| author | wenzelm | 
| Wed, 08 Aug 2012 20:35:34 +0200 | |
| changeset 48739 | 3a6c03b15916 | 
| parent 47818 | 151d137f1095 | 
| permissions | -rw-r--r-- | 
| 43158 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
3  | 
theory Def_Ass_Sound_Small imports Def_Ass Def_Ass_Small  | 
|
4  | 
begin  | 
|
5  | 
||
6  | 
subsection "Soundness wrt Small Steps"  | 
|
7  | 
||
8  | 
theorem progress:  | 
|
9  | 
"D (dom s) c A' \<Longrightarrow> c \<noteq> SKIP \<Longrightarrow> EX cs'. (c,s) \<rightarrow> cs'"  | 
|
| 45015 | 10  | 
proof (induction c arbitrary: s A')  | 
| 43158 | 11  | 
case Assign thus ?case by auto (metis aval_Some small_step.Assign)  | 
12  | 
next  | 
|
13  | 
case (If b c1 c2)  | 
|
14  | 
then obtain bv where "bval b s = Some bv" by (auto dest!:bval_Some)  | 
|
15  | 
then show ?case  | 
|
16  | 
by(cases bv)(auto intro: small_step.IfTrue small_step.IfFalse)  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
43158 
diff
changeset
 | 
17  | 
qed (fastforce intro: small_step.intros)+  | 
| 43158 | 18  | 
|
19  | 
lemma D_mono: "D A c M \<Longrightarrow> A \<subseteq> A' \<Longrightarrow> EX M'. D A' c M' & M <= M'"  | 
|
| 45015 | 20  | 
proof (induction c arbitrary: A A' M)  | 
| 47818 | 21  | 
case Seq thus ?case by auto (metis D.intros(3))  | 
| 43158 | 22  | 
next  | 
23  | 
case (If b c1 c2)  | 
|
24  | 
then obtain M1 M2 where "vars b \<subseteq> A" "D A c1 M1" "D A c2 M2" "M = M1 \<inter> M2"  | 
|
25  | 
by auto  | 
|
| 45015 | 26  | 
with If.IH `A \<subseteq> A'` obtain M1' M2'  | 
| 43158 | 27  | 
where "D A' c1 M1'" "D A' c2 M2'" and "M1 \<subseteq> M1'" "M2 \<subseteq> M2'" by metis  | 
28  | 
hence "D A' (IF b THEN c1 ELSE c2) (M1' \<inter> M2')" and "M \<subseteq> M1' \<inter> M2'"  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
43158 
diff
changeset
 | 
29  | 
using `vars b \<subseteq> A` `A \<subseteq> A'` `M = M1 \<inter> M2` by(fastforce intro: D.intros)+  | 
| 43158 | 30  | 
thus ?case by metis  | 
31  | 
next  | 
|
32  | 
case While thus ?case by auto (metis D.intros(5) subset_trans)  | 
|
33  | 
qed (auto intro: D.intros)  | 
|
34  | 
||
35  | 
theorem D_preservation:  | 
|
36  | 
"(c,s) \<rightarrow> (c',s') \<Longrightarrow> D (dom s) c A \<Longrightarrow> EX A'. D (dom s') c' A' & A <= A'"  | 
|
| 45015 | 37  | 
proof (induction arbitrary: A rule: small_step_induct)  | 
| 43158 | 38  | 
case (While b c s)  | 
39  | 
then obtain A' where "vars b \<subseteq> dom s" "A = dom s" "D (dom s) c A'" by blast  | 
|
40  | 
moreover  | 
|
41  | 
then obtain A'' where "D A' c A''" by (metis D_incr D_mono)  | 
|
42  | 
ultimately have "D (dom s) (IF b THEN c; WHILE b DO c ELSE SKIP) (dom s)"  | 
|
| 47818 | 43  | 
by (metis D.If[OF `vars b \<subseteq> dom s` D.Seq[OF `D (dom s) c A'` D.While[OF _ `D A' c A''`]] D.Skip] D_incr Int_absorb1 subset_trans)  | 
| 43158 | 44  | 
thus ?case by (metis D_incr `A = dom s`)  | 
45  | 
next  | 
|
| 47818 | 46  | 
case Seq2 thus ?case by auto (metis D_mono D.intros(3))  | 
| 43158 | 47  | 
qed (auto intro: D.intros)  | 
48  | 
||
49  | 
theorem D_sound:  | 
|
50  | 
"(c,s) \<rightarrow>* (c',s') \<Longrightarrow> D (dom s) c A' \<Longrightarrow> c' \<noteq> SKIP  | 
|
51  | 
\<Longrightarrow> \<exists>cs''. (c',s') \<rightarrow> cs''"  | 
|
| 45015 | 52  | 
apply(induction arbitrary: A' rule:star_induct)  | 
| 43158 | 53  | 
apply (metis progress)  | 
54  | 
by (metis D_preservation)  | 
|
55  | 
||
56  | 
end  |