| author | blanchet | 
| Mon, 06 Aug 2012 22:12:17 +0200 | |
| changeset 48701 | 3b414244acb1 | 
| parent 46219 | 426ed18eba43 | 
| child 53171 | a5e54d4d9081 | 
| permissions | -rw-r--r-- | 
| 11522 | 1 | (* Title: Pure/Proof/proof_rewrite_rules.ML | 
| 11539 | 2 | Author: Stefan Berghofer, TU Muenchen | 
| 11522 | 3 | |
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 4 | Simplification functions for proof terms involving meta level rules. | 
| 11522 | 5 | *) | 
| 6 | ||
| 7 | signature PROOF_REWRITE_RULES = | |
| 8 | sig | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 9 | val rew : bool -> typ list -> term option list -> Proofterm.proof -> (Proofterm.proof * Proofterm.proof) option | 
| 33722 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 wenzelm parents: 
29271diff
changeset | 10 | val rprocs : bool -> | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 11 | (typ list -> term option list -> Proofterm.proof -> (Proofterm.proof * Proofterm.proof) option) list | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 12 | val rewrite_terms : (term -> term) -> Proofterm.proof -> Proofterm.proof | 
| 17203 | 13 | val elim_defs : theory -> bool -> thm list -> Proofterm.proof -> Proofterm.proof | 
| 13608 | 14 | val elim_vars : (typ -> term) -> Proofterm.proof -> Proofterm.proof | 
| 22280 | 15 | val hhf_proof : term -> term -> Proofterm.proof -> Proofterm.proof | 
| 16 | val un_hhf_proof : term -> term -> Proofterm.proof -> Proofterm.proof | |
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 17 | val mk_of_sort_proof : theory -> term option list -> typ * sort -> Proofterm.proof list | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 18 | val expand_of_class : theory -> typ list -> term option list -> Proofterm.proof -> | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 19 | (Proofterm.proof * Proofterm.proof) option | 
| 11522 | 20 | end; | 
| 21 | ||
| 22 | structure ProofRewriteRules : PROOF_REWRITE_RULES = | |
| 23 | struct | |
| 24 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 25 | fun rew b _ _ = | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 26 | let | 
| 17137 | 27 | fun ?? x = if b then SOME x else NONE; | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 28 | fun ax (prf as PAxm (s, prop, _)) Ts = | 
| 15531 | 29 | if b then PAxm (s, prop, SOME Ts) else prf; | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 30 | fun ty T = if b then | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 31 | let val Type (_, [Type (_, [U, _]), _]) = T | 
| 15531 | 32 | in SOME U end | 
| 33 | else NONE; | |
| 37310 | 34 | val equal_intr_axm = ax Proofterm.equal_intr_axm []; | 
| 35 | val equal_elim_axm = ax Proofterm.equal_elim_axm []; | |
| 36 | val symmetric_axm = ax Proofterm.symmetric_axm [propT]; | |
| 11522 | 37 | |
| 28806 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 38 |     fun rew' (PThm (_, (("Pure.protectD", _, _), _)) % _ %%
 | 
| 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 39 |         (PThm (_, (("Pure.protectI", _, _), _)) % _ %% prf)) = SOME prf
 | 
| 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 40 |       | rew' (PThm (_, (("Pure.conjunctionD1", _, _), _)) % _ % _ %%
 | 
| 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 41 |         (PThm (_, (("Pure.conjunctionI", _, _), _)) % _ % _ %% prf %% _)) = SOME prf
 | 
| 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 42 |       | rew' (PThm (_, (("Pure.conjunctionD2", _, _), _)) % _ % _ %%
 | 
| 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 43 |         (PThm (_, (("Pure.conjunctionI", _, _), _)) % _ % _ %% _ %% prf)) = SOME prf
 | 
| 26424 | 44 |       | rew' (PAxm ("Pure.equal_elim", _, _) % _ % _ %%
 | 
| 45 |         (PAxm ("Pure.equal_intr", _, _) % _ % _ %% prf %% _)) = SOME prf
