| author | wenzelm | 
| Fri, 01 Jun 2012 13:02:09 +0200 | |
| changeset 48056 | 396749e9daaf | 
| parent 47450 | 2ada2be850cb | 
| child 49929 | 70300f1b6835 | 
| permissions | -rw-r--r-- | 
| 43124 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 2 | ||
| 3 | header {* Implementation of mappings with Red-Black Trees *}
 | |
| 4 | ||
| 5 | (*<*) | |
| 6 | theory RBT_Mapping | |
| 7 | imports RBT Mapping | |
| 8 | begin | |
| 9 | ||
| 10 | subsection {* Implementation of mappings *}
 | |
| 11 | ||
| 12 | definition Mapping :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) mapping" where
 | |
| 13 | "Mapping t = Mapping.Mapping (lookup t)" | |
| 14 | ||
| 15 | code_datatype Mapping | |
| 16 | ||
| 17 | lemma lookup_Mapping [simp, code]: | |
| 18 | "Mapping.lookup (Mapping t) = lookup t" | |
| 19 | by (simp add: Mapping_def) | |
| 20 | ||
| 21 | lemma empty_Mapping [code]: | |
| 22 | "Mapping.empty = Mapping empty" | |
| 23 | by (rule mapping_eqI) simp | |
| 24 | ||
| 25 | lemma is_empty_Mapping [code]: | |
| 26 | "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t" | |
| 27 | by (simp add: rbt_eq_iff Mapping.is_empty_empty Mapping_def) | |
| 28 | ||
| 29 | lemma insert_Mapping [code]: | |
| 30 | "Mapping.update k v (Mapping t) = Mapping (insert k v t)" | |
| 31 | by (rule mapping_eqI) simp | |
| 32 | ||
| 33 | lemma delete_Mapping [code]: | |
| 34 | "Mapping.delete k (Mapping t) = Mapping (delete k t)" | |
| 35 | by (rule mapping_eqI) simp | |
| 36 | ||
| 37 | lemma map_entry_Mapping [code]: | |
| 38 | "Mapping.map_entry k f (Mapping t) = Mapping (map_entry k f t)" | |
| 39 | by (rule mapping_eqI) simp | |
| 40 | ||
| 41 | lemma keys_Mapping [code]: | |
| 42 | "Mapping.keys (Mapping t) = set (keys t)" | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
43124diff
changeset | 43 | by (simp add: RBT.keys_def Mapping_def Mapping.keys_def lookup_def rbt_lookup_keys) | 
| 43124 | 44 | |
| 45 | lemma ordered_keys_Mapping [code]: | |
| 46 | "Mapping.ordered_keys (Mapping t) = keys t" | |
| 47 | by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping) | |
| 48 | ||
| 49 | lemma Mapping_size_card_keys: (*FIXME*) | |
| 50 | "Mapping.size m = card (Mapping.keys m)" | |
| 51 | by (simp add: Mapping.size_def Mapping.keys_def) | |
| 52 | ||
| 53 | lemma size_Mapping [code]: | |
| 54 | "Mapping.size (Mapping t) = length (keys t)" | |
| 55 | by (simp add: Mapping_size_card_keys keys_Mapping distinct_card) | |
| 56 | ||
| 57 | lemma tabulate_Mapping [code]: | |
| 58 | "Mapping.tabulate ks f = Mapping (bulkload (List.map (\<lambda>k. (k, f k)) ks))" | |
| 59 | by (rule mapping_eqI) (simp add: map_of_map_restrict) | |
| 60 | ||
| 61 | lemma bulkload_Mapping [code]: | |
| 62 | "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))" | |
| 63 | by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff) | |
| 64 | ||
| 65 | lemma equal_Mapping [code]: | |
| 66 | "HOL.equal (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2" | |
| 67 | by (simp add: equal Mapping_def entries_lookup) | |
| 68 | ||
| 69 | lemma [code nbe]: | |
| 70 | "HOL.equal (x :: (_, _) mapping) x \<longleftrightarrow> True" | |
| 71 | by (fact equal_refl) | |
| 72 | ||
| 73 | ||
| 74 | hide_const (open) impl_of lookup empty insert delete | |
| 75 | entries keys bulkload map_entry map fold | |
| 76 | (*>*) | |
| 77 | ||
| 78 | text {* 
 | |
| 79 | This theory defines abstract red-black trees as an efficient | |
| 80 | representation of finite maps, backed by the implementation | |
| 81 |   in @{theory RBT_Impl}.
