author | blanchet |
Mon, 08 Sep 2014 23:09:25 +0200 | |
changeset 58243 | 3aa25f39cd74 |
parent 57492 | 74bf65a1910a |
child 61179 | 16775cad1a5c |
permissions | -rw-r--r-- |
47613 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
theory Abs_Int2 |
|
4 |
imports Abs_Int1 |
|
5 |
begin |
|
6 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
7 |
instantiation prod :: (order,order) order |
47613 | 8 |
begin |
9 |
||
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
10 |
definition "less_eq_prod p1 p2 = (fst p1 \<le> fst p2 \<and> snd p1 \<le> snd p2)" |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
11 |
definition "less_prod p1 p2 = (p1 \<le> p2 \<and> \<not> p2 \<le> (p1::'a*'b))" |
47613 | 12 |
|
13 |
instance |
|
14 |
proof |
|
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
15 |
case goal1 show ?case by(rule less_prod_def) |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
16 |
next |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
17 |
case goal2 show ?case by(simp add: less_eq_prod_def) |
47613 | 18 |
next |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
19 |
case goal3 thus ?case unfolding less_eq_prod_def by(metis order_trans) |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
20 |
next |
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
21 |
case goal4 thus ?case by(simp add: less_eq_prod_def)(metis eq_iff surjective_pairing) |
47613 | 22 |
qed |
23 |
||
24 |
end |
|
25 |
||
26 |
||
27 |
subsection "Backward Analysis of Expressions" |
|
28 |
||
51826 | 29 |
subclass (in bounded_lattice) semilattice_sup_top .. |
47613 | 30 |
|
52504 | 31 |
locale Val_lattice_gamma = Gamma_semilattice where \<gamma> = \<gamma> |
51826 | 32 |
for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" + |
51390 | 33 |
assumes inter_gamma_subset_gamma_inf: |
47613 | 34 |
"\<gamma> a1 \<inter> \<gamma> a2 \<subseteq> \<gamma>(a1 \<sqinter> a2)" |
49396 | 35 |
and gamma_bot[simp]: "\<gamma> \<bottom> = {}" |
47613 | 36 |
begin |
37 |
||
51390 | 38 |
lemma in_gamma_inf: "x : \<gamma> a1 \<Longrightarrow> x : \<gamma> a2 \<Longrightarrow> x : \<gamma>(a1 \<sqinter> a2)" |
39 |
by (metis IntI inter_gamma_subset_gamma_inf set_mp) |
|
47613 | 40 |
|
51848 | 41 |
lemma gamma_inf: "\<gamma>(a1 \<sqinter> a2) = \<gamma> a1 \<inter> \<gamma> a2" |
51390 | 42 |
by(rule equalityI[OF _ inter_gamma_subset_gamma_inf]) |
51389 | 43 |
(metis inf_le1 inf_le2 le_inf_iff mono_gamma) |
47613 | 44 |
|
45 |
end |
|
46 |
||
47 |
||
52504 | 48 |
locale Val_inv = Val_lattice_gamma where \<gamma> = \<gamma> |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
49 |
for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" + |
47613 | 50 |
fixes test_num' :: "val \<Rightarrow> 'av \<Rightarrow> bool" |
51974 | 51 |
and inv_plus' :: "'av \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av" |
52 |
and inv_less' :: "bool \<Rightarrow> 'av \<Rightarrow> 'av \<Rightarrow> 'av * 'av" |
|
51851 | 53 |
assumes test_num': "test_num' i a = (i : \<gamma> a)" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
54 |
and inv_plus': "inv_plus' a a1 a2 = (a\<^sub>1',a\<^sub>2') \<Longrightarrow> |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
55 |
i1 : \<gamma> a1 \<Longrightarrow> i2 : \<gamma> a2 \<Longrightarrow> i1+i2 : \<gamma> a \<Longrightarrow> i1 : \<gamma> a\<^sub>1' \<and> i2 : \<gamma> a\<^sub>2'" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
56 |
and inv_less': "inv_less' (i1<i2) a1 a2 = (a\<^sub>1',a\<^sub>2') \<Longrightarrow> |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
57 |
i1 : \<gamma> a1 \<Longrightarrow> i2 : \<gamma> a2 \<Longrightarrow> i1 : \<gamma> a\<^sub>1' \<and> i2 : \<gamma> a\<^sub>2'" |
47613 | 58 |
|
59 |
||
52504 | 60 |
locale Abs_Int_inv = Val_inv where \<gamma> = \<gamma> |
51826 | 61 |
for \<gamma> :: "'av::bounded_lattice \<Rightarrow> val set" |
47613 | 62 |
