
  | 
| 
 | 
   752  | 
lemma apply_swap_eq_iff [simp]:
  | 
| 
 | 
   753  | 
  "\<langle>a\<leftrightarrow>b\<rangle> \<langle>$\<rangle> c = a \<longleftrightarrow> c = b"
  | 
| 
 | 
   754  | 
  "\<langle>a\<leftrightarrow>b\<rangle> \<langle>$\<rangle> c = b \<longleftrightarrow> c = a"
  | 
| 
 | 
   755  | 
  by (transfer; auto simp add: Fun.swap_def)+
  | 
| 
 | 
   756  | 
  | 
| 
 | 
   757  | 
lemma swap_1 [simp]:
  | 
| 
 | 
   758  | 
  "\<langle>a\<leftrightarrow>a\<rangle> = 1"
  | 
| 
 | 
   759  | 
  by transfer simp
  | 
| 
 | 
   760  | 
  | 
| 
 | 
   761  | 
lemma swap_sym:
  | 
| 
 | 
   762  | 
  "\<langle>b\<leftrightarrow>a\<rangle> = \<langle>a\<leftrightarrow>b\<rangle>"
  | 
| 
 | 
   763  | 
  by (transfer; auto simp add: Fun.swap_def)+
  | 
| 
 | 
   764  | 
  | 
| 
 | 
   765  | 
lemma swap_self [simp]:
  | 
| 
 | 
   766  | 
  "\<langle>a\<leftrightarrow>b\<rangle> * \<langle>a\<leftrightarrow>b\<rangle> = 1"
  | 
| 
 | 
   767  | 
  by transfer (simp add: Fun.swap_def fun_eq_iff)
  | 
| 
 | 
   768  | 
  | 
| 
 | 
   769  | 
lemma affected_swap:
  | 
| 
 | 
   770  | 
  "a \<noteq> b \<Longrightarrow> affected \<langle>a\<leftrightarrow>b\<rangle> = {a, b}"
 | 
| 
 | 
   771  | 
  by transfer (auto simp add: Fun.swap_def)
  | 
| 
 | 
   772  | 
  | 
| 
 | 
   773  | 
lemma inverse_swap [simp]:
  | 
| 
 | 
   774  | 
  "inverse \<langle>a\<leftrightarrow>b\<rangle> = \<langle>a\<leftrightarrow>b\<rangle>"
  | 
| 
 | 
   775  | 
  by transfer (auto intro: inv_equality simp: Fun.swap_def)
  | 
| 
 | 
   776  | 
  | 
| 
 | 
   777  | 
  | 
| 
 | 
   778  | 
subsection \<open>Permutations specified by cycles\<close>
  | 
| 
 | 
   779  | 
  | 
| 
 | 
   780  | 
fun cycle :: "'a list \<Rightarrow> 'a perm"  ("\<langle>_\<rangle>")
 | 
| 
 | 
   781  | 
where
  | 
| 
 | 
   782  | 
  "\<langle>[]\<rangle> = 1"
  | 
| 
 | 
   783  | 
| "\<langle>[a]\<rangle> = 1"
  | 
| 
 | 
   784  | 
| "\<langle>a # b # as\<rangle> = \<langle>a # as\<rangle> * \<langle>a\<leftrightarrow>b\<rangle>"
  | 
| 
 | 
   785  | 
  | 
| 
 | 
   786  | 
text \<open>
  | 
| 
 | 
   787  | 
  We do not continue and restrict ourselves to syntax from here.
  | 
| 
 | 
   788  | 
  See also introductory note.
  | 
| 
 | 
   789  | 
\<close>
  | 
| 
 | 
   790  | 
  | 
| 
 | 
   791  | 
  | 
| 
 | 
   792  | 
subsection \<open>Syntax\<close>
  | 
| 
 | 
   793  | 
  | 
| 
 | 
   794  | 
bundle no_permutation_syntax
  | 
| 
 | 
   795  | 
begin
  | 
| 
 | 
   796  | 
  no_notation swap    ("\<langle>_\<leftrightarrow>_\<rangle>")
 | 
| 
 | 
   797  | 
  no_notation cycle   ("\<langle>_\<rangle>")
 | 
| 
 | 
   798  | 
  no_notation "apply" (infixl "\<langle>$\<rangle>" 999)
  | 
| 
 | 
   799  | 
end
  | 
| 
 | 
   800  | 
  | 
| 
 | 
   801  | 
bundle permutation_syntax
  | 
| 
 | 
   802  | 
begin
  | 
| 
 | 
   803  | 
  notation swap       ("\<langle>_\<leftrightarrow>_\<rangle>")
 | 
| 
 | 
   804  | 
  notation cycle      ("\<langle>_\<rangle>")
 | 
| 
 | 
   805  | 
  notation "apply"    (infixl "\<langle>$\<rangle>" 999)
  | 
| 
 | 
   806  | 
end
  | 
| 
 | 
   807  | 
  | 
| 
 | 
   808  | 
unbundle no_permutation_syntax
  | 
| 
 | 
   809  | 
  | 
| 
 | 
   810  | 
end
  |