| author | wenzelm | 
| Thu, 25 Aug 2022 23:09:00 +0200 | |
| changeset 75973 | 3acc90a2ef6d | 
| parent 69597 | ff784d5a5bfb | 
| child 80768 | c7723cc15de8 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Porder.thy | 
| 25773 | 2 | Author: Franz Regensburger and Brian Huffman | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 3 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | |
| 62175 | 5 | section \<open>Partial orders\<close> | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 6 | |
| 15577 | 7 | theory Porder | 
| 67312 | 8 | imports Main | 
| 15577 | 9 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 10 | |
| 61260 | 11 | declare [[typedef_overloaded]] | 
| 12 | ||
| 13 | ||
| 62175 | 14 | subsection \<open>Type class for partial orders\<close> | 
| 15587 
f363e6e080e7
added subsections and text for document generation
 huffman parents: 
15577diff
changeset | 15 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 16 | class below = | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 17 | fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 31071 | 18 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 19 | |
| 61998 | 20 | notation (ASCII) | 
| 40436 | 21 | below (infix "<<" 50) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 22 | |
| 61998 | 23 | notation | 
| 40436 | 24 | below (infix "\<sqsubseteq>" 50) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 25 | |
| 67312 | 26 | abbreviation not_below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<notsqsubseteq>" 50) | 
| 41182 | 27 | where "not_below x y \<equiv> \<not> below x y" | 
| 28 | ||
| 61998 | 29 | notation (ASCII) | 
| 30 | not_below (infix "~<<" 50) | |
| 41182 | 31 | |
| 67312 | 32 | lemma below_eq_trans: "a \<sqsubseteq> b \<Longrightarrow> b = c \<Longrightarrow> a \<sqsubseteq> c" | 
| 31071 | 33 | by (rule subst) | 
| 34 | ||
| 67312 | 35 | lemma eq_below_trans: "a = b \<Longrightarrow> b \<sqsubseteq> c \<Longrightarrow> a \<sqsubseteq> c" | 
| 31071 | 36 | by (rule ssubst) | 
| 37 | ||
| 38 | end | |
| 39 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 40 | class po = below + | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 41 | assumes below_refl [iff]: "x \<sqsubseteq> x" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 42 | assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 43 | assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" | 
| 31071 | 44 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 45 | |
| 40432 | 46 | lemma eq_imp_below: "x = y \<Longrightarrow> x \<sqsubseteq> y" | 
| 47 | by simp | |
| 48 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 49 | lemma box_below: "a \<sqsubseteq> b \<Longrightarrow> c \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> c \<sqsubseteq> d" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 50 | by (rule below_trans [OF below_trans]) | 
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 51 | |
| 31071 | 52 | lemma po_eq_conv: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 53 | by (fast intro!: below_antisym) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: 
15562diff
changeset | 54 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 55 | lemma rev_below_trans: "y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 56 | by (rule below_trans) | 
| 18647 | 57 | |
| 41182 | 58 | lemma not_below2not_eq: "x \<notsqsubseteq> y \<Longrightarrow> x \<noteq> y" | 
| 31071 | 59 | by auto | 
| 60 | ||
| 61 | end | |
| 18647 | 62 | |
| 63 | lemmas HOLCF_trans_rules [trans] = | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 64 | below_trans | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 65 | below_antisym | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 66 | below_eq_trans | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 67 | eq_below_trans | 
| 18647 | 68 | |
| 31071 | 69 | context po | 
| 70 | begin | |
| 71 | ||
| 62175 | 72 | subsection \<open>Upper bounds\<close> | 
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 73 | |
| 67312 | 74 | definition is_ub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix "<|" 55) | 
| 75 | where "S <| x \<longleftrightarrow> (\<forall>y\<in>S. y \<sqsubseteq> x)" | |
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 76 | |
| 25777 | 77 | lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u" | 
| 31071 | 78 | by (simp add: is_ub_def) | 
| 25777 | 79 | |
| 80 | lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u" | |
| 31071 | 81 | by (simp add: is_ub_def) | 
| 25777 | 82 | |