 | |
| 46 |       | rew' (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 47 |         (PAxm ("Pure.equal_intr", _, _) % A % B %% prf1 %% prf2)) =
 | |
| 15531 | 48 | SOME (equal_intr_axm % B % A %% prf2 %% prf1) | 
| 12002 | 49 | |
| 26424 | 50 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME (_ $ A) % SOME (_ $ B) %%
 | 
| 51 |         (PAxm ("Pure.combination", _, _) % SOME (Const ("prop", _)) %
 | |
| 52 |           _ % _ % _ %% (PAxm ("Pure.reflexive", _, _) % _) %% prf1) %%
 | |
| 28806 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 53 |         ((tg as PThm (_, (("Pure.protectI", _, _), _))) % _ %% prf2)) =
 | 
| 15531 | 54 | SOME (tg %> B %% (equal_elim_axm %> A %> B %% prf1 %% prf2)) | 
| 12002 | 55 | |
| 26424 | 56 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME (_ $ A) % SOME (_ $ B) %%
 | 
| 57 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 58 |           (PAxm ("Pure.combination", _, _) % SOME (Const ("prop", _)) %
 | |
| 59 |              _ % _ % _ %% (PAxm ("Pure.reflexive", _, _) % _) %% prf1)) %%
 | |
| 28806 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 60 |         ((tg as PThm (_, (("Pure.protectI", _, _), _))) % _ %% prf2)) =
 | 
| 15531 | 61 | SOME (tg %> B %% (equal_elim_axm %> A %> B %% | 
| 17137 | 62 | (symmetric_axm % ?? B % ?? A %% prf1) %% prf2)) | 
| 11522 | 63 | |
| 26424 | 64 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME X % SOME Y %%
 | 
| 65 |         (PAxm ("Pure.combination", _, _) % _ % _ % _ % _ %%
 | |
| 66 |           (PAxm ("Pure.combination", _, _) % SOME (Const ("==>", _)) % _ % _ % _ %%
 | |
| 67 |              (PAxm ("Pure.reflexive", _, _) % _) %% prf1) %% prf2)) =
 | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 68 | let | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 69 | val _ $ A $ C = Envir.beta_norm X; | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 70 | val _ $ B $ D = Envir.beta_norm Y | 
| 17137 | 71 |         in SOME (AbsP ("H1", ?? X, AbsP ("H2", ?? B,
 | 
| 37310 | 72 | Proofterm.equal_elim_axm %> C %> D %% Proofterm.incr_pboundvars 2 0 prf2 %% | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 73 | (PBound 1 %% (equal_elim_axm %> B %> A %% | 
| 37310 | 74 | (Proofterm.symmetric_axm % ?? A % ?? B %% Proofterm.incr_pboundvars 2 0 prf1) %% | 
| 75 | PBound 0))))) | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 76 | end | 
| 11522 | 77 | |
| 26424 | 78 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME X % SOME Y %%
 | 
| 79 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 80 |           (PAxm ("Pure.combination", _, _) % _ % _ % _ % _ %%
 | |
| 81 |             (PAxm ("Pure.combination", _, _) % SOME (Const ("==>", _)) % _ % _ % _ %%
 | |
| 82 |                (PAxm ("Pure.reflexive", _, _) % _) %% prf1) %% prf2))) =
 | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 83 | let | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 84 | val _ $ A $ C = Envir.beta_norm Y; | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 85 | val _ $ B $ D = Envir.beta_norm X | 
| 17137 | 86 |         in SOME (AbsP ("H1", ?? X, AbsP ("H2", ?? A,
 | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 87 | equal_elim_axm %> D %> C %% | 
| 37310 | 88 | (symmetric_axm % ?? C % ?? D %% Proofterm.incr_pboundvars 2 0 prf2) %% | 
| 89 | (PBound 1 %% | |
| 90 | (equal_elim_axm %> A %> B %% Proofterm.incr_pboundvars 2 0 prf1 %% PBound 0))))) | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 91 | end | 
| 11522 | 92 | |
| 26424 | 93 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME X % SOME Y %%
 | 
| 94 |         (PAxm ("Pure.combination", _, _) % SOME (Const ("all", _)) % _ % _ % _ %%
 | |
| 95 |           (PAxm ("Pure.reflexive", _, _) % _) %%
 | |