begin |
63 |
||
51389 | 64 |
lemma in_gamma_sup_UpI: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
65 |
"s : \<gamma>\<^sub>o S1 \<or> s : \<gamma>\<^sub>o S2 \<Longrightarrow> s : \<gamma>\<^sub>o(S1 \<squnion> S2)" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
66 |
by (metis (hide_lams, no_types) sup_ge1 sup_ge2 mono_gamma_o subsetD) |
47613 | 67 |
|
68 |
fun aval'' :: "aexp \<Rightarrow> 'av st option \<Rightarrow> 'av" where |
|
69 |
"aval'' e None = \<bottom>" | |
|
51834 | 70 |
"aval'' e (Some S) = aval' e S" |
47613 | 71 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
72 |
lemma aval''_correct: "s : \<gamma>\<^sub>o S \<Longrightarrow> aval a s : \<gamma>(aval'' a S)" |
51974 | 73 |
by(cases S)(auto simp add: aval'_correct split: option.splits) |
47613 | 74 |
|
75 |
subsubsection "Backward analysis" |
|
76 |
||
55053 | 77 |
fun inv_aval' :: "aexp \<Rightarrow> 'av \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where |
78 |
"inv_aval' (N n) a S = (if test_num' n a then S else None)" | |
|
79 |
"inv_aval' (V x) a S = (case S of None \<Rightarrow> None | Some S \<Rightarrow> |
|
47613 | 80 |
let a' = fun S x \<sqinter> a in |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
81 |
if a' = \<bottom> then None else Some(update S x a'))" | |
55053 | 82 |
"inv_aval' (Plus e1 e2) a S = |
51974 | 83 |
(let (a1,a2) = inv_plus' a (aval'' e1 S) (aval'' e2 S) |
55053 | 84 |
in inv_aval' e1 a1 (inv_aval' e2 a2 S))" |
47613 | 85 |
|
86 |
text{* The test for @{const bot} in the @{const V}-case is important: @{const |
|
87 |
bot} indicates that a variable has no possible values, i.e.\ that the current |
|
88 |
program point is unreachable. But then the abstract state should collapse to |
|
89 |
@{const None}. Put differently, we maintain the invariant that in an abstract |
|
90 |
state of the form @{term"Some s"}, all variables are mapped to non-@{const |
|
51389 | 91 |
bot} values. Otherwise the (pointwise) sup of two abstract states, one of |
47613 | 92 |
which contains @{const bot} values, may produce too large a result, thus |
93 |
making the analysis less precise. *} |
|
94 |
||
95 |
||
55053 | 96 |
fun inv_bval' :: "bexp \<Rightarrow> bool \<Rightarrow> 'av st option \<Rightarrow> 'av st option" where |
97 |
"inv_bval' (Bc v) res S = (if v=res then S else None)" | |
|
98 |
"inv_bval' (Not b) res S = inv_bval' b (\<not> res) S" | |
|
99 |
"inv_bval' (And b1 b2) res S = |
|
100 |
(if res then inv_bval' b1 True (inv_bval' b2 True S) |
|
101 |
else inv_bval' b1 False S \<squnion> inv_bval' b2 False S)" | |
|
102 |
"inv_bval' (Less e1 e2) res S = |
|
51974 | 103 |
(let (a1,a2) = inv_less' res (aval'' e1 S) (aval'' e2 S) |
55053 | 104 |
in inv_aval' e1 a1 (inv_aval' e2 a2 S))" |
47613 | 105 |
|
55053 | 106 |
lemma inv_aval'_correct: "s : \<gamma>\<^sub>o S \<Longrightarrow> aval e s : \<gamma> a \<Longrightarrow> s : \<gamma>\<^sub>o (inv_aval' e a S)" |
47613 | 107 |
proof(induction e arbitrary: a S) |
108 |
case N thus ?case by simp (metis test_num') |
|
109 |
next |
|
110 |
case (V x) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
111 |
obtain S' where "S = Some S'" and "s : \<gamma>\<^sub>s S'" using `s : \<gamma>\<^sub>o S` |
47613 | 112 |
by(auto simp: in_gamma_option_iff) |
113 |
moreover hence "s x : \<gamma> (fun S' x)" |
|
51849 | 114 |
by(simp add: \<gamma>_st_def) |
115 |
moreover have "s x : \<gamma> a" using V(2) by simp |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
116 |
ultimately show ?case |
47613 | 117 |
by(simp add: Let_def \<gamma>_st_def) |
51390 | 118 |
(metis mono_gamma emptyE in_gamma_inf gamma_bot subset_empty) |
47613 | 119 |
next |
120 |
case (Plus e1 e2) thus ?case |
|
51974 | 121 |
using inv_plus'[OF _ aval''_correct aval''_correct] |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
122 |
by (auto split: prod.split) |
47613 | 123 |
qed |
124 |
