| author | wenzelm | 
| Mon, 23 Jun 2008 15:26:53 +0200 | |
| changeset 27323 | 385c0ce33173 | 
| parent 26811 | 067cceb36e26 | 
| child 32139 | e271a64f03ff | 
| permissions | -rw-r--r-- | 
| 13020 | 1 | |
| 2 | header {* \section{The Proof System} *}
 | |
| 3 | ||
| 16417 | 4 | theory OG_Hoare imports OG_Tran begin | 
| 13020 | 5 | |
| 6 | consts assertions :: "'a ann_com \<Rightarrow> ('a assn) set"
 | |
| 7 | primrec | |
| 8 |   "assertions (AnnBasic r f) = {r}"
 | |
| 9 | "assertions (AnnSeq c1 c2) = assertions c1 \<union> assertions c2" | |
| 10 |   "assertions (AnnCond1 r b c1 c2) = {r} \<union> assertions c1 \<union> assertions c2"
 | |
| 11 |   "assertions (AnnCond2 r b c) = {r} \<union> assertions c"
 | |
| 12 |   "assertions (AnnWhile r b i c) = {r, i} \<union> assertions c"
 | |
| 13 |   "assertions (AnnAwait r b c) = {r}" 
 | |
| 14 | ||
| 15 | consts atomics :: "'a ann_com \<Rightarrow> ('a assn \<times> 'a com) set"       
 | |
| 16 | primrec | |
| 17 |   "atomics (AnnBasic r f) = {(r, Basic f)}"
 | |
| 18 | "atomics (AnnSeq c1 c2) = atomics c1 \<union> atomics c2" | |
| 19 | "atomics (AnnCond1 r b c1 c2) = atomics c1 \<union> atomics c2" | |
| 20 | "atomics (AnnCond2 r b c) = atomics c" | |
| 21 | "atomics (AnnWhile r b i c) = atomics c" | |
| 22 |   "atomics (AnnAwait r b c) = {(r \<inter> b, c)}"
 | |
| 23 | ||
| 24 | consts com :: "'a ann_triple_op \<Rightarrow> 'a ann_com_op" | |
| 25 | primrec "com (c, q) = c" | |
| 26 | ||
| 27 | consts post :: "'a ann_triple_op \<Rightarrow> 'a assn" | |
| 28 | primrec "post (c, q) = q" | |
| 29 | ||
| 30 | constdefs  interfree_aux :: "('a ann_com_op \<times> 'a assn \<times> 'a ann_com_op) \<Rightarrow> bool"
 | |
| 31 | "interfree_aux \<equiv> \<lambda>(co, q, co'). co'= None \<or> | |
| 32 | (\<forall>(r,a) \<in> atomics (the co'). \<parallel>= (q \<inter> r) a q \<and> | |
| 33 | (co = None \<or> (\<forall>p \<in> assertions (the co). \<parallel>= (p \<inter> r) a p)))" | |
| 34 | ||
| 35 | constdefs interfree :: "(('a ann_triple_op) list) \<Rightarrow> bool" 
 | |
| 36 | "interfree Ts \<equiv> \<forall>i j. i < length Ts \<and> j < length Ts \<and> i \<noteq> j \<longrightarrow> | |
| 37 | interfree_aux (com (Ts!i), post (Ts!i), com (Ts!j)) " | |
| 38 | ||
| 23746 | 39 | inductive | 
| 40 |   oghoare :: "'a assn \<Rightarrow> 'a com \<Rightarrow> 'a assn \<Rightarrow> bool"  ("(3\<parallel>- _//_//_)" [90,55,90] 50)
 | |
| 41 |   and ann_hoare :: "'a ann_com \<Rightarrow> 'a assn \<Rightarrow> bool"  ("(2\<turnstile> _// _)" [60,90] 45)
 | |
| 42 | where | |
| 13020 | 43 |   AnnBasic: "r \<subseteq> {s. f s \<in> q} \<Longrightarrow> \<turnstile> (AnnBasic r f) q"
 | 
| 44 | ||
| 23746 | 45 | | AnnSeq: "\<lbrakk> \<turnstile> c0 pre c1; \<turnstile> c1 q \<rbrakk> \<Longrightarrow> \<turnstile> (AnnSeq c0 c1) q" | 
| 13020 | 46 | |
| 23746 | 47 | | AnnCond1: "\<lbrakk> r \<inter> b \<subseteq> pre c1; \<turnstile> c1 q; r \<inter> -b \<subseteq> pre c2; \<turnstile> c2 q\<rbrakk> | 
| 13020 | 48 | \<Longrightarrow> \<turnstile> (AnnCond1 r b c1 c2) q" | 