| 96 |             (PAxm ("Pure.abstract_rule", _, _) % _ % _ %% prf))) =
 | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 97 | let | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 98 | val Const (_, T) $ P = Envir.beta_norm X; | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 99 | val _ $ Q = Envir.beta_norm Y; | 
| 17137 | 100 |         in SOME (AbsP ("H", ?? X, Abst ("x", ty T,
 | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 101 | equal_elim_axm %> incr_boundvars 1 P $ Bound 0 %> incr_boundvars 1 Q $ Bound 0 %% | 
| 37310 | 102 | (Proofterm.incr_pboundvars 1 1 prf %> Bound 0) %% (PBound 0 %> Bound 0)))) | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 103 | end | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 104 | |
| 26424 | 105 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME X % SOME Y %%
 | 
| 106 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %%        
 | |
| 107 |           (PAxm ("Pure.combination", _, _) % SOME (Const ("all", _)) % _ % _ % _ %%
 | |
| 108 |             (PAxm ("Pure.reflexive", _, _) % _) %%
 | |
| 109 |               (PAxm ("Pure.abstract_rule", _, _) % _ % _ %% prf)))) =
 | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 110 | let | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 111 | val Const (_, T) $ P = Envir.beta_norm X; | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 112 | val _ $ Q = Envir.beta_norm Y; | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 113 | val t = incr_boundvars 1 P $ Bound 0; | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 114 | val u = incr_boundvars 1 Q $ Bound 0 | 
| 17137 | 115 |         in SOME (AbsP ("H", ?? X, Abst ("x", ty T,
 | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 116 | equal_elim_axm %> t %> u %% | 
| 37310 | 117 | (symmetric_axm % ?? u % ?? t %% (Proofterm.incr_pboundvars 1 1 prf %> Bound 0)) | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 118 | %% (PBound 0 %> Bound 0)))) | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 119 | end | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 120 | |
| 26424 | 121 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME A % SOME C %%
 | 
| 122 |         (PAxm ("Pure.transitive", _, _) % _ % SOME B % _ %% prf1 %% prf2) %% prf3) =
 | |
| 15531 | 123 | SOME (equal_elim_axm %> B %> C %% prf2 %% | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 124 | (equal_elim_axm %> A %> B %% prf1 %% prf3)) | 
| 26424 | 125 |       | rew' (PAxm ("Pure.equal_elim", _, _) % SOME A % SOME C %%
 | 
| 126 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 127 |           (PAxm ("Pure.transitive", _, _) % _ % SOME B % _ %% prf1 %% prf2)) %% prf3) =
 | |
| 17137 | 128 | SOME (equal_elim_axm %> B %> C %% (symmetric_axm % ?? C % ?? B %% prf1) %% | 
| 129 | (equal_elim_axm %> A %> B %% (symmetric_axm % ?? B % ?? A %% prf2) %% prf3)) | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 130 | |
| 26424 | 131 |       | rew' (PAxm ("Pure.equal_elim", _, _) % _ % _ %%
 | 
| 132 |         (PAxm ("Pure.reflexive", _, _) % _) %% prf) = SOME prf
 | |
| 133 |       | rew' (PAxm ("Pure.equal_elim", _, _) % _ % _ %%
 | |
| 134 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 135 |           (PAxm ("Pure.reflexive", _, _) % _)) %% prf) = SOME prf
 | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 136 | |
| 26424 | 137 |       | rew' (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | 
| 138 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %% prf)) = SOME prf
 | |
| 11522 | 139 | |
| 26424 | 140 |       | rew' (PAxm ("Pure.equal_elim", _, _) % _ % _ %%
 | 
| 141 |         (PAxm ("Pure.equal_elim", _, _) % SOME (_ $ A $ C) % SOME (_ $ B $ D) %%
 | |
| 142 |           (PAxm ("Pure.combination", _, _) % _ % _ % _ % _ %%
 | |