| 83 | lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u" | |
| 31071 | 84 | unfolding is_ub_def by fast | 
| 25777 | 85 | |
| 86 | lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u" | |
| 31071 | 87 | unfolding is_ub_def by fast | 
| 25777 | 88 | |
| 89 | lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x" | |
| 31071 | 90 | unfolding is_ub_def by fast | 
| 25777 | 91 | |
| 92 | lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x" | |
| 31071 | 93 | unfolding is_ub_def by fast | 
| 25777 | 94 | |
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 95 | lemma is_ub_empty [simp]: "{} <| u"
 | 
| 31071 | 96 | unfolding is_ub_def by fast | 
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 97 | |
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 98 | lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)" | 
| 31071 | 99 | unfolding is_ub_def by fast | 
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 100 | |
| 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 101 | lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 102 | unfolding is_ub_def by (fast intro: below_trans) | 
| 25828 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 huffman parents: 
25813diff
changeset | 103 | |
| 67312 | 104 | |
| 62175 | 105 | subsection \<open>Least upper bounds\<close> | 
| 25777 | 106 | |
| 67312 | 107 | definition is_lub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infix "<<|" 55) | 
| 108 | where "S <<| x \<longleftrightarrow> S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u)" | |
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 109 | |
| 67312 | 110 | definition lub :: "'a set \<Rightarrow> 'a" | 
| 111 | where "lub S = (THE x. S <<| x)" | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 112 | |
| 31071 | 113 | end | 
| 114 | ||
| 61998 | 115 | syntax (ASCII) | 
| 25777 | 116 |   "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3LUB _:_./ _)" [0,0, 10] 10)
 | 
| 117 | ||
| 61998 | 118 | syntax | 
| 25777 | 119 |   "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0,0, 10] 10)
 | 
| 120 | ||
| 121 | translations | |
| 67312 | 122 | "LUB x:A. t" \<rightleftharpoons> "CONST lub ((\<lambda>x. t) ` A)" | 
| 25777 | 123 | |
| 31071 | 124 | context po | 
| 125 | begin | |
| 126 | ||
| 67312 | 127 | abbreviation Lub (binder "\<Squnion>" 10) | 
| 128 | where "\<Squnion>n. t n \<equiv> lub (range t)" | |
| 2394 | 129 | |
| 61998 | 130 | notation (ASCII) | 
| 131 | Lub (binder "LUB " 10) | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 132 | |
| 62175 | 133 | text \<open>access to some definition as inference rule\<close> | 
| 25813 | 134 | |
| 135 | lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x" | |
| 31071 | 136 | unfolding is_lub_def by fast | 
| 25813 | 137 | |
| 40771 | 138 | lemma is_lubD2: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u" | 
| 31071 | 139 | unfolding is_lub_def by fast | 
| 25813 | 140 | |
| 141 | lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x" | |
| 31071 | 142 | unfolding is_lub_def by fast | 
| 25813 | 143 | |
| 39969 | 144 | lemma is_lub_below_iff: "S <<| x \<Longrightarrow> x \<sqsubseteq> u \<longleftrightarrow> S <| u" | 
| 145 | unfolding is_lub_def is_ub_def by (metis below_trans) | |
| 146 | ||
| 62175 | 147 | text \<open>lubs are unique\<close> | 
| 15562 | 148 | |
| 67312 | 149 | lemma is_lub_unique: "S <<| x \<Longrightarrow> S <<| y \<Longrightarrow> x = y" | 
| 40771 | 150 | unfolding is_lub_def is_ub_def by (blast intro: below_antisym) | 
| 15562 | 151 | |
| 69597 | 152 | text \<open>technical lemmas about \<^term>\<open>lub\<close> and \<^term>\<open>is_lub\<close>\<close> | 
| 15562 | 153 | |
| 40771 | 154 | lemma is_lub_lub: "M <<| x \<Longrightarrow> M <<| lub M" | 
| 155 | unfolding lub_def by (rule theI [OF _ is_lub_unique]) | |
| 15562 | 156 | |
| 40771 | 157 | lemma lub_eqI: "M <<| l \<Longrightarrow> lub M = l" | 
| 158 | by (rule is_lub_unique [OF is_lub_lub]) | |
| 15562 | 159 | |
| 68780 | 160 | lemma is_lub_singleton [simp]: "{x} <<| x"
 | 
| 31071 | 161 | by (simp add: is_lub_def) | 
| 25780 | 162 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 163 | lemma lub_singleton [simp]: "lub {x} = x"
 | 
| 40771 | 164 | by (rule is_lub_singleton [THEN lub_eqI]) | 
| 25780 | 165 | |
| 166 | lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
 | |
| 31071 | 167 | by (simp add: is_lub_def) | 
| 25780 | 168 | |
| 169 | lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
 | |
| 40771 | 170 | by (rule is_lub_bin [THEN lub_eqI]) | 
| 15562 | 171 | |