| 23746 | 49 | | AnnCond2: "\<lbrakk> r \<inter> b \<subseteq> pre c; \<turnstile> c q; r \<inter> -b \<subseteq> q \<rbrakk> \<Longrightarrow> \<turnstile> (AnnCond2 r b c) q" | 
| 13020 | 50 | |
| 23746 | 51 | | AnnWhile: "\<lbrakk> r \<subseteq> i; i \<inter> b \<subseteq> pre c; \<turnstile> c i; i \<inter> -b \<subseteq> q \<rbrakk> | 
| 13020 | 52 | \<Longrightarrow> \<turnstile> (AnnWhile r b i c) q" | 
| 53 | ||
| 23746 | 54 | | AnnAwait: "\<lbrakk> atom_com c; \<parallel>- (r \<inter> b) c q \<rbrakk> \<Longrightarrow> \<turnstile> (AnnAwait r b c) q" | 
| 13020 | 55 | |
| 23746 | 56 | | AnnConseq: "\<lbrakk>\<turnstile> c q; q \<subseteq> q' \<rbrakk> \<Longrightarrow> \<turnstile> c q'" | 
| 13020 | 57 | |
| 58 | ||
| 23746 | 59 | | Parallel: "\<lbrakk> \<forall>i<length Ts. \<exists>c q. Ts!i = (Some c, q) \<and> \<turnstile> c q; interfree Ts \<rbrakk> | 
| 13020 | 60 | 	   \<Longrightarrow> \<parallel>- (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts!i)))) 
 | 
| 61 | Parallel Ts | |
| 62 |                   (\<Inter>i\<in>{i. i<length Ts}. post(Ts!i))"
 | |
| 63 | ||
| 23746 | 64 | | Basic:   "\<parallel>- {s. f s \<in>q} (Basic f) q"
 | 
| 13020 | 65 | |
| 23746 | 66 | | Seq: "\<lbrakk> \<parallel>- p c1 r; \<parallel>- r c2 q \<rbrakk> \<Longrightarrow> \<parallel>- p (Seq c1 c2) q " | 
| 13020 | 67 | |
| 23746 | 68 | | Cond: "\<lbrakk> \<parallel>- (p \<inter> b) c1 q; \<parallel>- (p \<inter> -b) c2 q \<rbrakk> \<Longrightarrow> \<parallel>- p (Cond b c1 c2) q" | 
| 13020 | 69 | |
| 23746 | 70 | | While: "\<lbrakk> \<parallel>- (p \<inter> b) c p \<rbrakk> \<Longrightarrow> \<parallel>- p (While b i c) (p \<inter> -b)" | 
| 13020 | 71 | |
| 23746 | 72 | | Conseq: "\<lbrakk> p' \<subseteq> p; \<parallel>- p c q ; q \<subseteq> q' \<rbrakk> \<Longrightarrow> \<parallel>- p' c q'" | 
| 13020 | 73 | |
| 74 | section {* Soundness *}
 | |
| 75 | (* In the version Isabelle-10-Sep-1999: HOL: The THEN and ELSE | |
| 76 | parts of conditional expressions (if P then x else y) are no longer | |
| 77 | simplified. (This allows the simplifier to unfold recursive | |
| 78 | functional programs.) To restore the old behaviour, we declare | |
| 79 | @{text "lemmas [cong del] = if_weak_cong"}. *)
 | |
| 80 | ||
| 81 | lemmas [cong del] = if_weak_cong | |
| 82 | ||
| 83 | lemmas ann_hoare_induct = oghoare_ann_hoare.induct [THEN conjunct2] | |
| 84 | lemmas oghoare_induct = oghoare_ann_hoare.induct [THEN conjunct1] | |
| 85 | ||
| 86 | lemmas AnnBasic = oghoare_ann_hoare.AnnBasic | |
| 87 | lemmas AnnSeq = oghoare_ann_hoare.AnnSeq | |
| 88 | lemmas AnnCond1 = oghoare_ann_hoare.AnnCond1 | |
| 89 | lemmas AnnCond2 = oghoare_ann_hoare.AnnCond2 | |
| 90 | lemmas AnnWhile = oghoare_ann_hoare.AnnWhile | |
| 91 | lemmas AnnAwait = oghoare_ann_hoare.AnnAwait | |
| 92 | lemmas AnnConseq = oghoare_ann_hoare.AnnConseq | |
| 93 | ||
| 94 | lemmas Parallel = oghoare_ann_hoare.Parallel | |
| 95 | lemmas Basic = oghoare_ann_hoare.Basic | |
| 96 | lemmas Seq = oghoare_ann_hoare.Seq | |
| 97 | lemmas Cond = oghoare_ann_hoare.Cond | |
| 98 | lemmas While = oghoare_ann_hoare.While | |
| 99 | lemmas Conseq = oghoare_ann_hoare.Conseq | |