| 143 |             (PAxm ("Pure.combination", _, _) % SOME (Const ("==", _)) % _ % _ % _ %%
 | |
| 144 |               (PAxm ("Pure.reflexive", _, _) % _) %% prf1) %% prf2) %% prf3) %% prf4) =
 | |
| 15531 | 145 | SOME (equal_elim_axm %> C %> D %% prf2 %% | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 146 | (equal_elim_axm %> A %> C %% prf3 %% | 
| 17137 | 147 | (equal_elim_axm %> B %> A %% (symmetric_axm % ?? A % ?? B %% prf1) %% prf4))) | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 148 | |
| 26424 | 149 |       | rew' (PAxm ("Pure.equal_elim", _, _) % _ % _ %%
 | 
| 150 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 151 |           (PAxm ("Pure.equal_elim", _, _) % SOME (_ $ A $ C) % SOME (_ $ B $ D) %%
 | |
| 152 |             (PAxm ("Pure.combination", _, _) % _ % _ % _ % _ %%
 | |
| 153 |               (PAxm ("Pure.combination", _, _) % SOME (Const ("==", _)) % _ % _ % _ %%
 | |
| 154 |                 (PAxm ("Pure.reflexive", _, _) % _) %% prf1) %% prf2) %% prf3)) %% prf4) =
 | |
| 15531 | 155 | SOME (equal_elim_axm %> A %> B %% prf1 %% | 
| 17137 | 156 | (equal_elim_axm %> C %> A %% (symmetric_axm % ?? A % ?? C %% prf3) %% | 
| 157 | (equal_elim_axm %> D %> C %% (symmetric_axm % ?? C % ?? D %% prf2) %% prf4))) | |
| 11522 | 158 | |
| 26424 | 159 |       | rew' (PAxm ("Pure.equal_elim", _, _) % _ % _ %%
 | 
| 160 |         (PAxm ("Pure.equal_elim", _, _) % SOME (_ $ B $ D) % SOME (_ $ A $ C) %%
 | |
| 161 |           (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 162 |             (PAxm ("Pure.combination", _, _) % _ % _ % _ % _ %%
 | |
| 163 |               (PAxm ("Pure.combination", _, _) % SOME (Const ("==", _)) % _ % _ % _ %%
 | |
| 164 |                 (PAxm ("Pure.reflexive", _, _) % _) %% prf1) %% prf2)) %% prf3) %% prf4) =
 | |
| 17137 | 165 | SOME (equal_elim_axm %> D %> C %% (symmetric_axm % ?? C % ?? D %% prf2) %% | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 166 | (equal_elim_axm %> B %> D %% prf3 %% | 
| 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 167 | (equal_elim_axm %> A %> B %% prf1 %% prf4))) | 
| 11522 | 168 | |
| 26424 | 169 |       | rew' (PAxm ("Pure.equal_elim", _, _) % _ % _ %%
 | 
| 170 |         (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 171 |           (PAxm ("Pure.equal_elim", _, _) % SOME (_ $ B $ D) % SOME (_ $ A $ C) %%
 | |
| 172 |             (PAxm ("Pure.symmetric", _, _) % _ % _ %%
 | |
| 173 |               (PAxm ("Pure.combination", _, _) % _ % _ % _ % _ %%
 | |
| 174 |                 (PAxm ("Pure.combination", _, _) % SOME (Const ("==", _)) % _ % _ % _ %%
 | |
| 175 |                   (PAxm ("Pure.reflexive", _, _) % _) %% prf1) %% prf2)) %% prf3)) %% prf4) =
 | |
| 17137 | 176 | SOME (equal_elim_axm %> B %> A %% (symmetric_axm % ?? A % ?? B %% prf1) %% | 
| 177 | (equal_elim_axm %> D %> B %% (symmetric_axm % ?? B % ?? D %% prf3) %% | |
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 178 | (equal_elim_axm %> C %> D %% prf2 %% prf4))) | 
| 11522 | 179 | |
| 26424 | 180 |       | rew' ((prf as PAxm ("Pure.combination", _, _) %
 | 
| 15531 | 181 |         SOME ((eq as Const ("==", T)) $ t) % _ % _ % _) %%
 | 
| 26424 | 182 |           (PAxm ("Pure.reflexive", _, _) % _)) =
 | 
| 13257 | 183 | let val (U, V) = (case T of | 
| 184 | Type (_, [U, V]) => (U, V) | _ => (dummyT, dummyT)) | |
| 37310 | 185 | in SOME (prf %% (ax Proofterm.combination_axm [U, V] %> eq % ?? eq % ?? t % ?? t %% | 
| 186 | (ax Proofterm.reflexive_axm [T] % ?? eq) %% (ax Proofterm.reflexive_axm [U] % ?? t))) | |
| 13257 | 187 | end | 
| 188 | ||
| 19309 | 189 | | rew' _ = NONE; | 
| 37310 | 190 | in rew' #> Option.map (rpair Proofterm.no_skel) end; | 
| 12866 
c00df7765656
Rewrite procedure now works for both compact and full proof objects.