 | |
| 82 | *} | |
| 83 | ||
| 84 | subsection {* Data type and invariant *}
 | |
| 85 | ||
| 86 | text {*
 | |
| 87 |   The type @{typ "('k, 'v) RBT_Impl.rbt"} denotes red-black trees with
 | |
| 88 |   keys of type @{typ "'k"} and values of type @{typ "'v"}. To function
 | |
| 89 |   properly, the key type musorted belong to the @{text "linorder"}
 | |
| 90 | class. | |
| 91 | ||
| 92 |   A value @{term t} of this type is a valid red-black tree if it
 | |
| 93 |   satisfies the invariant @{text "is_rbt t"}.  The abstract type @{typ
 | |
| 94 |   "('k, 'v) rbt"} always obeys this invariant, and for this reason you
 | |
| 95 |   should only use this in our application.  Going back to @{typ "('k,
 | |
| 96 | 'v) RBT_Impl.rbt"} may be necessary in proofs if not yet proven | |
| 97 | properties about the operations must be established. | |
| 98 | ||
| 99 |   The interpretation function @{const "RBT.lookup"} returns the partial
 | |
| 100 | map represented by a red-black tree: | |
| 101 |   @{term_type[display] "RBT.lookup"}
 | |
| 102 | ||
| 103 | This function should be used for reasoning about the semantics of the RBT | |
| 104 | operations. Furthermore, it implements the lookup functionality for | |
| 105 | the data structure: It is executable and the lookup is performed in | |
| 106 | $O(\log n)$. | |
| 107 | *} | |
| 108 | ||
| 109 | subsection {* Operations *}
 | |
| 110 | ||
| 111 | text {*
 | |
| 112 | Currently, the following operations are supported: | |
| 113 | ||
| 114 |   @{term_type [display] "RBT.empty"}
 | |
| 115 | Returns the empty tree. $O(1)$ | |
| 116 | ||
| 117 |   @{term_type [display] "RBT.insert"}
 | |
| 118 | Updates the map at a given position. $O(\log n)$ | |
| 119 | ||
| 120 |   @{term_type [display] "RBT.delete"}
 | |
| 121 | Deletes a map entry at a given position. $O(\log n)$ | |
| 122 | ||
| 123 |   @{term_type [display] "RBT.entries"}
 | |
| 124 | Return a corresponding key-value list for a tree. | |
| 125 | ||
| 126 |   @{term_type [display] "RBT.bulkload"}
 | |
| 127 | Builds a tree from a key-value list. | |
| 128 | ||
| 129 |   @{term_type [display] "RBT.map_entry"}
 | |
| 130 | Maps a single entry in a tree. | |
| 131 | ||
| 132 |   @{term_type [display] "RBT.map"}
 | |
| 133 | Maps all values in a tree. $O(n)$ | |
| 134 | ||
| 135 |   @{term_type [display] "RBT.fold"}
 | |
| 136 | Folds over all entries in a tree. $O(n)$ | |
| 137 | *} | |
| 138 | ||
| 139 | ||
| 140 | subsection {* Invariant preservation *}
 | |
| 141 | ||
| 142 | text {*
 | |
| 143 | \noindent | |
| 144 |   @{thm Empty_is_rbt}\hfill(@{text "Empty_is_rbt"})
 | |
| 145 | ||
| 146 | \noindent | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
43124diff
changeset | 147 |   @{thm rbt_insert_is_rbt}\hfill(@{text "rbt_insert_is_rbt"})
 | 
| 43124 | 148 | |
| 149 | \noindent | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
43124diff
changeset | 150 |   @{thm rbt_delete_is_rbt}\hfill(@{text "delete_is_rbt"})
 | 
| 43124 | 151 | |
| 152 | \noindent | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
43124diff
changeset | 153 |   @{thm rbt_bulkload_is_rbt}\hfill(@{text "bulkload_is_rbt"})
 | 
| 43124 | 154 | |
| 155 | \noindent | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
43124diff
changeset | 156 |   @{thm rbt_map_entry_is_rbt}\hfill(@{text "map_entry_is_rbt"})
 | 
| 43124 | 157 | |
| 158 | \noindent | |
| 159 |   @{thm map_is_rbt}\hfill(@{text "map_is_rbt"})
 | |
| 160 | ||
| 161 | \noindent | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
43124diff
changeset | 162 |   @{thm rbt_union_is_rbt}\hfill(@{text "union_is_rbt"})
 | 
| 43124 | 163 | *} | 
| 164 | ||
| 165 | ||
| 166 | subsection {* Map Semantics *}
 | |
| 167 | ||
| 168 | text {*
 | |
| 169 | \noindent | |
| 170 |   \underline{@{text "lookup_empty"}}
 | |
| 171 |   @{thm [display] lookup_empty}
 | |
| 172 |   \vspace{1ex}
 | |
| 173 | ||
| 174 | \noindent | |
| 175 |   \underline{@{text "lookup_insert"}}
 | |
| 176 |   @{thm [display] lookup_insert}
 | |
| 177 |   \vspace{1ex}
 | |
| 178 | ||
| 179 | \noindent | |
| 180 |   \underline{@{text "lookup_delete"}}
 | |
| 181 |   @{thm [display] lookup_delete}
 | |
| 182 |   \vspace{1ex}
 | |
| 183 | ||
| 184 | \noindent | |
| 185 |   \underline{@{text "lookup_bulkload"}}
 | |
| 186 |   @{thm [display] lookup_bulkload}
 | |
| 187 |   \vspace{1ex}
 | |
| 188 | ||
| 189 | \noindent | |
| 190 |   \underline{@{text "lookup_map"}}
 | |
| 191 |   @{thm [display] lookup_map}
 | |
| 192 |   \vspace{1ex}
 | |
| 193 | *} | |
| 194 | ||
| 195 | end |