| 100 | ||
| 101 | subsection {* Soundness of the System for Atomic Programs *}
 | |
| 102 | ||
| 103 | lemma Basic_ntran [rule_format]: | |
| 104 | "(Basic f, s) -Pn\<rightarrow> (Parallel Ts, t) \<longrightarrow> All_None Ts \<longrightarrow> t = f s" | |
| 105 | apply(induct "n") | |
| 106 | apply(simp (no_asm)) | |
| 107 | apply(fast dest: rel_pow_Suc_D2 Parallel_empty_lemma elim: transition_cases) | |
| 108 | done | |
| 109 | ||
| 110 | lemma SEM_fwhile: "SEM S (p \<inter> b) \<subseteq> p \<Longrightarrow> SEM (fwhile b S k) p \<subseteq> (p \<inter> -b)" | |
| 111 | apply (induct "k") | |
| 112 | apply(simp (no_asm) add: L3_5v_lemma3) | |
| 113 | apply(simp (no_asm) add: L3_5iv L3_5ii Parallel_empty) | |
| 15102 | 114 | apply(rule conjI) | 
| 115 | apply (blast dest: L3_5i) | |
| 13020 | 116 | apply(simp add: SEM_def sem_def id_def) | 
| 15102 | 117 | apply (blast dest: Basic_ntran rtrancl_imp_UN_rel_pow) | 
| 13020 | 118 | done | 
| 119 | ||
| 15102 | 120 | lemma atom_hoare_sound [rule_format]: | 
| 13020 | 121 | " \<parallel>- p c q \<longrightarrow> atom_com(c) \<longrightarrow> \<parallel>= p c q" | 
| 122 | apply (unfold com_validity_def) | |
| 123 | apply(rule oghoare_induct) | |
| 124 | apply simp_all | |
| 125 | --{*Basic*}
 | |
| 126 | apply(simp add: SEM_def sem_def) | |
| 127 | apply(fast dest: rtrancl_imp_UN_rel_pow Basic_ntran) | |
| 128 | --{* Seq *}
 | |
| 129 | apply(rule impI) | |
| 130 | apply(rule subset_trans) | |
| 131 | prefer 2 apply simp | |
| 132 | apply(simp add: L3_5ii L3_5i) | |
| 133 | --{* Cond *}
 | |
| 134 | apply(simp add: L3_5iv) | |
| 135 | --{* While *}
 | |
| 15102 | 136 | apply (force simp add: L3_5v dest: SEM_fwhile) | 
| 13020 | 137 | --{* Conseq *}
 | 
| 15102 | 138 | apply(force simp add: SEM_def sem_def) | 
| 13020 | 139 | done | 
| 140 | ||
| 141 | subsection {* Soundness of the System for Component Programs *}
 | |
| 142 | ||
| 143 | inductive_cases ann_transition_cases: | |
| 23746 | 144 | "(None,s) -1\<rightarrow> (c', s')" | 
| 145 | "(Some (AnnBasic r f),s) -1\<rightarrow> (c', s')" | |
| 146 | "(Some (AnnSeq c1 c2), s) -1\<rightarrow> (c', s')" | |
| 147 | "(Some (AnnCond1 r b c1 c2), s) -1\<rightarrow> (c', s')" | |
| 148 | "(Some (AnnCond2 r b c), s) -1\<rightarrow> (c', s')" | |
| 149 | "(Some (AnnWhile r b I c), s) -1\<rightarrow> (c', s')" | |
| 150 | "(Some (AnnAwait r b c),s) -1\<rightarrow> (c', s')" | |
| 13020 | 151 | |
| 152 | text {* Strong Soundness for Component Programs:*}
 | |
| 153 | ||
| 26811 
067cceb36e26
Rephrased proof of ann_hoare_case_analysis, to avoid problems with HO unification
 berghofe parents: 
23746diff
changeset | 154 | lemma ann_hoare_case_analysis [rule_format]: | 
| 
067cceb36e26
Rephrased proof of ann_hoare_case_analysis, to avoid problems with HO unification
 berghofe parents: 
23746diff
changeset | 155 | defines I: "I \<equiv> \<lambda>C q'. | 
| 13020 | 156 |   ((\<forall>r f. C = AnnBasic r f \<longrightarrow> (\<exists>q. r \<subseteq> {s. f s \<in> q} \<and> q \<subseteq> q')) \<and>  
 | 
