author | wenzelm |
Sat, 15 Mar 2014 11:28:07 +0100 | |
changeset 56159 | 39f7b7690de6 |
parent 55866 | a6fa341a6d66 |
child 56191 | 159b0c88b4a4 |
permissions | -rw-r--r-- |
55056 | 1 |
(* Title: HOL/BNF_Cardinal_Arithmetic.thy |
54474 | 2 |
Author: Dmitriy Traytel, TU Muenchen |
3 |
Copyright 2012 |
|
4 |
||
55059 | 5 |
Cardinal arithmetic as needed by bounded natural functors. |
54474 | 6 |
*) |
7 |
||
55059 | 8 |
header {* Cardinal Arithmetic as Needed by Bounded Natural Functors *} |
54474 | 9 |
|
55056 | 10 |
theory BNF_Cardinal_Arithmetic |
11 |
imports BNF_Cardinal_Order_Relation |
|
54474 | 12 |
begin |
13 |
||
14 |
lemma dir_image: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); Card_order r\<rbrakk> \<Longrightarrow> r =o dir_image r f" |
|
15 |
by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def) |
|
16 |
||
17 |
(*should supersede a weaker lemma from the library*) |
|
18 |
lemma dir_image_Field: "Field (dir_image r f) = f ` Field r" |
|
54482 | 19 |
unfolding dir_image_def Field_def Range_def Domain_def by fast |
54474 | 20 |
|
21 |
lemma card_order_dir_image: |
|
22 |
assumes bij: "bij f" and co: "card_order r" |
|
23 |
shows "card_order (dir_image r f)" |
|
24 |
proof - |
|
25 |
from assms have "Field (dir_image r f) = UNIV" |
|
26 |
using card_order_on_Card_order[of UNIV r] unfolding bij_def dir_image_Field by auto |
|
27 |
moreover from bij have "\<And>x y. (f x = f y) = (x = y)" unfolding bij_def inj_on_def by auto |
|
28 |
with co have "Card_order (dir_image r f)" |
|
29 |
using card_order_on_Card_order[of UNIV r] Card_order_ordIso2[OF _ dir_image] by blast |
|
30 |
ultimately show ?thesis by auto |
|
31 |
qed |
|
32 |
||
33 |
lemma ordIso_refl: "Card_order r \<Longrightarrow> r =o r" |
|
34 |
by (rule card_order_on_ordIso) |
|
35 |
||
36 |
lemma ordLeq_refl: "Card_order r \<Longrightarrow> r \<le>o r" |
|
37 |
by (rule ordIso_imp_ordLeq, rule card_order_on_ordIso) |
|
38 |
||
39 |
lemma card_of_ordIso_subst: "A = B \<Longrightarrow> |A| =o |B|" |
|
40 |
by (simp only: ordIso_refl card_of_Card_order) |
|
41 |
||
42 |
lemma Field_card_order: "card_order r \<Longrightarrow> Field r = UNIV" |
|
43 |
using card_order_on_Card_order[of UNIV r] by simp |
|
44 |
||
45 |
lemma card_of_Times_Plus_distrib: |
|
46 |
"|A <*> (B <+> C)| =o |A <*> B <+> A <*> C|" (is "|?RHS| =o |?LHS|") |
|
47 |
proof - |
|
48 |
let ?f = "\<lambda>(a, bc). case bc of Inl b \<Rightarrow> Inl (a, b) | Inr c \<Rightarrow> Inr (a, c)" |
|
49 |
have "bij_betw ?f ?RHS ?LHS" unfolding bij_betw_def inj_on_def by force |
|
50 |
thus ?thesis using card_of_ordIso by blast |
|
51 |
qed |
|
52 |
||
53 |
lemma Func_Times_Range: |
|
54 |
"|Func A (B <*> C)| =o |Func A B <*> Func A C|" (is "|?LHS| =o |?RHS|") |
|
55 |
proof - |
|
56 |
let ?F = "\<lambda>fg. (\<lambda>x. if x \<in> A then fst (fg x) else undefined, |
|
57 |
\<lambda>x. if x \<in> A then snd (fg x) else undefined)" |
|
58 |
let ?G = "\<lambda>(f, g) x. if x \<in> A then (f x, g x) else undefined" |
|
59 |
have "bij_betw ?F ?LHS ?RHS" unfolding bij_betw_def inj_on_def |
|
55811 | 60 |
proof (intro conjI impI ballI equalityI subsetI) |
61 |
fix f g assume *: "f \<in> Func A (B \<times> C)" "g \<in> Func A (B \<times> C)" "?F f = ?F g" |
|
62 |
show "f = g" |
|
63 |
proof |
|
64 |
fix x from * have "fst (f x) = fst (g x) \<and> snd (f x) = snd (g x)" |
|
65 |
by (case_tac "x \<in> A") (auto simp: Func_def fun_eq_iff split: if_splits) |
|
66 |
then show "f x = g x" by (subst (1 2) surjective_pairing) simp |
|
67 |
qed |
|
68 |
next |
|
69 |
fix fg assume "fg \<in> Func A B \<times> Func A C" |
|
70 |
thus "fg \<in> ?F ` Func A (B \<times> C)" |
|
71 |
by (intro image_eqI[of _ _ "?G fg"]) (auto simp: Func_def) |
|
72 |
qed (auto simp: Func_def fun_eq_iff) |
|
54474 | 73 |
thus ?thesis using card_of_ordIso by blast |
74 |
qed |
|
75 |
||
76 |
||
77 |
subsection {* Zero *} |
|
78 |
||
79 |
definition czero where |
|
80 |
"czero = card_of {}" |
|
81 |
||
82 |
lemma czero_ordIso: |
|
83 |
"czero =o czero" |
|
84 |
using card_of_empty_ordIso by (simp add: czero_def) |
|
85 |
||
86 |
lemma card_of_ordIso_czero_iff_empty: |
|
87 |
"|A| =o (czero :: 'b rel) \<longleftrightarrow> A = ({} :: 'a set)" |
|
88 |
unfolding czero_def by (rule iffI[OF card_of_empty2]) (auto simp: card_of_refl card_of_empty_ordIso) |
|
89 |
||
90 |
(* A "not czero" Cardinal predicate *) |
|
91 |
abbreviation Cnotzero where |
|
92 |
"Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r" |