 berghofe parents: 
12237diff
changeset | 191 | |
| 28806 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 192 | fun rprocs b = [rew b]; | 
| 26463 | 193 | val _ = Context.>> (Context.map_theory (fold Proofterm.add_prf_rproc (rprocs false))); | 
| 11522 | 194 | |
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 195 | |
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 196 | (**** apply rewriting function to all terms in proof ****) | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 197 | |
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 198 | fun rewrite_terms r = | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 199 | let | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 200 | fun rew_term Ts t = | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 201 | let | 
| 29271 
1d685baea08e
moved old add_type_XXX, add_term_XXX etc. to structure OldTerm;
 wenzelm parents: 
28806diff
changeset | 202 | val frees = | 
| 43329 
84472e198515
tuned signature: Name.invent and Name.invent_names;
 wenzelm parents: 
43322diff
changeset | 203 | map Free (Name.invent (Term.declare_term_frees t Name.context) "xa" (length Ts) ~~ Ts); | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 204 | val t' = r (subst_bounds (frees, t)); | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 205 | fun strip [] t = t | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 206 | | strip (_ :: xs) (Abs (_, _, t)) = strip xs t; | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 207 | in | 
| 19473 | 208 | strip Ts (fold lambda frees t') | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 209 | end; | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 210 | |
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 211 | fun rew Ts (prf1 %% prf2) = rew Ts prf1 %% rew Ts prf2 | 
| 15531 | 212 | | rew Ts (prf % SOME t) = rew Ts prf % SOME (rew_term Ts t) | 
| 213 | | rew Ts (Abst (s, SOME T, prf)) = Abst (s, SOME T, rew (T :: Ts) prf) | |
| 214 | | rew Ts (AbsP (s, SOME t, prf)) = AbsP (s, SOME (rew_term Ts t), rew Ts prf) | |
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 215 | | rew _ prf = prf | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 216 | |
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 217 | in rew [] end; | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 218 | |
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 219 | |
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 220 | (**** eliminate definitions in proof ****) | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 221 | |
| 16861 | 222 | fun vars_of t = rev (fold_aterms (fn v as Var _ => insert (op =) v | _ => I) t []); | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 223 | |
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 224 | fun insert_refl defs Ts (prf1 %% prf2) = | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 225 | let val (prf1', b) = insert_refl defs Ts prf1 | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 226 | in | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 227 | if b then (prf1', true) | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 228 | else (prf1' %% fst (insert_refl defs Ts prf2), false) | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 229 | end | 
| 15531 | 230 | | insert_refl defs Ts (Abst (s, SOME T, prf)) = | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 231 | (Abst (s, SOME T, fst (insert_refl defs (T :: Ts) prf)), false) | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 232 | | insert_refl defs Ts (AbsP (s, t, prf)) = | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 233 | (AbsP (s, t, fst (insert_refl defs Ts prf)), false) | 
| 37310 | 234 | | insert_refl defs Ts prf = | 
| 235 | (case Proofterm.strip_combt prf of | |
| 28806 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 236 | (PThm (_, ((s, prop, SOME Ts), _)), ts) => | 
| 20664 | 237 | if member (op =) defs s then | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 238 | let | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 239 | val vs = vars_of prop; | 
| 36042 
85efdadee8ae
switched PThm/PAxm etc. to use canonical order of type variables (term variables unchanged)
 krauss parents: 
33722diff
changeset | 240 | val tvars = Term.add_tvars prop [] |> rev; | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 241 | val (_, rhs) = Logic.dest_equals (Logic.strip_imp_concl prop); | 
| 18185 | 242 | val rhs' = Term.betapplys (subst_TVars (map fst tvars ~~ Ts) | 