| 157 | (\<forall>c0 c1. C = AnnSeq c0 c1 \<longrightarrow> (\<exists>q. q \<subseteq> q' \<and> \<turnstile> c0 pre c1 \<and> \<turnstile> c1 q)) \<and> | |
| 158 | (\<forall>r b c1 c2. C = AnnCond1 r b c1 c2 \<longrightarrow> (\<exists>q. q \<subseteq> q' \<and> | |
| 159 | r \<inter> b \<subseteq> pre c1 \<and> \<turnstile> c1 q \<and> r \<inter> -b \<subseteq> pre c2 \<and> \<turnstile> c2 q)) \<and> | |
| 160 | (\<forall>r b c. C = AnnCond2 r b c \<longrightarrow> | |
| 161 | (\<exists>q. q \<subseteq> q' \<and> r \<inter> b \<subseteq> pre c \<and> \<turnstile> c q \<and> r \<inter> -b \<subseteq> q)) \<and> | |
| 162 | (\<forall>r i b c. C = AnnWhile r b i c \<longrightarrow> | |
| 163 | (\<exists>q. q \<subseteq> q' \<and> r \<subseteq> i \<and> i \<inter> b \<subseteq> pre c \<and> \<turnstile> c i \<and> i \<inter> -b \<subseteq> q)) \<and> | |
| 164 | (\<forall>r b c. C = AnnAwait r b c \<longrightarrow> (\<exists>q. q \<subseteq> q' \<and> \<parallel>- (r \<inter> b) c q)))" | |
| 26811 
067cceb36e26
Rephrased proof of ann_hoare_case_analysis, to avoid problems with HO unification
 berghofe parents: 
23746diff
changeset | 165 | shows "\<turnstile> C q' \<longrightarrow> I C q'" | 
| 13020 | 166 | apply(rule ann_hoare_induct) | 
| 26811 
067cceb36e26
Rephrased proof of ann_hoare_case_analysis, to avoid problems with HO unification
 berghofe parents: 
23746diff
changeset | 167 | apply (simp_all add: I) | 
| 13020 | 168 | apply(rule_tac x=q in exI,simp)+ | 
| 169 | apply(rule conjI,clarify,simp,clarify,rule_tac x=qa in exI,fast)+ | |
| 170 | apply(clarify,simp,clarify,rule_tac x=qa in exI,fast) | |
| 171 | done | |
| 172 | ||
| 23746 | 173 | lemma Help: "(transition \<inter> {(x,y). True}) = (transition)"
 | 
| 13020 | 174 | apply force | 
| 175 | done | |
| 176 | ||
| 177 | lemma Strong_Soundness_aux_aux [rule_format]: | |
| 178 | "(co, s) -1\<rightarrow> (co', t) \<longrightarrow> (\<forall>c. co = Some c \<longrightarrow> s\<in> pre c \<longrightarrow> | |
| 179 | (\<forall>q. \<turnstile> c q \<longrightarrow> (if co' = None then t\<in>q else t \<in> pre(the co') \<and> \<turnstile> (the co') q )))" | |
| 180 | apply(rule ann_transition_transition.induct [THEN conjunct1]) | |
| 181 | apply simp_all | |
| 182 | --{* Basic *}
 | |
| 183 | apply clarify | |
| 184 | apply(frule ann_hoare_case_analysis) | |
| 185 | apply force | |
| 186 | --{* Seq *}
 | |
| 187 | apply clarify | |
| 188 | apply(frule ann_hoare_case_analysis,simp) | |
| 189 | apply(fast intro: AnnConseq) | |
| 190 | apply clarify | |
| 191 | apply(frule ann_hoare_case_analysis,simp) | |
| 192 | apply clarify | |
| 193 | apply(rule conjI) | |
| 194 | apply force | |
| 195 | apply(rule AnnSeq,simp) | |
| 196 | apply(fast intro: AnnConseq) | |
| 197 | --{* Cond1 *}
 | |
| 198 | apply clarify | |
| 199 | apply(frule ann_hoare_case_analysis,simp) | |
| 200 | apply(fast intro: AnnConseq) | |
| 201 | apply clarify | |
| 202 | apply(frule ann_hoare_case_analysis,simp) | |
| 203 | apply(fast intro: AnnConseq) | |
| 204 | --{* Cond2 *}
 | |
| 205 | apply clarify | |
| 206 | apply(frule ann_hoare_case_analysis,simp) | |
| 207 | apply(fast intro: AnnConseq) | |
| 208 | apply clarify | |