|
93 |
||
94 |
(*helper*) |
|
95 |
lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}" |
|
55811 | 96 |
unfolding Card_order_iff_ordIso_card_of czero_def by force |
54474 | 97 |
|
98 |
lemma czeroI: |
|
99 |
"\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero" |
|
100 |
using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast |
|
101 |
||
102 |
lemma czeroE: |
|
103 |
"r =o czero \<Longrightarrow> Field r = {}" |
|
104 |
unfolding czero_def |
|
105 |
by (drule card_of_cong) (simp only: Field_card_of card_of_empty2) |
|
106 |
||
107 |
lemma Cnotzero_mono: |
|
108 |
"\<lbrakk>Cnotzero r; Card_order q; r \<le>o q\<rbrakk> \<Longrightarrow> Cnotzero q" |
|
109 |
apply (rule ccontr) |
|
110 |
apply auto |
|
111 |
apply (drule czeroE) |
|
112 |
apply (erule notE) |
|
113 |
apply (erule czeroI) |
|
114 |
apply (drule card_of_mono2) |
|
115 |
apply (simp only: card_of_empty3) |
|
116 |
done |
|
117 |
||
118 |
subsection {* (In)finite cardinals *} |
|
119 |
||
120 |
definition cinfinite where |
|
54578
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents:
54482
diff
changeset
|
121 |
"cinfinite r = (\<not> finite (Field r))" |
54474 | 122 |
|
123 |
abbreviation Cinfinite where |
|
124 |
"Cinfinite r \<equiv> cinfinite r \<and> Card_order r" |
|
125 |
||
126 |
definition cfinite where |
|
127 |
"cfinite r = finite (Field r)" |
|
128 |
||
129 |
abbreviation Cfinite where |
|
130 |
"Cfinite r \<equiv> cfinite r \<and> Card_order r" |
|
131 |
||
132 |
lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s" |
|
133 |
unfolding cfinite_def cinfinite_def |
|
55811 | 134 |
by (blast intro: finite_ordLess_infinite card_order_on_well_order_on) |
54474 | 135 |
|
54581
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents:
54578
diff
changeset
|
136 |
lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq] |
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents:
54578
diff
changeset
|
137 |
|
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents:
54578
diff
changeset
|
138 |
lemma natLeq_cinfinite: "cinfinite natLeq" |
55811 | 139 |
unfolding cinfinite_def Field_natLeq by (rule infinite_UNIV_nat) |
54581
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents:
54578
diff
changeset
|
140 |
|
54474 | 141 |
lemma natLeq_ordLeq_cinfinite: |
142 |
assumes inf: "Cinfinite r" |
|
143 |
shows "natLeq \<le>o r" |
|
144 |
proof - |
|
55811 | 145 |
from inf have "natLeq \<le>o |Field r|" unfolding cinfinite_def |
146 |
using infinite_iff_natLeq_ordLeq by blast |
|
54474 | 147 |
also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric) |
148 |
finally show ?thesis . |
|
149 |
qed |
|
150 |
||
151 |
lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))" |
|
55811 | 152 |
unfolding cinfinite_def by (cases "Field r = {}") (auto dest: czeroE) |
54474 | 153 |
|
154 |
lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r" |
|
55811 | 155 |
by (rule conjI[OF cinfinite_not_czero]) simp_all |
54474 | 156 |
|
157 |
lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2" |
|
55811 | 158 |
using Card_order_ordIso2[of r1 r2] unfolding cinfinite_def ordIso_iff_ordLeq |
159 |
by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2]) |
|
54474 | 160 |
|
161 |
lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2" |
|
55811 | 162 |
unfolding cinfinite_def by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2]) |
54474 | 163 |
|
164 |
||
165 |
subsection {* Binary sum *} |
|
166 |
||
167 |
definition csum (infixr "+c" 65) where |
|
168 |
"r1 +c r2 \<equiv> |Field r1 <+> Field r2|" |
|
169 |
||
170 |
lemma Field_csum: "Field (r +c s) = Inl ` Field r \<union> Inr ` Field s" |
|
171 |
unfolding csum_def Field_card_of by auto |
|
172 |
||
173 |
lemma Card_order_csum: |
|
174 |
"Card_order (r1 +c r2)" |
|
175 |
unfolding csum_def by (simp add: card_of_Card_order) |
|
176 |
||
177 |
lemma csum_Cnotzero1: |
|
178 |
"Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)" |
|
55811 | 179 |
unfolding csum_def using Cnotzero_imp_not_empty[of r1] Plus_eq_empty_conv[of "Field r1" "Field r2"] |
180 |
card_of_ordIso_czero_iff_empty[of "Field r1 <+> Field r2"] by (auto intro: card_of_Card_order) |
|
54474 | 181 |
|
182 |
lemma card_order_csum: |
|
183 |
assumes "card_order r1" "card_order r2" |
|
184 |
shows "card_order (r1 +c r2)" |
|
185 |
proof - |
|
186 |
have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto |
|
187 |
thus ?thesis unfolding csum_def by (auto simp: card_of_card_order_on) |