| 23178 | 243 |                 (fold_rev (fn x => fn b => Abs ("", dummyT, abstract_over (x, b))) vs rhs),
 | 
| 19466 | 244 | map the ts); | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 245 | in | 
| 37310 | 246 | (Proofterm.change_type (SOME [fastype_of1 (Ts, rhs')]) | 
| 247 | Proofterm.reflexive_axm %> rhs', true) | |
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 248 | end | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 249 | else (prf, false) | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 250 | | (_, []) => (prf, false) | 
| 37310 | 251 | | (prf', ts) => (Proofterm.proof_combt' (fst (insert_refl defs Ts prf'), ts), false)); | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 252 | |
| 17203 | 253 | fun elim_defs thy r defs prf = | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 254 | let | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 255 | val defs' = map (Logic.dest_equals o | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 256 | map_types Type.strip_sorts o prop_of o Drule.abs_def) defs; | 
| 36744 
6e1f3d609a68
renamed Thm.get_name -> Thm.derivation_name and Thm.put_name -> Thm.name_derivation, to emphasize the true nature of these operations;
 wenzelm parents: 
36042diff
changeset | 257 | val defnames = map Thm.derivation_name defs; | 
| 13341 | 258 | val f = if not r then I else | 
| 259 | let | |
| 260 | val cnames = map (fst o dest_Const o fst) defs'; | |
| 37310 | 261 | val thms = Proofterm.fold_proof_atoms true | 
| 28806 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 262 | (fn PThm (_, ((name, prop, _), _)) => | 
| 29271 
1d685baea08e
moved old add_type_XXX, add_term_XXX etc. to structure OldTerm;
 wenzelm parents: 
28806diff
changeset | 263 | if member (op =) defnames name orelse | 
| 
1d685baea08e
moved old add_type_XXX, add_term_XXX etc. to structure OldTerm;
 wenzelm parents: 
28806diff
changeset | 264 | not (exists_Const (member (op =) cnames o #1) prop) | 
| 
1d685baea08e
moved old add_type_XXX, add_term_XXX etc. to structure OldTerm;
 wenzelm parents: 
28806diff
changeset | 265 | then I | 
| 28806 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 266 | else cons (name, SOME prop) | 
| 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 267 | | _ => I) [prf] []; | 
| 
ba0ffe4cfc2b
rewrite_proof: simplified simprocs (no name required);
 wenzelm parents: 
26463diff
changeset | 268 | in Reconstruct.expand_proof thy thms end; | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 269 | in | 
| 17203 | 270 | rewrite_terms (Pattern.rewrite_term thy defs' []) | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 271 | (fst (insert_refl defnames [] (f prf))) | 
| 12906 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 272 | end; | 
| 
165f4e1937f4
New function for eliminating definitions in proof term.
 berghofe parents: 
12866diff
changeset | 273 | |
| 13608 | 274 | |
| 275 | (**** eliminate all variables that don't occur in the proposition ****) | |
| 276 | ||
| 277 | fun elim_vars mk_default prf = | |
| 278 | let | |
| 279 | val prop = Reconstruct.prop_of prf; | |
| 19309 | 280 | val tv = Term.add_vars prop []; | 
| 281 | val tf = Term.add_frees prop []; | |
| 282 | ||
| 283 | fun hidden_variable (Var v) = not (member (op =) tv v) | |
| 284 | | hidden_variable (Free f) = not (member (op =) tf f) | |
| 285 | | hidden_variable _ = false; | |
| 13917 | 286 | |
| 46219 
426ed18eba43
discontinued old-style Term.list_abs in favour of plain Term.abs;
 wenzelm parents: 
43329diff
changeset | 287 | fun mk_default' T = | 
| 
426ed18eba43
discontinued old-style Term.list_abs in favour of plain Term.abs;
 wenzelm parents: 
43329diff
changeset | 288 | fold_rev (Term.abs o pair "x") (binder_types T) (mk_default (body_type T)); | 
| 13917 | 289 | |
| 290 | fun elim_varst (t $ u) = elim_varst t $ elim_varst u | |
| 291 | | elim_varst (Abs (s, T, t)) = Abs (s, T, elim_varst t) | |
| 19309 | 292 | | elim_varst (t as Free (x, T)) = if member (op =) tf (x, T) then t else mk_default' T | 
| 293 | | elim_varst (t as Var (xi, T)) = if member (op =) tv (xi, T) then t else mk_default' T | |
| 294 | | elim_varst t = t; | |
| 13608 | 295 | in | 
| 37310 | 296 | Proofterm.map_proof_terms (fn t => | 
| 19309 | 297 | if Term.exists_subterm hidden_variable t then Envir.beta_norm (elim_varst t) else t) I prf | 
| 13608 | 298 | end; | 
| 299 | ||
| 22280 | 300 | |
| 301 | (**** convert between hhf and non-hhf form ****) | |
| 302 | ||
| 303 | fun hhf_proof P Q prf = | |
| 304 | let | |