| 209 | apply(frule ann_hoare_case_analysis,simp) | |
| 210 | apply(fast intro: AnnConseq) | |
| 211 | --{* While *}
 | |
| 212 | apply clarify | |
| 213 | apply(frule ann_hoare_case_analysis,simp) | |
| 214 | apply force | |
| 215 | apply clarify | |
| 216 | apply(frule ann_hoare_case_analysis,simp) | |
| 217 | apply auto | |
| 218 | apply(rule AnnSeq) | |
| 219 | apply simp | |
| 220 | apply(rule AnnWhile) | |
| 221 | apply simp_all | |
| 222 | --{* Await *}
 | |
| 223 | apply(frule ann_hoare_case_analysis,simp) | |
| 224 | apply clarify | |
| 225 | apply(drule atom_hoare_sound) | |
| 226 | apply simp | |
| 227 | apply(simp add: com_validity_def SEM_def sem_def) | |
| 228 | apply(simp add: Help All_None_def) | |
| 229 | apply force | |
| 230 | done | |
| 231 | ||
| 232 | lemma Strong_Soundness_aux: "\<lbrakk> (Some c, s) -*\<rightarrow> (co, t); s \<in> pre c; \<turnstile> c q \<rbrakk> | |
| 233 | \<Longrightarrow> if co = None then t \<in> q else t \<in> pre (the co) \<and> \<turnstile> (the co) q" | |
| 234 | apply(erule rtrancl_induct2) | |
| 235 | apply simp | |
| 236 | apply(case_tac "a") | |
| 237 | apply(fast elim: ann_transition_cases) | |
| 238 | apply(erule Strong_Soundness_aux_aux) | |
| 239 | apply simp | |
| 240 | apply simp_all | |
| 241 | done | |
| 242 | ||
| 243 | lemma Strong_Soundness: "\<lbrakk> (Some c, s)-*\<rightarrow>(co, t); s \<in> pre c; \<turnstile> c q \<rbrakk> | |
| 244 | \<Longrightarrow> if co = None then t\<in>q else t \<in> pre (the co)" | |
| 245 | apply(force dest:Strong_Soundness_aux) | |
| 246 | done | |
| 247 | ||
| 248 | lemma ann_hoare_sound: "\<turnstile> c q \<Longrightarrow> \<Turnstile> c q" | |
| 249 | apply (unfold ann_com_validity_def ann_SEM_def ann_sem_def) | |
| 250 | apply clarify | |
| 251 | apply(drule Strong_Soundness) | |
| 252 | apply simp_all | |
| 253 | done | |
| 254 | ||
| 255 | subsection {* Soundness of the System for Parallel Programs *}
 | |
| 256 | ||
| 257 | lemma Parallel_length_post_P1: "(Parallel Ts,s) -P1\<rightarrow> (R', t) \<Longrightarrow> | |
| 258 | (\<exists>Rs. R' = (Parallel Rs) \<and> (length Rs) = (length Ts) \<and> | |
| 259 | (\<forall>i. i<length Ts \<longrightarrow> post(Rs ! i) = post(Ts ! i)))" | |
| 260 | apply(erule transition_cases) | |
| 261 | apply simp | |
| 262 | apply clarify | |
| 263 | apply(case_tac "i=ia") | |
| 264 | apply simp+ | |
| 265 | done | |
| 266 | ||
| 267 | lemma Parallel_length_post_PStar: "(Parallel Ts,s) -P*\<rightarrow> (R',t) \<Longrightarrow> | |
| 268 | (\<exists>Rs. R' = (Parallel Rs) \<and> (length Rs) = (length Ts) \<and> | |
| 269 | (\<forall>i. i<length Ts \<longrightarrow> post(Ts ! i) = post(Rs ! i)))" | |
| 270 | apply(erule rtrancl_induct2) | |
| 271 | apply(simp_all) | |
| 272 | apply clarify | |
| 273 | apply simp | |
| 274 | apply(drule Parallel_length_post_P1) | |
| 275 | apply auto | |
| 276 | done | |
| 277 | ||
| 278 | lemma assertions_lemma: "pre c \<in> assertions c" | |
| 279 | apply(rule ann_com_com.induct [THEN conjunct1]) | |
| 280 | apply auto | |
| 281 | done | |
| 282 | ||
| 283 | lemma interfree_aux1 [rule_format]: | |