|
188 |
qed |
|
189 |
||
190 |
lemma cinfinite_csum: |
|
191 |
"cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)" |
|
192 |
unfolding cinfinite_def csum_def by (auto simp: Field_card_of) |
|
193 |
||
194 |
lemma Cinfinite_csum1: |
|
195 |
"Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)" |
|
55811 | 196 |
unfolding cinfinite_def csum_def by (rule conjI[OF _ card_of_Card_order]) (auto simp: Field_card_of) |
54474 | 197 |
|
54480
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
blanchet
parents:
54474
diff
changeset
|
198 |
lemma Cinfinite_csum: |
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
blanchet
parents:
54474
diff
changeset
|
199 |
"Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)" |
55811 | 200 |
unfolding cinfinite_def csum_def by (rule conjI[OF _ card_of_Card_order]) (auto simp: Field_card_of) |
54480
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
blanchet
parents:
54474
diff
changeset
|
201 |
|
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
202 |
lemma Cinfinite_csum_weak: |
54480
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
blanchet
parents:
54474
diff
changeset
|
203 |
"\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)" |
55811 | 204 |
by (erule Cinfinite_csum1) |
54480
57e781b711b5
no need for 3-way split with GFP for a handful of theorems
blanchet
parents:
54474
diff
changeset
|
205 |
|
54474 | 206 |
lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2" |
207 |
by (simp only: csum_def ordIso_Plus_cong) |
|
208 |
||
209 |
lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q" |
|
210 |
by (simp only: csum_def ordIso_Plus_cong1) |
|
211 |
||
212 |
lemma csum_cong2: "p2 =o r2 \<Longrightarrow> q +c p2 =o q +c r2" |
|
213 |
by (simp only: csum_def ordIso_Plus_cong2) |
|
214 |
||
215 |
lemma csum_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 +c p2 \<le>o r1 +c r2" |
|
216 |
by (simp only: csum_def ordLeq_Plus_mono) |
|
217 |
||
218 |
lemma csum_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 +c q \<le>o r1 +c q" |
|
219 |
by (simp only: csum_def ordLeq_Plus_mono1) |
|
220 |
||
221 |
lemma csum_mono2: "p2 \<le>o r2 \<Longrightarrow> q +c p2 \<le>o q +c r2" |
|
222 |
by (simp only: csum_def ordLeq_Plus_mono2) |
|
223 |
||
224 |
lemma ordLeq_csum1: "Card_order p1 \<Longrightarrow> p1 \<le>o p1 +c p2" |
|
225 |
by (simp only: csum_def Card_order_Plus1) |
|
226 |
||
227 |
lemma ordLeq_csum2: "Card_order p2 \<Longrightarrow> p2 \<le>o p1 +c p2" |
|
228 |
by (simp only: csum_def Card_order_Plus2) |
|
229 |
||
230 |
lemma csum_com: "p1 +c p2 =o p2 +c p1" |
|
231 |
by (simp only: csum_def card_of_Plus_commute) |
|
232 |
||
233 |
lemma csum_assoc: "(p1 +c p2) +c p3 =o p1 +c p2 +c p3" |
|
234 |
by (simp only: csum_def Field_card_of card_of_Plus_assoc) |
|
235 |
||
236 |
lemma Cfinite_csum: "\<lbrakk>Cfinite r; Cfinite s\<rbrakk> \<Longrightarrow> Cfinite (r +c s)" |
|
237 |
unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp |
|
238 |
||
239 |
lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)" |
|
240 |
proof - |
|
241 |
have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)" |
|
55811 | 242 |
by (rule csum_assoc) |
54474 | 243 |
also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4" |
55811 | 244 |
by (intro csum_assoc csum_cong2 ordIso_symmetric) |
54474 | 245 |
also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4" |
55811 | 246 |
by (intro csum_com csum_cong1 csum_cong2) |
54474 | 247 |
also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4" |
55811 | 248 |
by (intro csum_assoc csum_cong2 ordIso_symmetric) |
54474 | 249 |
also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)" |
55811 | 250 |
by (intro csum_assoc ordIso_symmetric) |
54474 | 251 |
finally show ?thesis . |
252 |
qed |
|
253 |
||
254 |
lemma Plus_csum: "|A <+> B| =o |A| +c |B|" |
|
255 |
by (simp only: csum_def Field_card_of card_of_refl) |
|
256 |
||
257 |
lemma Un_csum: "|A \<union> B| \<le>o |A| +c |B|" |
|
258 |
using ordLeq_ordIso_trans[OF card_of_Un_Plus_ordLeq Plus_csum] by blast |
|
259 |
||
260 |
||
261 |
subsection {* One *} |
|
262 |
||
263 |
definition cone where |
|
264 |
"cone = card_of {()}" |
|
265 |
||
266 |
lemma Card_order_cone: "Card_order cone" |
|
267 |
unfolding cone_def by (rule card_of_Card_order) |
|
268 |
||
269 |
lemma Cfinite_cone: "Cfinite cone" |
|
270 |
unfolding cfinite_def by (simp add: Card_order_cone) |
|
271 |
||
272 |
lemma cone_not_czero: "\<not> (cone =o czero)" |