| 305 | val params = Logic.strip_params Q; | |
| 306 | val Hs = Logic.strip_assums_hyp P; | |
| 307 | val Hs' = Logic.strip_assums_hyp Q; | |
| 308 | val k = length Hs; | |
| 309 | val l = length params; | |
| 310 |     fun mk_prf i j Hs Hs' (Const ("all", _) $ Abs (_, _, P)) prf =
 | |
| 311 | mk_prf i (j - 1) Hs Hs' P (prf %> Bound j) | |
| 312 |       | mk_prf i j (H :: Hs) (H' :: Hs') (Const ("==>", _) $ _ $ P) prf =
 | |
| 313 | mk_prf (i - 1) j Hs Hs' P (prf %% un_hhf_proof H' H (PBound i)) | |
| 314 | | mk_prf _ _ _ _ _ prf = prf | |
| 315 | in | |
| 316 | prf |> Proofterm.incr_pboundvars k l |> mk_prf (k - 1) (l - 1) Hs Hs' P |> | |
| 317 |     fold_rev (fn P => fn prf => AbsP ("H", SOME P, prf)) Hs' |>
 | |
| 318 | fold_rev (fn (s, T) => fn prf => Abst (s, SOME T, prf)) params | |
| 319 | end | |
| 320 | and un_hhf_proof P Q prf = | |
| 321 | let | |
| 322 | val params = Logic.strip_params Q; | |
| 323 | val Hs = Logic.strip_assums_hyp P; | |
| 324 | val Hs' = Logic.strip_assums_hyp Q; | |
| 325 | val k = length Hs; | |
| 326 | val l = length params; | |
| 327 |     fun mk_prf (Const ("all", _) $ Abs (s, T, P)) prf =
 | |
| 328 | Abst (s, SOME T, mk_prf P prf) | |
| 329 |       | mk_prf (Const ("==>", _) $ P $ Q) prf =
 | |
| 330 |           AbsP ("H", SOME P, mk_prf Q prf)
 | |
| 331 | | mk_prf _ prf = prf | |
| 332 | in | |
| 333 | prf |> Proofterm.incr_pboundvars k l |> | |
| 334 | fold (fn i => fn prf => prf %> Bound i) (l - 1 downto 0) |> | |
| 335 | fold (fn ((H, H'), i) => fn prf => prf %% hhf_proof H' H (PBound i)) | |
| 336 | (Hs ~~ Hs' ~~ (k - 1 downto 0)) |> | |
| 337 | mk_prf Q | |
| 338 | end; | |
| 339 | ||
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 340 | |
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 341 | (**** expand OfClass proofs ****) | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 342 | |
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 343 | fun mk_of_sort_proof thy hs (T, S) = | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 344 | let | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 345 | val hs' = map | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 346 | (fn SOME t => (SOME (Logic.dest_of_class t) handle TERM _ => NONE) | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 347 | | NONE => NONE) hs; | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 348 | val sorts = AList.coalesce (op =) (rev (map_filter I hs')); | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 349 | fun get_sort T = the_default [] (AList.lookup (op =) sorts T); | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 350 | val subst = map_atyps | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 351 | (fn T as TVar (ixn, _) => TVar (ixn, get_sort T) | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 352 | | T as TFree (s, _) => TFree (s, get_sort T)); | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 353 | fun hyp T_c = case find_index (equal (SOME T_c)) hs' of | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 354 | ~1 => error "expand_of_class: missing class hypothesis" | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 355 | | i => PBound i; | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 356 | fun reconstruct prf prop = prf |> | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 357 | Reconstruct.reconstruct_proof thy prop |> | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 358 |       Reconstruct.expand_proof thy [("", NONE)] |>
 | 
| 37310 | 359 | Same.commit (Proofterm.map_proof_same Same.same Same.same hyp) | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 360 | in | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 361 | map2 reconstruct | 
| 37310 | 362 | (Proofterm.of_sort_proof thy (OfClass o apfst Type.strip_sorts) (subst T, S)) | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 363 | (Logic.mk_of_sort (T, S)) | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 364 | end; | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 365 | |
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 366 | fun expand_of_class thy Ts hs (OfClass (T, c)) = | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 367 | mk_of_sort_proof thy hs (T, [c]) |> | 
| 37310 | 368 | hd |> rpair Proofterm.no_skel |> SOME | 
| 37233 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 369 | | expand_of_class thy Ts hs _ = NONE; | 
| 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 berghofe parents: 
36744diff
changeset | 370 | |
| 11522 | 371 | end; |