| 284 | "(c,s) -1\<rightarrow> (r,t) \<longrightarrow> (interfree_aux(c1, q1, c) \<longrightarrow> interfree_aux(c1, q1, r))" | |
| 285 | apply (rule ann_transition_transition.induct [THEN conjunct1]) | |
| 286 | apply(safe) | |
| 287 | prefer 13 | |
| 288 | apply (rule TrueI) | |
| 289 | apply (simp_all add:interfree_aux_def) | |
| 290 | apply force+ | |
| 291 | done | |
| 292 | ||
| 293 | lemma interfree_aux2 [rule_format]: | |
| 294 | "(c,s) -1\<rightarrow> (r,t) \<longrightarrow> (interfree_aux(c, q, a) \<longrightarrow> interfree_aux(r, q, a) )" | |
| 295 | apply (rule ann_transition_transition.induct [THEN conjunct1]) | |
| 296 | apply(force simp add:interfree_aux_def)+ | |
| 297 | done | |
| 298 | ||
| 299 | lemma interfree_lemma: "\<lbrakk> (Some c, s) -1\<rightarrow> (r, t);interfree Ts ; i<length Ts; | |
| 300 | Ts!i = (Some c, q) \<rbrakk> \<Longrightarrow> interfree (Ts[i:= (r, q)])" | |
| 301 | apply(simp add: interfree_def) | |
| 302 | apply clarify | |
| 303 | apply(case_tac "i=j") | |
| 304 | apply(drule_tac t = "ia" in not_sym) | |
| 305 | apply simp_all | |
| 306 | apply(force elim: interfree_aux1) | |
| 307 | apply(force elim: interfree_aux2 simp add:nth_list_update) | |
| 308 | done | |
| 309 | ||
| 310 | text {* Strong Soundness Theorem for Parallel Programs:*}
 | |
| 311 | ||
| 312 | lemma Parallel_Strong_Soundness_Seq_aux: | |
| 313 | "\<lbrakk>interfree Ts; i<length Ts; com(Ts ! i) = Some(AnnSeq c0 c1) \<rbrakk> | |
| 314 | \<Longrightarrow> interfree (Ts[i:=(Some c0, pre c1)])" | |
| 315 | apply(simp add: interfree_def) | |
| 316 | apply clarify | |
| 317 | apply(case_tac "i=j") | |
| 318 | apply(force simp add: nth_list_update interfree_aux_def) | |
| 319 | apply(case_tac "i=ia") | |
| 320 | apply(erule_tac x=ia in allE) | |
| 321 | apply(force simp add:interfree_aux_def assertions_lemma) | |
| 322 | apply simp | |
| 323 | done | |
| 324 | ||
| 325 | lemma Parallel_Strong_Soundness_Seq [rule_format (no_asm)]: | |
| 326 | "\<lbrakk> \<forall>i<length Ts. (if com(Ts!i) = None then b \<in> post(Ts!i) | |
| 327 | else b \<in> pre(the(com(Ts!i))) \<and> \<turnstile> the(com(Ts!i)) post(Ts!i)); | |
| 328 | com(Ts ! i) = Some(AnnSeq c0 c1); i<length Ts; interfree Ts \<rbrakk> \<Longrightarrow> | |
| 329 | (\<forall>ia<length Ts. (if com(Ts[i:=(Some c0, pre c1)]! ia) = None | |
| 330 | then b \<in> post(Ts[i:=(Some c0, pre c1)]! ia) | |
| 331 | else b \<in> pre(the(com(Ts[i:=(Some c0, pre c1)]! ia))) \<and> | |
| 332 | \<turnstile> the(com(Ts[i:=(Some c0, pre c1)]! ia)) post(Ts[i:=(Some c0, pre c1)]! ia))) | |
| 333 | \<and> interfree (Ts[i:= (Some c0, pre c1)])" | |
| 334 | apply(rule conjI) | |
| 335 | apply safe | |
| 336 | apply(case_tac "i=ia") | |
| 337 | apply simp | |
| 338 | apply(force dest: ann_hoare_case_analysis) | |
| 339 | apply simp | |
| 340 | apply(fast elim: Parallel_Strong_Soundness_Seq_aux) | |
| 341 | done | |
| 342 | ||
| 343 | lemma Parallel_Strong_Soundness_aux_aux [rule_format]: | |
| 344 | "(Some c, b) -1\<rightarrow> (co, t) \<longrightarrow> | |
| 345 | (\<forall>Ts. i<length Ts \<longrightarrow> com(Ts ! i) = Some c \<longrightarrow> | |