|
55811 | 273 |
unfolding czero_def cone_def ordIso_iff_ordLeq using card_of_empty3 empty_not_insert by blast |
54474 | 274 |
|
275 |
lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r" |
|
55811 | 276 |
unfolding cone_def by (rule Card_order_singl_ordLeq) (auto intro: czeroI) |
54474 | 277 |
|
278 |
||
55055 | 279 |
subsection {* Two *} |
54474 | 280 |
|
281 |
definition ctwo where |
|
282 |
"ctwo = |UNIV :: bool set|" |
|
283 |
||
284 |
lemma Card_order_ctwo: "Card_order ctwo" |
|
285 |
unfolding ctwo_def by (rule card_of_Card_order) |
|
286 |
||
287 |
lemma ctwo_not_czero: "\<not> (ctwo =o czero)" |
|
288 |
using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq |
|
55811 | 289 |
unfolding czero_def ctwo_def using UNIV_not_empty by auto |
54474 | 290 |
|
291 |
lemma ctwo_Cnotzero: "Cnotzero ctwo" |
|
292 |
by (simp add: ctwo_not_czero Card_order_ctwo) |
|
293 |
||
294 |
||
295 |
subsection {* Family sum *} |
|
296 |
||
297 |
definition Csum where |
|
298 |
"Csum r rs \<equiv> |SIGMA i : Field r. Field (rs i)|" |
|
299 |
||
300 |
(* Similar setup to the one for SIGMA from theory Big_Operators: *) |
|
301 |
syntax "_Csum" :: |
|
302 |
"pttrn => ('a * 'a) set => 'b * 'b set => (('a * 'b) * ('a * 'b)) set" |
|
303 |
("(3CSUM _:_. _)" [0, 51, 10] 10) |
|
304 |
||
305 |
translations |
|
306 |
"CSUM i:r. rs" == "CONST Csum r (%i. rs)" |
|
307 |
||
308 |
lemma SIGMA_CSUM: "|SIGMA i : I. As i| = (CSUM i : |I|. |As i| )" |
|
309 |
by (auto simp: Csum_def Field_card_of) |
|
310 |
||
311 |
(* NB: Always, under the cardinal operator, |
|
312 |
operations on sets are reduced automatically to operations on cardinals. |
|
313 |
This should make cardinal reasoning more direct and natural. *) |
|
314 |
||
315 |
||
316 |
subsection {* Product *} |
|
317 |
||
318 |
definition cprod (infixr "*c" 80) where |
|
319 |
"r1 *c r2 = |Field r1 <*> Field r2|" |
|
320 |
||
321 |
lemma card_order_cprod: |
|
322 |
assumes "card_order r1" "card_order r2" |
|
323 |
shows "card_order (r1 *c r2)" |
|
324 |
proof - |
|
325 |
have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto |
|
326 |
thus ?thesis by (auto simp: cprod_def card_of_card_order_on) |
|
327 |
qed |
|
328 |
||
329 |
lemma Card_order_cprod: "Card_order (r1 *c r2)" |
|
330 |
by (simp only: cprod_def Field_card_of card_of_card_order_on) |
|
331 |
||
332 |
lemma cprod_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 *c q \<le>o r1 *c q" |
|
333 |
by (simp only: cprod_def ordLeq_Times_mono1) |
|
334 |
||
335 |
lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2" |
|
336 |
by (simp only: cprod_def ordLeq_Times_mono2) |
|
337 |
||
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
338 |
lemma cprod_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 *c p2 \<le>o r1 *c r2" |
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
339 |
by (rule ordLeq_transitive[OF cprod_mono1 cprod_mono2]) |
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
340 |
|
54474 | 341 |
lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2" |
55811 | 342 |
unfolding cprod_def by (rule Card_order_Times2) (auto intro: czeroI) |
54474 | 343 |
|
344 |
lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)" |
|
345 |
by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product) |
|
346 |
||
347 |
lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)" |
|
55811 | 348 |
by (rule cinfinite_mono) (auto intro: ordLeq_cprod2) |
54474 | 349 |
|
350 |
lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)" |
|
351 |
by (blast intro: cinfinite_cprod2 Card_order_cprod) |
|
352 |
||
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
353 |
lemma cprod_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 *c p2 =o r1 *c r2" |
55866 | 354 |
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono) |
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
355 |
|
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
356 |
lemma cprod_cong1: "\<lbrakk>p1 =o r1\<rbrakk> \<Longrightarrow> p1 *c p2 =o r1 *c p2" |
55866 | 357 |
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono1) |
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
358 |
|
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
359 |
lemma cprod_cong2: "p2 =o r2 \<Longrightarrow> q *c p2 =o q *c r2" |
55866 | 360 |
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono2) |
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
361 |
|
54474 | 362 |
lemma cprod_com: "p1 *c p2 =o p2 *c p1" |
363 |