||
55053 | 125 |
lemma inv_bval'_correct: "s : \<gamma>\<^sub>o S \<Longrightarrow> bv = bval b s \<Longrightarrow> s : \<gamma>\<^sub>o(inv_bval' b bv S)" |
47613 | 126 |
proof(induction b arbitrary: S bv) |
127 |
case Bc thus ?case by simp |
|
128 |
next |
|
129 |
case (Not b) thus ?case by simp |
|
130 |
next |
|
131 |
case (And b1 b2) thus ?case |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
132 |
by simp (metis And(1) And(2) in_gamma_sup_UpI) |
47613 | 133 |
next |
134 |
case (Less e1 e2) thus ?case |
|
57492
74bf65a1910a
Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents:
55053
diff
changeset
|
135 |
apply hypsubst_thin |
74bf65a1910a
Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents:
55053
diff
changeset
|
136 |
apply (auto split: prod.split) |
74bf65a1910a
Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents:
55053
diff
changeset
|
137 |
apply (metis (lifting) inv_aval'_correct aval''_correct inv_less') |
74bf65a1910a
Hypsubst preserves equality hypotheses
Thomas Sewell <thomas.sewell@nicta.com.au>
parents:
55053
diff
changeset
|
138 |
done |
47613 | 139 |
qed |
140 |
||
51390 | 141 |
definition "step' = Step |
51389 | 142 |
(\<lambda>x e S. case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))) |
55053 | 143 |
(\<lambda>b S. inv_bval' b True S)" |
47613 | 144 |
|
145 |
definition AI :: "com \<Rightarrow> 'av st option acom option" where |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
146 |
"AI c = pfp (step' \<top>) (bot c)" |
47613 | 147 |
|
148 |
lemma strip_step'[simp]: "strip(step' S c) = strip c" |
|
51390 | 149 |
by(simp add: step'_def) |
47613 | 150 |
|
55053 | 151 |
lemma top_on_inv_aval': "\<lbrakk> top_on_opt S X; vars e \<subseteq> -X \<rbrakk> \<Longrightarrow> top_on_opt (inv_aval' e a S) X" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
152 |
by(induction e arbitrary: a S) (auto simp: Let_def split: option.splits prod.split) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
153 |
|
55053 | 154 |
lemma top_on_inv_bval': "\<lbrakk>top_on_opt S X; vars b \<subseteq> -X\<rbrakk> \<Longrightarrow> top_on_opt (inv_bval' b r S) X" |
155 |
by(induction b arbitrary: r S) (auto simp: top_on_inv_aval' top_on_sup split: prod.split) |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
156 |
|
51785 | 157 |
lemma top_on_step': "top_on_acom C (- vars C) \<Longrightarrow> top_on_acom (step' \<top> C) (- vars C)" |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
158 |
unfolding step'_def |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
159 |
by(rule top_on_Step) |
55053 | 160 |
(auto simp add: top_on_top top_on_inv_bval' split: option.split) |
47613 | 161 |
|
51974 | 162 |
subsubsection "Correctness" |
47613 | 163 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
164 |
lemma step_step': "step (\<gamma>\<^sub>o S) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' S C)" |
51390 | 165 |
unfolding step_def step'_def |
166 |
by(rule gamma_Step_subcomm) |
|
55053 | 167 |
(auto simp: intro!: aval'_correct inv_bval'_correct in_gamma_update split: option.splits) |
47613 | 168 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
169 |
lemma AI_correct: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c C" |
47613 | 170 |
proof(simp add: CS_def AI_def) |
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
171 |
assume 1: "pfp (step' \<top>) (bot c) = Some C" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
172 |
have pfp': "step' \<top> C \<le> C" by(rule pfp_pfp[OF 1]) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
173 |
have 2: "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c C" --"transfer the pfp'" |
50986 | 174 |
proof(rule order_trans) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
175 |
show "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' \<top> C)" by(rule step_step') |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
