6481
|
1 |
(* Title: HOL/ex/Recdefs.thy
|
5124
|
2 |
ID: $Id$
|
|
3 |
Author: Konrad Slind and Lawrence C Paulson
|
|
4 |
Copyright 1996 University of Cambridge
|
|
5 |
|
|
6 |
Examples of recdef definitions. Most, but not all, are handled automatically.
|
|
7 |
*)
|
|
8 |
|
6455
|
9 |
Recdefs = Main +
|
5124
|
10 |
|
|
11 |
consts fact :: "nat => nat"
|
|
12 |
recdef fact "less_than"
|
|
13 |
"fact x = (if (x = 0) then 1 else x * fact (x - 1))"
|
|
14 |
|
|
15 |
consts Fact :: "nat => nat"
|
|
16 |
recdef Fact "less_than"
|
|
17 |
"Fact 0 = 1"
|
|
18 |
"Fact (Suc x) = (Fact x * Suc x)"
|
|
19 |
|
|
20 |
consts map2 :: "('a => 'b => 'c) * 'a list * 'b list => 'c list"
|
|
21 |
recdef map2 "measure(%(f,l1,l2).size l1)"
|
|
22 |
"map2(f, [], []) = []"
|
|
23 |
"map2(f, h#t, []) = []"
|
|
24 |
"map2(f, h1#t1, h2#t2) = f h1 h2 # map2 (f, t1, t2)"
|
|
25 |
|
|
26 |
consts finiteRchain :: "(['a,'a] => bool) * 'a list => bool"
|
|
27 |
recdef finiteRchain "measure (%(R,l).size l)"
|
|
28 |
"finiteRchain(R, []) = True"
|
|
29 |
"finiteRchain(R, [x]) = True"
|
|
30 |
"finiteRchain(R, x#y#rst) = (R x y & finiteRchain(R, y#rst))"
|
|
31 |
|
|
32 |
(*Not handled automatically: too complicated.*)
|
|
33 |
consts variant :: "nat * nat list => nat"
|
|
34 |
recdef variant "measure(%(n::nat, ns). size(filter(%y. n <= y) ns))"
|
|
35 |
"variant(x, L) = (if (x mem L) then variant(Suc x, L) else x)"
|
|
36 |
|
|
37 |
consts gcd :: "nat * nat => nat"
|
|
38 |
recdef gcd "measure (%(x,y).x+y)"
|
|
39 |
"gcd (0,y) = y"
|
|
40 |
"gcd (Suc x, 0) = Suc x"
|
|
41 |
"gcd (Suc x, Suc y) = (if (y <= x) then gcd(x - y, Suc y)
|
|
42 |
else gcd(Suc x, y - x))"
|
|
43 |
|
|
44 |
(*Not handled automatically. In fact, g is the zero constant function.*)
|
|
45 |
consts g :: "nat => nat"
|
|
46 |
recdef g "less_than"
|
|
47 |
"g 0 = 0"
|
|
48 |
"g(Suc x) = g(g x)"
|
|
49 |
|
|
50 |
consts Div :: "nat * nat => nat * nat"
|
|
51 |
recdef Div "measure fst"
|
|
52 |
"Div(0,x) = (0,0)"
|
|
53 |
"Div(Suc x, y) =
|
|
54 |
(let (q,r) = Div(x,y)
|
|
55 |
in
|
|
56 |
if (y <= Suc r) then (Suc q,0) else (q, Suc r))"
|
|
57 |
|
|
58 |
(*Not handled automatically. Should be the predecessor function, but there
|
|
59 |
is an unnecessary "looping" recursive call in k(1) *)
|
|
60 |
consts k :: "nat => nat"
|
|
61 |
recdef k "less_than"
|
|
62 |
"k 0 = 0"
|
|
63 |
"k (Suc n) = (let x = k 1
|
|
64 |
in if (0=1) then k (Suc 1) else n)"
|
|
65 |
|
|
66 |
consts part :: "('a=>bool) * 'a list * 'a list * 'a list => 'a list * 'a list"
|
|
67 |
recdef part "measure (%(P,l,l1,l2).size l)"
|
|
68 |
"part(P, [], l1,l2) = (l1,l2)"
|
|
69 |
"part(P, h#rst, l1,l2) =
|
|
70 |
(if P h then part(P,rst, h#l1, l2)
|
|
71 |
else part(P,rst, l1, h#l2))"
|
|
72 |
|
|
73 |
consts fqsort :: "(['a,'a] => bool) * 'a list => 'a list"
|
|
74 |
recdef fqsort "measure (size o snd)"
|
|
75 |
"fqsort(ord,[]) = []"
|
|
76 |
"fqsort(ord, x#rst) =
|
|
77 |
(let (less,more) = part((%y. ord y x), rst, ([],[]))
|
|
78 |
in
|
|
79 |
fqsort(ord,less)@[x]@fqsort(ord,more))"
|
|
80 |
|
|
81 |
(* silly example which demonstrates the occasional need for additional
|
|
82 |
congruence rules (here: map_cong from List). If the congruence rule is
|
|
83 |
removed, an unprovable termination condition is generated!
|
|
84 |
Termination not proved automatically; see the ML file.
|
|
85 |
TFL requires (%x.mapf x) instead of mapf.
|
|
86 |
*)
|
|
87 |
consts mapf :: nat => nat list
|
|
88 |
recdef mapf "measure(%m. m)"
|
6481
|
89 |
congs map_cong
|
5124
|
90 |
"mapf 0 = []"
|
|
91 |
"mapf (Suc n) = concat(map (%x. mapf x) (replicate n n))"
|
|
92 |
|
|
93 |
end
|