by (simp only: cprod_def card_of_Times_commute) |
|
364 |
||
365 |
lemma card_of_Csum_Times: |
|
366 |
"\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> (CSUM i : |I|. |A i| ) \<le>o |I| *c |B|" |
|
367 |
by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_Times) |
|
368 |
||
369 |
lemma card_of_Csum_Times': |
|
370 |
assumes "Card_order r" "\<forall>i \<in> I. |A i| \<le>o r" |
|
371 |
shows "(CSUM i : |I|. |A i| ) \<le>o |I| *c r" |
|
372 |
proof - |
|
373 |
from assms(1) have *: "r =o |Field r|" by (simp add: card_of_unique) |
|
374 |
with assms(2) have "\<forall>i \<in> I. |A i| \<le>o |Field r|" by (blast intro: ordLeq_ordIso_trans) |
|
375 |
hence "(CSUM i : |I|. |A i| ) \<le>o |I| *c |Field r|" by (simp only: card_of_Csum_Times) |
|
376 |
also from * have "|I| *c |Field r| \<le>o |I| *c r" |
|
377 |
by (simp only: Field_card_of card_of_refl cprod_def ordIso_imp_ordLeq) |
|
378 |
finally show ?thesis . |
|
379 |
qed |
|
380 |
||
381 |
lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)" |
|
382 |
unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric) |
|
383 |
||
384 |
lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2" |
|
55811 | 385 |
unfolding csum_def by (rule conjunct2[OF Card_order_Plus_infinite]) |
386 |
(auto simp: cinfinite_def dest: cinfinite_mono) |
|
54474 | 387 |
|
388 |
lemma csum_absorb1': |
|
389 |
assumes card: "Card_order r2" |
|
390 |
and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2" |
|
391 |
shows "r2 +c r1 =o r2" |
|
392 |
by (rule ordIso_transitive, rule csum_com, rule csum_absorb2', (simp only: assms)+) |
|
393 |
||
394 |
lemma csum_absorb1: "\<lbrakk>Cinfinite r2; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r2 +c r1 =o r2" |
|
395 |
by (rule csum_absorb1') auto |
|
396 |
||
397 |
||
398 |
subsection {* Exponentiation *} |
|
399 |
||
400 |
definition cexp (infixr "^c" 90) where |
|
401 |
"r1 ^c r2 \<equiv> |Func (Field r2) (Field r1)|" |
|
402 |
||
403 |
lemma Card_order_cexp: "Card_order (r1 ^c r2)" |
|
404 |
unfolding cexp_def by (rule card_of_Card_order) |
|
405 |
||
406 |
lemma cexp_mono': |
|
407 |
assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2" |
|
408 |
and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}" |
|
409 |
shows "p1 ^c p2 \<le>o r1 ^c r2" |
|
410 |
proof(cases "Field p1 = {}") |
|
411 |
case True |
|
55811 | 412 |
hence "Field p2 \<noteq> {} \<Longrightarrow> Func (Field p2) {} = {}" unfolding Func_is_emp by simp |
413 |
with True have "|Field |Func (Field p2) (Field p1)|| \<le>o cone" |
|
54474 | 414 |
unfolding cone_def Field_card_of |
55811 | 415 |
by (cases "Field p2 = {}", auto intro: surj_imp_ordLeq simp: Func_empty) |
54474 | 416 |
hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def) |
417 |
hence "p1 ^c p2 \<le>o cone" unfolding cexp_def . |
|
418 |
thus ?thesis |
|
419 |
proof (cases "Field p2 = {}") |
|
420 |
case True |
|
421 |
with n have "Field r2 = {}" . |
|
55604 | 422 |
hence "cone \<le>o r1 ^c r2" unfolding cone_def cexp_def Func_def |
423 |
by (auto intro: card_of_ordLeqI[where f="\<lambda>_ _. undefined"]) |
|
54474 | 424 |
thus ?thesis using `p1 ^c p2 \<le>o cone` ordLeq_transitive by auto |
425 |
next |
|
426 |
case False with True have "|Field (p1 ^c p2)| =o czero" |
|
427 |
unfolding card_of_ordIso_czero_iff_empty cexp_def Field_card_of Func_def by auto |
|
428 |
thus ?thesis unfolding cexp_def card_of_ordIso_czero_iff_empty Field_card_of |
|
429 |
by (simp add: card_of_empty) |
|
430 |
qed |
|
431 |
next |
|
432 |
case False |
|
433 |
have 1: "|Field p1| \<le>o |Field r1|" and 2: "|Field p2| \<le>o |Field r2|" |
|
434 |
using 1 2 by (auto simp: card_of_mono2) |
|
435 |
obtain f1 where f1: "f1 ` Field r1 = Field p1" |
|
436 |
using 1 unfolding card_of_ordLeq2[OF False, symmetric] by auto |
|
437 |
obtain f2 where f2: "inj_on f2 (Field p2)" "f2 ` Field p2 \<subseteq> Field r2" |
|
438 |
using 2 unfolding card_of_ordLeq[symmetric] by blast |
|
439 |
have 0: "Func_map (Field p2) f1 f2 ` (Field (r1 ^c r2)) = Field (p1 ^c p2)" |
|
440 |
unfolding cexp_def Field_card_of using Func_map_surj[OF f1 f2 n, symmetric] . |
|
441 |
have 00: "Field (p1 ^c p2) \<noteq> {}" unfolding cexp_def Field_card_of Func_is_emp |
|
442 |
using False by simp |
|
443 |
show ?thesis |
|
444 |
using 0 card_of_ordLeq2[OF 00] unfolding cexp_def Field_card_of by blast |
|
445 |
qed |
|
446 |
||
447 |
lemma cexp_mono: |
|
448 |
assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2" |
|
449 |
