src/HOL/ex/Fib.thy
author wenzelm
Sat, 02 Sep 2000 21:56:24 +0200
changeset 9811 39ffdb8cab03
parent 8658 3cf533397c5a
permissions -rw-r--r--
HOL/Lambda: converted into new-style theory and document;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
3300
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
     1
(*  Title:      ex/Fib
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
     2
    ID:         $Id$
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
     4
    Copyright   1997  University of Cambridge
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
     5
3494
f7ac2d1e2051 Fixed comments
paulson
parents: 3375
diff changeset
     6
The Fibonacci function.  Demonstrates the use of recdef.
3300
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
     7
*)
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
     8
6481
dbf2d9b3d6c8 recdef requires theory Recdef;
wenzelm
parents: 4809
diff changeset
     9
Fib = Divides + Primes +
3300
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
    10
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
    11
consts fib  :: "nat => nat"
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
    12
recdef fib "less_than"
8658
3cf533397c5a proper naming of fib equations;
wenzelm
parents: 6481
diff changeset
    13
  zero    "fib 0 = 0"
3cf533397c5a proper naming of fib equations;
wenzelm
parents: 6481
diff changeset
    14
  one     "fib 1 = 1"
3cf533397c5a proper naming of fib equations;
wenzelm
parents: 6481
diff changeset
    15
  Suc_Suc "fib (Suc (Suc x)) = fib x + fib (Suc x)"
3300
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
    16
4f5ffefa7799 New example of recdef and permutative rewriting
paulson
parents:
diff changeset
    17
end