| 346 | (\<forall>i<length Ts. (if com(Ts ! i) = None then b\<in>post(Ts!i) | |
| 347 | else b\<in>pre(the(com(Ts!i))) \<and> \<turnstile> the(com(Ts!i)) post(Ts!i))) \<longrightarrow> | |
| 348 | interfree Ts \<longrightarrow> | |
| 349 | (\<forall>j. j<length Ts \<and> i\<noteq>j \<longrightarrow> (if com(Ts!j) = None then t\<in>post(Ts!j) | |
| 350 | else t\<in>pre(the(com(Ts!j))) \<and> \<turnstile> the(com(Ts!j)) post(Ts!j))) )" | |
| 351 | apply(rule ann_transition_transition.induct [THEN conjunct1]) | |
| 352 | apply safe | |
| 353 | prefer 11 | |
| 354 | apply(rule TrueI) | |
| 355 | apply simp_all | |
| 356 | --{* Basic *}
 | |
| 357 | apply(erule_tac x = "i" in all_dupE, erule (1) notE impE) | |
| 358 | apply(erule_tac x = "j" in allE , erule (1) notE impE) | |
| 359 | apply(simp add: interfree_def) | |
| 360 | apply(erule_tac x = "j" in allE,simp) | |
| 361 | apply(erule_tac x = "i" in allE,simp) | |
| 362 | apply(drule_tac t = "i" in not_sym) | |
| 363 | apply(case_tac "com(Ts ! j)=None") | |
| 364 | apply(force intro: converse_rtrancl_into_rtrancl | |
| 365 | simp add: interfree_aux_def com_validity_def SEM_def sem_def All_None_def) | |
| 366 | apply(simp add:interfree_aux_def) | |
| 367 | apply clarify | |
| 368 | apply simp | |
| 369 | apply(erule_tac x="pre y" in ballE) | |
| 370 | apply(force intro: converse_rtrancl_into_rtrancl | |
| 371 | simp add: com_validity_def SEM_def sem_def All_None_def) | |
| 372 | apply(simp add:assertions_lemma) | |
| 373 | --{* Seqs *}
 | |
| 374 | apply(erule_tac x = "Ts[i:=(Some c0, pre c1)]" in allE) | |
| 375 | apply(drule Parallel_Strong_Soundness_Seq,simp+) | |
| 376 | apply(erule_tac x = "Ts[i:=(Some c0, pre c1)]" in allE) | |
| 377 | apply(drule Parallel_Strong_Soundness_Seq,simp+) | |
| 378 | --{* Await *}
 | |
| 379 | apply(rule_tac x = "i" in allE , assumption , erule (1) notE impE) | |
| 380 | apply(erule_tac x = "j" in allE , erule (1) notE impE) | |
| 381 | apply(simp add: interfree_def) | |
| 382 | apply(erule_tac x = "j" in allE,simp) | |
| 383 | apply(erule_tac x = "i" in allE,simp) | |
| 384 | apply(drule_tac t = "i" in not_sym) | |
| 385 | apply(case_tac "com(Ts ! j)=None") | |
| 386 | apply(force intro: converse_rtrancl_into_rtrancl simp add: interfree_aux_def | |
| 387 | com_validity_def SEM_def sem_def All_None_def Help) | |
| 388 | apply(simp add:interfree_aux_def) | |
| 389 | apply clarify | |
| 390 | apply simp | |
| 391 | apply(erule_tac x="pre y" in ballE) | |
| 392 | apply(force intro: converse_rtrancl_into_rtrancl | |
| 393 | simp add: com_validity_def SEM_def sem_def All_None_def Help) | |
| 394 | apply(simp add:assertions_lemma) | |
| 395 | done | |
| 396 | ||
| 397 | lemma Parallel_Strong_Soundness_aux [rule_format]: | |
| 398 | "\<lbrakk>(Ts',s) -P*\<rightarrow> (Rs',t); Ts' = (Parallel Ts); interfree Ts; | |
| 399 | \<forall>i. i<length Ts \<longrightarrow> (\<exists>c q. (Ts ! i) = (Some c, q) \<and> s\<in>(pre c) \<and> \<turnstile> c q ) \<rbrakk> \<Longrightarrow> | |
| 400 | \<forall>Rs. Rs' = (Parallel Rs) \<longrightarrow> (\<forall>j. j<length Rs \<longrightarrow> | |