and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2" |
|
450 |
shows "p1 ^c p2 \<le>o r1 ^c r2" |
|
55811 | 451 |
by (rule cexp_mono'[OF 1 2 czeroE[OF n[OF czeroI[OF card]]]]) |
54474 | 452 |
|
453 |
lemma cexp_mono1: |
|
454 |
assumes 1: "p1 \<le>o r1" and q: "Card_order q" |
|
455 |
shows "p1 ^c q \<le>o r1 ^c q" |
|
456 |
using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q) |
|
457 |
||
458 |
lemma cexp_mono2': |
|
459 |
assumes 2: "p2 \<le>o r2" and q: "Card_order q" |
|
460 |
and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}" |
|
461 |
shows "q ^c p2 \<le>o q ^c r2" |
|
462 |
using ordLeq_refl[OF q] by (rule cexp_mono'[OF _ 2 n]) auto |
|
463 |
||
464 |
lemma cexp_mono2: |
|
465 |
assumes 2: "p2 \<le>o r2" and q: "Card_order q" |
|
466 |
and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2" |
|
467 |
shows "q ^c p2 \<le>o q ^c r2" |
|
468 |
using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto |
|
469 |
||
470 |
lemma cexp_mono2_Cnotzero: |
|
471 |
assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2" |
|
472 |
shows "q ^c p2 \<le>o q ^c r2" |
|
55811 | 473 |
using assms(3) czeroI by (blast intro: cexp_mono2'[OF assms(1,2)]) |
54474 | 474 |
|
475 |
lemma cexp_cong: |
|
476 |
assumes 1: "p1 =o r1" and 2: "p2 =o r2" |
|
477 |
and Cr: "Card_order r2" |
|
478 |
and Cp: "Card_order p2" |
|
479 |
shows "p1 ^c p2 =o r1 ^c r2" |
|
480 |
proof - |
|
481 |
obtain f where "bij_betw f (Field p2) (Field r2)" |
|
482 |
using 2 card_of_ordIso[of "Field p2" "Field r2"] card_of_cong by auto |
|
483 |
hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto |
|
484 |
have r: "p2 =o czero \<Longrightarrow> r2 =o czero" |
|
485 |
and p: "r2 =o czero \<Longrightarrow> p2 =o czero" |
|
486 |
using 0 Cr Cp czeroE czeroI by auto |
|
487 |
show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq |
|
55811 | 488 |
using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by blast |
54474 | 489 |
qed |
490 |
||
491 |
lemma cexp_cong1: |
|
492 |
assumes 1: "p1 =o r1" and q: "Card_order q" |
|
493 |
shows "p1 ^c q =o r1 ^c q" |
|
494 |
by (rule cexp_cong[OF 1 _ q q]) (rule ordIso_refl[OF q]) |
|
495 |
||
496 |
lemma cexp_cong2: |
|
497 |
assumes 2: "p2 =o r2" and q: "Card_order q" and p: "Card_order p2" |
|
498 |
shows "q ^c p2 =o q ^c r2" |
|
499 |
by (rule cexp_cong[OF _ 2]) (auto simp only: ordIso_refl Card_order_ordIso2[OF p 2] q p) |
|
500 |
||
501 |
lemma cexp_cone: |
|
502 |
assumes "Card_order r" |
|
503 |
shows "r ^c cone =o r" |
|
504 |
proof - |
|
505 |
have "r ^c cone =o |Field r|" |
|
506 |
unfolding cexp_def cone_def Field_card_of Func_empty |
|
507 |
card_of_ordIso[symmetric] bij_betw_def Func_def inj_on_def image_def |
|
508 |
by (rule exI[of _ "\<lambda>f. f ()"]) auto |
|
509 |
also have "|Field r| =o r" by (rule card_of_Field_ordIso[OF assms]) |
|
510 |
finally show ?thesis . |
|
511 |
qed |
|
512 |
||
513 |
lemma cexp_cprod: |
|
514 |
assumes r1: "Card_order r1" |
|
515 |
shows "(r1 ^c r2) ^c r3 =o r1 ^c (r2 *c r3)" (is "?L =o ?R") |
|
516 |
proof - |
|
517 |
have "?L =o r1 ^c (r3 *c r2)" |
|
518 |
unfolding cprod_def cexp_def Field_card_of |
|
519 |
using card_of_Func_Times by(rule ordIso_symmetric) |
|
520 |
also have "r1 ^c (r3 *c r2) =o ?R" |
|
521 |
apply(rule cexp_cong2) using cprod_com r1 by (auto simp: Card_order_cprod) |
|
522 |
finally show ?thesis . |
|
523 |
qed |
|
524 |
||
525 |
lemma cprod_infinite1': "\<lbrakk>Cinfinite r; Cnotzero p; p \<le>o r\<rbrakk> \<Longrightarrow> r *c p =o r" |
|
526 |
unfolding cinfinite_def cprod_def |
|
527 |
by (rule Card_order_Times_infinite[THEN conjunct1]) (blast intro: czeroI)+ |
|
528 |
||
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
529 |
lemma cprod_infinite: "Cinfinite r \<Longrightarrow> r *c r =o r" |
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
530 |
using cprod_infinite1' Cinfinite_Cnotzero ordLeq_refl by blast |
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
531 |
|
54474 | 532 |
lemma cexp_cprod_ordLeq: |
533 |
assumes r1: "Card_order r1" and r2: "Cinfinite r2" |
|
534 |
and r3: "Cnotzero r3" "r3 \<le>o r2" |
|
535 |
shows "(r1 ^c r2) ^c r3 =o r1 ^c r2" (is "?L =o ?R") |
|
536 |
proof- |
|
537 |
have "?L =o r1 ^c (r2 *c r3)" using cexp_cprod[OF r1] . |
|
538 |
also have "r1 ^c (r2 *c r3) =o ?R" |
|
539 |
apply(rule cexp_cong2) |
|
540 |
apply(rule cprod_infinite1'[OF r2 r3]) using r1 r2 by (fastforce simp: Card_order_cprod)+ |
|
541 |
finally show ?thesis . |
|
542 |