176 |
show "... \<le> \<gamma>\<^sub>c C" by (metis mono_gamma_c[OF pfp']) |
47613 | 177 |
qed |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
178 |
have 3: "strip (\<gamma>\<^sub>c C) = c" by(simp add: strip_pfp[OF _ 1] step'_def) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
179 |
have "lfp c (step (\<gamma>\<^sub>o \<top>)) \<le> \<gamma>\<^sub>c C" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
180 |
by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^sub>o \<top>)", OF 3 2]) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
52504
diff
changeset
|
181 |
thus "lfp c (step UNIV) \<le> \<gamma>\<^sub>c C" by simp |
47613 | 182 |
qed |
183 |
||
184 |
end |
|
185 |
||
186 |
||
187 |
subsubsection "Monotonicity" |
|
188 |
||
52504 | 189 |
locale Abs_Int_inv_mono = Abs_Int_inv + |
51359
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
nipkow
parents:
51037
diff
changeset
|
190 |
assumes mono_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> plus' a1 a2 \<le> plus' b1 b2" |
51974 | 191 |
and mono_inv_plus': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> r \<le> r' \<Longrightarrow> |
192 |
inv_plus' r a1 a2 \<le> inv_plus' r' b1 b2" |
|
193 |
and mono_inv_less': "a1 \<le> b1 \<Longrightarrow> a2 \<le> b2 \<Longrightarrow> |
|
194 |
inv_less' bv a1 a2 \<le> inv_less' bv b1 b2" |
|
47613 | 195 |
begin |
196 |
||
197 |
lemma mono_aval': |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
198 |
"S1 \<le> S2 \<Longrightarrow> aval' e S1 \<le> aval' e S2" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
199 |
by(induction e) (auto simp: mono_plus' mono_fun) |
47613 | 200 |
|
201 |
lemma mono_aval'': |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
202 |
"S1 \<le> S2 \<Longrightarrow> aval'' e S1 \<le> aval'' e S2" |
47613 | 203 |
apply(cases S1) |
204 |
apply simp |
|
205 |
apply(cases S2) |
|
206 |
apply simp |
|
207 |
by (simp add: mono_aval') |
|
208 |
||
55053 | 209 |
lemma mono_inv_aval': "r1 \<le> r2 \<Longrightarrow> S1 \<le> S2 \<Longrightarrow> inv_aval' e r1 S1 \<le> inv_aval' e r2 S2" |
47613 | 210 |
apply(induction e arbitrary: r1 r2 S1 S2) |
51390 | 211 |
apply(auto simp: test_num' Let_def inf_mono split: option.splits prod.splits) |
212 |
apply (metis mono_gamma subsetD) |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
213 |
apply (metis le_bot inf_mono le_st_iff) |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
214 |
apply (metis inf_mono mono_update le_st_iff) |
51974 | 215 |
apply(metis mono_aval'' mono_inv_plus'[simplified less_eq_prod_def] fst_conv snd_conv) |
47613 | 216 |
done |
217 |
||
55053 | 218 |
lemma mono_inv_bval': "S1 \<le> S2 \<Longrightarrow> inv_bval' b bv S1 \<le> inv_bval' b bv S2" |
47613 | 219 |
apply(induction b arbitrary: bv S1 S2) |
51390 | 220 |
apply(simp) |
221 |
apply(simp) |
|
222 |
apply simp |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
223 |
apply(metis order_trans[OF _ sup_ge1] order_trans[OF _ sup_ge2]) |
47613 | 224 |
apply (simp split: prod.splits) |
55053 | 225 |
apply(metis mono_aval'' mono_inv_aval' mono_inv_less'[simplified less_eq_prod_def] fst_conv snd_conv) |
47613 | 226 |
done |
227 |
||
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
228 |
theorem mono_step': "S1 \<le> S2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> step' S1 C1 \<le> step' S2 C2" |
51390 | 229 |
unfolding step'_def |
55053 | 230 |
by(rule mono2_Step) (auto simp: mono_aval' mono_inv_bval' split: option.split) |
47613 | 231 |
|
51711
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
232 |
lemma mono_step'_top: "C1 \<le> C2 \<Longrightarrow> step' \<top> C1 \<le> step' \<top> C2" |
df3426139651
complete revision: finally got rid of annoying L-predicate
nipkow
parents:
51390
diff
changeset
|
233 |
by (metis mono_step' order_refl) |
47613 | 234 |
|
235 |
end |
|
236 |
||
237 |
end |