| 67312 | 172 | lemma is_lub_maximal: "S <| x \<Longrightarrow> x \<in> S \<Longrightarrow> S <<| x" | 
| 31071 | 173 | by (erule is_lubI, erule (1) is_ubD) | 
| 15562 | 174 | |
| 67312 | 175 | lemma lub_maximal: "S <| x \<Longrightarrow> x \<in> S \<Longrightarrow> lub S = x" | 
| 40771 | 176 | by (rule is_lub_maximal [THEN lub_eqI]) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 177 | |
| 67312 | 178 | |
| 62175 | 179 | subsection \<open>Countable chains\<close> | 
| 25695 | 180 | |
| 67312 | 181 | definition chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" | 
| 182 | where \<comment> \<open>Here we use countable chains and I prefer to code them as functions!\<close> | |
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 183 | "chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))" | 
| 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 184 | |
| 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 185 | lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y" | 
| 31071 | 186 | unfolding chain_def by fast | 
| 25922 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 187 | |
| 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 huffman parents: 
25897diff
changeset | 188 | lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)" | 
| 31071 | 189 | unfolding chain_def by fast | 
| 25695 | 190 | |
| 62175 | 191 | text \<open>chains are monotone functions\<close> | 
| 25695 | 192 | |
| 67312 | 193 | lemma chain_mono_less: "chain Y \<Longrightarrow> i < j \<Longrightarrow> Y i \<sqsubseteq> Y j" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 194 | by (erule less_Suc_induct, erule chainE, erule below_trans) | 
| 25695 | 195 | |
| 67312 | 196 | lemma chain_mono: "chain Y \<Longrightarrow> i \<le> j \<Longrightarrow> Y i \<sqsubseteq> Y j" | 
| 197 | by (cases "i = j") (simp_all add: chain_mono_less) | |
| 15562 | 198 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 199 | lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))" | 
| 31071 | 200 | by (rule chainI, simp, erule chainE) | 
| 15562 | 201 | |
| 62175 | 202 | text \<open>technical lemmas about (least) upper bounds of chains\<close> | 
| 15562 | 203 | |
| 40771 | 204 | lemma is_lub_rangeD1: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x" | 
| 31071 | 205 | by (rule is_lubD1 [THEN ub_rangeD]) | 
| 15562 | 206 | |
| 67312 | 207 | lemma is_ub_range_shift: "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x" | 
| 208 | apply (rule iffI) | |
| 209 | apply (rule ub_rangeI) | |
| 210 | apply (rule_tac y="S (i + j)" in below_trans) | |
| 211 | apply (erule chain_mono) | |
| 212 | apply (rule le_add1) | |
| 213 | apply (erule ub_rangeD) | |
| 214 | apply (rule ub_rangeI) | |
| 215 | apply (erule ub_rangeD) | |
| 216 | done | |
| 16318 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 217 | |
| 67312 | 218 | lemma is_lub_range_shift: "chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x" | 
| 31071 | 219 | by (simp add: is_lub_def is_ub_range_shift) | 
| 16318 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 huffman parents: 
16092diff
changeset | 220 | |
| 62175 | 221 | text \<open>the lub of a constant chain is the constant\<close> | 
| 25695 | 222 | |
| 223 | lemma chain_const [simp]: "chain (\<lambda>i. c)" | |
| 31071 | 224 | by (simp add: chainI) | 
| 25695 | 225 | |
| 40771 | 226 | lemma is_lub_const: "range (\<lambda>x. c) <<| c" | 
| 25695 | 227 | by (blast dest: ub_rangeD intro: is_lubI ub_rangeI) | 
| 228 | ||
| 40771 | 229 | lemma lub_const [simp]: "(\<Squnion>i. c) = c" | 
| 230 | by (rule is_lub_const [THEN lub_eqI]) | |
| 25695 | 231 | |
| 67312 | 232 | |
| 62175 | 233 | subsection \<open>Finite chains\<close> | 
| 25695 | 234 | |
| 67312 | 235 | definition max_in_chain :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool" | 
| 236 | where \<comment> \<open>finite chains, needed for monotony of continuous functions\<close> | |
| 31071 | 237 | "max_in_chain i C \<longleftrightarrow> (\<forall>j. i \<le> j \<longrightarrow> C i = C j)" | 
| 25695 | 238 | |
| 67312 | 239 | definition finite_chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" | 
| 240 | where "finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))" | |
| 25695 | 241 | |
| 62175 | 242 | text \<open>results about finite chains\<close> | 
| 15562 | 243 | |
| 25878 | 244 | lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y" | 
| 31071 | 245 | unfolding max_in_chain_def by fast | 
| 25878 | 246 | |
| 67312 | 247 | lemma max_in_chainD: "max_in_chain i Y \<Longrightarrow> i \<le> j \<Longrightarrow> Y i = Y j" | 