qed |
|
543 |
||
544 |
lemma Cnotzero_UNIV: "Cnotzero |UNIV|" |
|
545 |
by (auto simp: card_of_Card_order card_of_ordIso_czero_iff_empty) |
|
546 |
||
547 |
lemma ordLess_ctwo_cexp: |
|
548 |
assumes "Card_order r" |
|
549 |
shows "r <o ctwo ^c r" |
|
550 |
proof - |
|
551 |
have "r <o |Pow (Field r)|" using assms by (rule Card_order_Pow) |
|
552 |
also have "|Pow (Field r)| =o ctwo ^c r" |
|
553 |
unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func) |
|
554 |
finally show ?thesis . |
|
555 |
qed |
|
556 |
||
557 |
lemma ordLeq_cexp1: |
|
558 |
assumes "Cnotzero r" "Card_order q" |
|
559 |
shows "q \<le>o q ^c r" |
|
560 |
proof (cases "q =o (czero :: 'a rel)") |
|
561 |
case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans) |
|
562 |
next |
|
563 |
case False |
|
564 |
thus ?thesis |
|
565 |
apply - |
|
566 |
apply (rule ordIso_ordLeq_trans) |
|
567 |
apply (rule ordIso_symmetric) |
|
568 |
apply (rule cexp_cone) |
|
569 |
apply (rule assms(2)) |
|
570 |
apply (rule cexp_mono2) |
|
571 |
apply (rule cone_ordLeq_Cnotzero) |
|
572 |
apply (rule assms(1)) |
|
573 |
apply (rule assms(2)) |
|
574 |
apply (rule notE) |
|
575 |
apply (rule cone_not_czero) |
|
576 |
apply assumption |
|
577 |
apply (rule Card_order_cone) |
|
578 |
done |
|
579 |
qed |
|
580 |
||
581 |
lemma ordLeq_cexp2: |
|
582 |
assumes "ctwo \<le>o q" "Card_order r" |
|
583 |
shows "r \<le>o q ^c r" |
|
584 |
proof (cases "r =o (czero :: 'a rel)") |
|
585 |
case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans) |
|
586 |
next |
|
587 |
case False thus ?thesis |
|
588 |
apply - |
|
589 |
apply (rule ordLess_imp_ordLeq) |
|
590 |
apply (rule ordLess_ordLeq_trans) |
|
591 |
apply (rule ordLess_ctwo_cexp) |
|
592 |
apply (rule assms(2)) |
|
593 |
apply (rule cexp_mono1) |
|
594 |
apply (rule assms(1)) |
|
595 |
apply (rule assms(2)) |
|
596 |
done |
|
597 |
qed |
|
598 |
||
599 |
lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)" |
|
55811 | 600 |
by (rule cinfinite_mono[OF ordLeq_cexp2]) simp_all |
54474 | 601 |
|
602 |
lemma Cinfinite_cexp: |
|
603 |
"\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)" |
|
604 |
by (simp add: cinfinite_cexp Card_order_cexp) |
|
605 |
||
606 |
lemma ctwo_ordLess_natLeq: "ctwo <o natLeq" |
|
54581
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents:
54578
diff
changeset
|
607 |
unfolding ctwo_def using finite_UNIV natLeq_cinfinite natLeq_Card_order |
1502a1f707d9
eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents:
54578
diff
changeset
|
608 |
by (intro Cfinite_ordLess_Cinfinite) (auto simp: cfinite_def card_of_Card_order) |
54474 | 609 |
|
610 |
lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r" |
|
55811 | 611 |
by (rule ordLess_ordLeq_trans[OF ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite]) |
54474 | 612 |
|
613 |
lemma ctwo_ordLeq_Cinfinite: |
|
614 |
assumes "Cinfinite r" |
|
615 |
shows "ctwo \<le>o r" |
|
616 |
by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]]) |
|
617 |
||
618 |
lemma Un_Cinfinite_bound: "\<lbrakk>|A| \<le>o r; |B| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |A \<union> B| \<le>o r" |
|
619 |
by (auto simp add: cinfinite_def card_of_Un_ordLeq_infinite_Field) |
|
620 |
||
621 |
lemma UNION_Cinfinite_bound: "\<lbrakk>|I| \<le>o r; \<forall>i \<in> I. |A i| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |\<Union>i \<in> I. A i| \<le>o r" |
|
622 |
by (auto simp add: card_of_UNION_ordLeq_infinite_Field cinfinite_def) |
|
623 |
||
624 |
lemma csum_cinfinite_bound: |
|
625 |
assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r" |
|
626 |
shows "p +c q \<le>o r" |
|
627 |
proof - |
|
628 |
from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r" |
|
629 |
unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+ |
|
630 |
with assms show ?thesis unfolding cinfinite_def csum_def |
|
631 |
by (blast intro: card_of_Plus_ordLeq_infinite_Field) |
|
632 |
qed |
|
633 |
||
634 |
lemma cprod_cinfinite_bound: |
|
635 |
assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r" |
|
636 |
shows "p *c q \<le>o r" |
|
637 |
proof - |
|
638 |
from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r" |
|
639 |
unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+ |
|
640 |
with assms show ?thesis unfolding cinfinite_def cprod_def |
|
641 |
by (blast intro: card_of_Times_ordLeq_infinite_Field) |
|
642 |
qed |
|
643 |
||
644 |
lemma cprod_csum_cexp: |
|
645 |
"r1 *c r2 \<le>o (r1 +c r2) ^c ctwo" |
|