| 401 | (if com(Rs ! j) = None then t\<in>post(Ts ! j) | |
| 402 | else t\<in>pre(the(com(Rs ! j))) \<and> \<turnstile> the(com(Rs ! j)) post(Ts ! j))) \<and> interfree Rs" | |
| 403 | apply(erule rtrancl_induct2) | |
| 404 | apply clarify | |
| 405 | --{* Base *}
 | |
| 406 | apply force | |
| 407 | --{* Induction step *}
 | |
| 408 | apply clarify | |
| 409 | apply(drule Parallel_length_post_PStar) | |
| 410 | apply clarify | |
| 23746 | 411 | apply (ind_cases "(Parallel Ts, s) -P1\<rightarrow> (Parallel Rs, t)" for Ts s Rs t) | 
| 13020 | 412 | apply(rule conjI) | 
| 413 | apply clarify | |
| 414 | apply(case_tac "i=j") | |
| 415 | apply(simp split del:split_if) | |
| 416 | apply(erule Strong_Soundness_aux_aux,simp+) | |
| 417 | apply force | |
| 418 | apply force | |
| 419 | apply(simp split del: split_if) | |
| 420 | apply(erule Parallel_Strong_Soundness_aux_aux) | |
| 421 | apply(simp_all add: split del:split_if) | |
| 422 | apply force | |
| 423 | apply(rule interfree_lemma) | |
| 424 | apply simp_all | |
| 425 | done | |
| 426 | ||
| 427 | lemma Parallel_Strong_Soundness: | |
| 428 | "\<lbrakk>(Parallel Ts, s) -P*\<rightarrow> (Parallel Rs, t); interfree Ts; j<length Rs; | |
| 429 | \<forall>i. i<length Ts \<longrightarrow> (\<exists>c q. Ts ! i = (Some c, q) \<and> s\<in>pre c \<and> \<turnstile> c q) \<rbrakk> \<Longrightarrow> | |
| 430 | if com(Rs ! j) = None then t\<in>post(Ts ! j) else t\<in>pre (the(com(Rs ! j)))" | |
| 431 | apply(drule Parallel_Strong_Soundness_aux) | |
| 432 | apply simp+ | |
| 433 | done | |
| 434 | ||
| 15102 | 435 | lemma oghoare_sound [rule_format]: "\<parallel>- p c q \<longrightarrow> \<parallel>= p c q" | 
| 13020 | 436 | apply (unfold com_validity_def) | 
| 437 | apply(rule oghoare_induct) | |
| 438 | apply(rule TrueI)+ | |
| 439 | --{* Parallel *}     
 | |
| 440 | apply(simp add: SEM_def sem_def) | |
| 441 | apply clarify | |
| 442 | apply(frule Parallel_length_post_PStar) | |
| 443 | apply clarify | |
| 26811 
067cceb36e26
Rephrased proof of ann_hoare_case_analysis, to avoid problems with HO unification
 berghofe parents: 
23746diff
changeset | 444 | apply(drule_tac j=xa in Parallel_Strong_Soundness) | 
| 13020 | 445 | apply clarify | 
| 446 | apply simp | |
| 447 | apply force | |
| 448 | apply simp | |
| 449 | apply(erule_tac V = "\<forall>i. ?P i" in thin_rl) | |
| 450 | apply(drule_tac s = "length Rs" in sym) | |
| 451 | apply(erule allE, erule impE, assumption) | |
| 452 | apply(force dest: nth_mem simp add: All_None_def) | |
| 453 | --{* Basic *}
 | |
| 454 | apply(simp add: SEM_def sem_def) | |
| 455 | apply(force dest: rtrancl_imp_UN_rel_pow Basic_ntran) | |
| 456 | --{* Seq *}
 | |
| 457 | apply(rule subset_trans) | |
| 458 | prefer 2 apply assumption | |
| 459 | apply(simp add: L3_5ii L3_5i) | |
| 460 | --{* Cond *}
 | |
| 461 | apply(simp add: L3_5iv) | |
| 462 | --{* While *}
 | |
| 463 | apply(simp add: L3_5v) | |
| 15102 | 464 | apply (blast dest: SEM_fwhile) | 
| 13020 | 465 | --{* Conseq *}
 | 
| 15102 | 466 | apply(auto simp add: SEM_def sem_def) | 
| 13020 | 467 | done | 
| 468 | ||
| 469 | end |