| 31071 | 248 | unfolding max_in_chain_def by fast | 
| 25878 | 249 | |
| 67312 | 250 | lemma finite_chainI: "chain C \<Longrightarrow> max_in_chain i C \<Longrightarrow> finite_chain C" | 
| 31071 | 251 | unfolding finite_chain_def by fast | 
| 27317 | 252 | |
| 67312 | 253 | lemma finite_chainE: "\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" | 
| 31071 | 254 | unfolding finite_chain_def by fast | 
| 27317 | 255 | |
| 67312 | 256 | lemma lub_finch1: "chain C \<Longrightarrow> max_in_chain i C \<Longrightarrow> range C <<| C i" | 
| 257 | apply (rule is_lubI) | |
| 258 | apply (rule ub_rangeI, rename_tac j) | |
| 259 | apply (rule_tac x=i and y=j in linorder_le_cases) | |
| 260 | apply (drule (1) max_in_chainD, simp) | |
| 261 | apply (erule (1) chain_mono) | |
| 262 | apply (erule ub_rangeD) | |
| 263 | done | |
| 15562 | 264 | |
| 67312 | 265 | lemma lub_finch2: "finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)" | 
| 266 | apply (erule finite_chainE) | |
| 267 | apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"]) | |
| 268 | apply (erule (1) lub_finch1) | |
| 269 | done | |
| 15562 | 270 | |
| 19621 | 271 | lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)" | 
| 67312 | 272 | apply (erule finite_chainE) | 
| 273 |   apply (rule_tac B="Y ` {..i}" in finite_subset)
 | |
| 274 | apply (rule subsetI) | |
| 275 | apply (erule rangeE, rename_tac j) | |
| 276 | apply (rule_tac x=i and y=j in linorder_le_cases) | |
| 277 | apply (subgoal_tac "Y j = Y i", simp) | |
| 278 | apply (simp add: max_in_chain_def) | |
| 279 | apply simp | |
| 19621 | 280 | apply simp | 
| 67312 | 281 | done | 
| 19621 | 282 | |
| 27317 | 283 | lemma finite_range_has_max: | 
| 67312 | 284 | fixes f :: "nat \<Rightarrow> 'a" | 
| 285 | and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 27317 | 286 | assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)" | 
| 287 | assumes finite_range: "finite (range f)" | |
| 288 | shows "\<exists>k. \<forall>i. r (f i) (f k)" | |
| 289 | proof (intro exI allI) | |
| 290 | fix i :: nat | |
| 291 | let ?j = "LEAST k. f k = f i" | |
| 292 | let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)" | |
| 293 | have "?j \<le> ?k" | |
| 294 | proof (rule Max_ge) | |
| 295 | show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)" | |
| 296 | using finite_range by (rule finite_imageI) | |
| 297 | show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f" | |
| 298 | by (intro imageI rangeI) | |
| 299 | qed | |
| 300 | hence "r (f ?j) (f ?k)" | |
| 301 | by (rule mono) | |
| 302 | also have "f ?j = f i" | |
| 303 | by (rule LeastI, rule refl) | |
| 304 | finally show "r (f i) (f ?k)" . | |
| 305 | qed | |
| 306 | ||
| 67312 | 307 | lemma finite_range_imp_finch: "chain Y \<Longrightarrow> finite (range Y) \<Longrightarrow> finite_chain Y" | 
| 308 | apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k") | |
| 309 | apply (erule exE) | |
| 310 | apply (rule finite_chainI, assumption) | |
| 311 | apply (rule max_in_chainI) | |
| 312 | apply (rule below_antisym) | |
| 313 | apply (erule (1) chain_mono) | |
| 314 | apply (erule spec) | |
| 315 | apply (rule finite_range_has_max) | |
| 27317 | 316 | apply (erule (1) chain_mono) | 
| 67312 | 317 | apply assumption | 
| 318 | done | |
| 19621 | 319 | |
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 320 | lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)" | 
| 67312 | 321 | by (rule chainI) simp | 
| 17810 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 huffman parents: 
17372diff
changeset | 322 | |
| 67312 | 323 | lemma bin_chainmax: "x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)" | 
| 324 | by (simp add: max_in_chain_def) | |
| 15562 | 325 | |
| 67312 | 326 | lemma is_lub_bin_chain: "x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y" | 
| 327 | apply (frule bin_chain) | |
| 328 | apply (drule bin_chainmax) | |
| 329 | apply (drule (1) lub_finch1) | |
| 330 | apply simp | |
| 331 | done | |
| 15562 | 332 | |
| 62175 | 333 | text \<open>the maximal element in a chain is its lub\<close> | 
| 15562 | 334 | |
| 67312 | 335 | lemma lub_chain_maxelem: "Y i = c \<Longrightarrow> \<forall>i. Y i \<sqsubseteq> c \<Longrightarrow> lub (range Y) = c" | 
| 40771 | 336 | by (blast dest: ub_rangeD intro: lub_eqI is_lubI ub_rangeI) | 
| 15562 | 337 | |
| 18071 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 huffman parents: 
17810diff
changeset | 338 | end | 
| 31071 | 339 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
31071diff
changeset | 340 | end |