646 |
unfolding cprod_def csum_def cexp_def ctwo_def Field_card_of |
|
647 |
proof - |
|
648 |
let ?f = "\<lambda>(a, b). %x. if x then Inl a else Inr b" |
|
649 |
have "inj_on ?f (Field r1 \<times> Field r2)" (is "inj_on _ ?LHS") |
|
650 |
by (auto simp: inj_on_def fun_eq_iff split: bool.split) |
|
651 |
moreover |
|
652 |
have "?f ` ?LHS \<subseteq> Func (UNIV :: bool set) (Field r1 <+> Field r2)" (is "_ \<subseteq> ?RHS") |
|
653 |
by (auto simp: Func_def) |
|
654 |
ultimately show "|?LHS| \<le>o |?RHS|" using card_of_ordLeq by blast |
|
655 |
qed |
|
656 |
||
657 |
lemma Cfinite_cprod_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r *c s \<le>o s" |
|
658 |
by (intro cprod_cinfinite_bound) |
|
659 |
(auto intro: ordLeq_refl ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite]) |
|
660 |
||
661 |
lemma cprod_cexp: "(r *c s) ^c t =o r ^c t *c s ^c t" |
|
662 |
unfolding cprod_def cexp_def Field_card_of by (rule Func_Times_Range) |
|
663 |
||
664 |
lemma cprod_cexp_csum_cexp_Cinfinite: |
|
665 |
assumes t: "Cinfinite t" |
|
666 |
shows "(r *c s) ^c t \<le>o (r +c s) ^c t" |
|
667 |
proof - |
|
668 |
have "(r *c s) ^c t \<le>o ((r +c s) ^c ctwo) ^c t" |
|
669 |
by (rule cexp_mono1[OF cprod_csum_cexp conjunct2[OF t]]) |
|
670 |
also have "((r +c s) ^c ctwo) ^c t =o (r +c s) ^c (ctwo *c t)" |
|
671 |
by (rule cexp_cprod[OF Card_order_csum]) |
|
672 |
also have "(r +c s) ^c (ctwo *c t) =o (r +c s) ^c (t *c ctwo)" |
|
673 |
by (rule cexp_cong2[OF cprod_com Card_order_csum Card_order_cprod]) |
|
674 |
also have "(r +c s) ^c (t *c ctwo) =o ((r +c s) ^c t) ^c ctwo" |
|
675 |
by (rule ordIso_symmetric[OF cexp_cprod[OF Card_order_csum]]) |
|
676 |
also have "((r +c s) ^c t) ^c ctwo =o (r +c s) ^c t" |
|
677 |
by (rule cexp_cprod_ordLeq[OF Card_order_csum t ctwo_Cnotzero ctwo_ordLeq_Cinfinite[OF t]]) |
|
678 |
finally show ?thesis . |
|
679 |
qed |
|
680 |
||
681 |
lemma Cfinite_cexp_Cinfinite: |
|
682 |
assumes s: "Cfinite s" and t: "Cinfinite t" |
|
683 |
shows "s ^c t \<le>o ctwo ^c t" |
|
684 |
proof (cases "s \<le>o ctwo") |
|
685 |
case True thus ?thesis using t by (blast intro: cexp_mono1) |
|
686 |
next |
|
687 |
case False |
|
55811 | 688 |
hence "ctwo \<le>o s" using ordLeq_total[of s ctwo] Card_order_ctwo s |
689 |
by (auto intro: card_order_on_well_order_on) |
|
690 |
hence "Cnotzero s" using Cnotzero_mono[OF ctwo_Cnotzero] s by blast |
|
691 |
hence st: "Cnotzero (s *c t)" by (intro Cinfinite_Cnotzero[OF Cinfinite_cprod2]) (auto simp: t) |
|
54474 | 692 |
have "s ^c t \<le>o (ctwo ^c s) ^c t" |
693 |
using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp]) |
|
694 |
also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)" |
|
695 |
by (blast intro: Card_order_ctwo cexp_cprod) |
|
696 |
also have "ctwo ^c (s *c t) \<le>o ctwo ^c t" |
|
697 |
using assms st by (intro cexp_mono2_Cnotzero Cfinite_cprod_Cinfinite Card_order_ctwo) |
|
698 |
finally show ?thesis . |
|
699 |
qed |
|
700 |
||
701 |
lemma csum_Cfinite_cexp_Cinfinite: |
|
702 |
assumes r: "Card_order r" and s: "Cfinite s" and t: "Cinfinite t" |
|
703 |
shows "(r +c s) ^c t \<le>o (r +c ctwo) ^c t" |
|
704 |
proof (cases "Cinfinite r") |
|
705 |
case True |
|
706 |
hence "r +c s =o r" by (intro csum_absorb1 ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite] s) |
|
707 |
hence "(r +c s) ^c t =o r ^c t" using t by (blast intro: cexp_cong1) |
|
708 |
also have "r ^c t \<le>o (r +c ctwo) ^c t" using t by (blast intro: cexp_mono1 ordLeq_csum1 r) |
|
709 |
finally show ?thesis . |
|
710 |
next |
|
711 |
case False |
|
712 |
with r have "Cfinite r" unfolding cinfinite_def cfinite_def by auto |
|
713 |
hence "Cfinite (r +c s)" by (intro Cfinite_csum s) |
|
714 |
hence "(r +c s) ^c t \<le>o ctwo ^c t" by (intro Cfinite_cexp_Cinfinite t) |
|
715 |
also have "ctwo ^c t \<le>o (r +c ctwo) ^c t" using t |
|
716 |
by (blast intro: cexp_mono1 ordLeq_csum2 Card_order_ctwo) |
|
717 |
finally show ?thesis . |
|
718 |
qed |
|
719 |
||
720 |
(* cardSuc *) |
|
721 |
||
722 |
lemma Cinfinite_cardSuc: "Cinfinite r \<Longrightarrow> Cinfinite (cardSuc r)" |
|
723 |
by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite) |
|
724 |
||
725 |
lemma cardSuc_UNION_Cinfinite: |
|
726 |
assumes "Cinfinite r" "relChain (cardSuc r) As" "B \<le> (UN i : Field (cardSuc r). As i)" "|B| <=o r" |
|
727 |
shows "EX i : Field (cardSuc r). B \<le> As i" |
|
728 |
using cardSuc_UNION assms unfolding cinfinite_def by blast |
|
729 |
||
730 |
end |