| 
3071
 | 
     1  | 
(*  Title:      HOLCF/IOA/meta_theory/Sequence.thy
  | 
| 
3275
 | 
     2  | 
    ID:         $Id$
  | 
| 
3071
 | 
     3  | 
    Author:     Olaf M"uller
  | 
| 
 | 
     4  | 
    Copyright   1996  TU Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Sequences over flat domains with lifted elements
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
*)  
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
Sequence = Seq + 
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
default term
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
types 'a Seq = ('a::term lift)seq
 | 
| 
 | 
    15  | 
  | 
| 
3952
 | 
    16  | 
consts
  | 
| 
3071
 | 
    17  | 
  | 
| 
 | 
    18  | 
  Cons             ::"'a            => 'a Seq -> 'a Seq"
  | 
| 
 | 
    19  | 
  Filter           ::"('a => bool)  => 'a Seq -> 'a Seq"
 | 
| 
 | 
    20  | 
  Map              ::"('a => 'b)    => 'a Seq -> 'b Seq"
 | 
| 
 | 
    21  | 
  Forall           ::"('a => bool)  => 'a Seq => bool"
 | 
| 
 | 
    22  | 
  Last             ::"'a Seq        -> 'a lift"
  | 
| 
 | 
    23  | 
  Dropwhile,
  | 
| 
 | 
    24  | 
  Takewhile        ::"('a => bool)  => 'a Seq -> 'a Seq" 
 | 
| 
 | 
    25  | 
  Zip              ::"'a Seq        -> 'b Seq -> ('a * 'b) Seq"
 | 
| 
 | 
    26  | 
  Flat             ::"('a Seq) seq   -> 'a Seq"
 | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  Filter2          ::"('a => bool)  => 'a Seq -> 'a Seq"
 | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
syntax
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
 "@Cons"     ::"'a => 'a Seq => 'a Seq"       ("(_>>_)"  [66,65] 65)
 | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
syntax (symbols)
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
 "@Cons"     ::"'a => 'a Seq => 'a Seq"       ("(_\\<leadsto>_)"  [66,65] 65)
 | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
translations
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
  "a>>s" == "Cons a`s"
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
defs
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
Cons_def      "Cons a == LAM s. Def a ## s"
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
Filter_def    "Filter P == sfilter`(flift2 P)"
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
Map_def       "Map f  == smap`(flift2 f)"
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
Forall_def    "Forall P == sforall (flift2 P)"
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
Last_def      "Last == slast"
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
Dropwhile_def "Dropwhile P == sdropwhile`(flift2 P)"
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
Takewhile_def "Takewhile P == stakewhile`(flift2 P)"
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
Flat_def      "Flat == sflat"
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
Zip_def
  | 
| 
 | 
    63  | 
  "Zip == (fix`(LAM h t1 t2. case t1 of 
  | 
| 
 | 
    64  | 
               nil   => nil
  | 
| 
 | 
    65  | 
             | x##xs => (case t2 of 
  | 
| 
 | 
    66  | 
                          nil => UU 
  | 
| 
 | 
    67  | 
                        | y##ys => (case x of 
  | 
| 
 | 
    68  | 
                                      Undef  => UU
  | 
| 
 | 
    69  | 
                                    | Def a => (case y of 
  | 
| 
 | 
    70  | 
                                                  Undef => UU
  | 
| 
 | 
    71  | 
                                                | Def b => Def (a,b)##(h`xs`ys))))))"
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
Filter2_def    "Filter2 P == (fix`(LAM h t. case t of 
  | 
| 
 | 
    74  | 
            nil => nil
  | 
| 
 | 
    75  | 
	  | x##xs => (case x of Undef => UU | Def y => (if P y                                 
  | 
| 
 | 
    76  | 
                     then x##(h`xs)
  | 
| 
 | 
    77  | 
                     else     h`xs))))" 
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
rules
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
(* for test purposes should be deleted FIX !! *)
  | 
| 
 | 
    83  | 
adm_all    "adm f"
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
end  |