| author | wenzelm | 
| Sat, 16 Apr 2011 20:49:48 +0200 | |
| changeset 42368 | 3b8498ac2314 | 
| parent 39302 | d7728f65b353 | 
| child 45605 | a89b4bc311a5 | 
| permissions | -rw-r--r-- | 
| 
33268
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33153 
diff
changeset
 | 
1  | 
(* Title: HOL/Decision_Procs/Polynomial_List.thy  | 
| 
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33153 
diff
changeset
 | 
2  | 
Author: Amine Chaieb  | 
| 33153 | 3  | 
*)  | 
4  | 
||
| 
33268
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33153 
diff
changeset
 | 
5  | 
header {* Univariate Polynomials as Lists *}
 | 
| 33153 | 6  | 
|
7  | 
theory Polynomial_List  | 
|
8  | 
imports Main  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
text{* Application of polynomial as a real function. *}
 | 
|
12  | 
||
| 39246 | 13  | 
primrec poly :: "'a list => 'a  => ('a::{comm_ring})" where
 | 
| 33153 | 14  | 
poly_Nil: "poly [] x = 0"  | 
| 39246 | 15  | 
| poly_Cons: "poly (h#t) x = h + x * poly t x"  | 
| 33153 | 16  | 
|
17  | 
||
18  | 
subsection{*Arithmetic Operations on Polynomials*}
 | 
|
19  | 
||
20  | 
text{*addition*}
 | 
|
| 39246 | 21  | 
primrec padd :: "['a list, 'a list] => ('a::comm_ring_1) list"  (infixl "+++" 65) where
 | 
| 33153 | 22  | 
padd_Nil: "[] +++ l2 = l2"  | 
| 39246 | 23  | 
| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t  | 
| 33153 | 24  | 
else (h + hd l2)#(t +++ tl l2))"  | 
25  | 
||
26  | 
text{*Multiplication by a constant*}
 | 
|
| 39246 | 27  | 
primrec cmult :: "['a :: comm_ring_1, 'a list] => 'a list" (infixl "%*" 70) where  | 
28  | 
cmult_Nil: "c %* [] = []"  | 
|
29  | 
| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)"  | 
|
| 33153 | 30  | 
|
31  | 
text{*Multiplication by a polynomial*}
 | 
|
| 39246 | 32  | 
primrec pmult :: "['a list, 'a list] => ('a::comm_ring_1) list"  (infixl "***" 70) where
 | 
33  | 
pmult_Nil: "[] *** l2 = []"  | 
|
34  | 
| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2  | 
|
| 33153 | 35  | 
else (h %* l2) +++ ((0) # (t *** l2)))"  | 
36  | 
||
37  | 
text{*Repeated multiplication by a polynomial*}
 | 
|
| 39246 | 38  | 
primrec mulexp :: "[nat, 'a list, 'a  list] => ('a ::comm_ring_1) list" where
 | 
39  | 
mulexp_zero: "mulexp 0 p q = q"  | 
|
40  | 
| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q"  | 
|
| 33153 | 41  | 
|
42  | 
text{*Exponential*}
 | 
|
| 39246 | 43  | 
primrec pexp :: "['a list, nat] => ('a::comm_ring_1) list"  (infixl "%^" 80) where
 | 
44  | 
pexp_0: "p %^ 0 = [1]"  | 
|
45  | 
| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)"  | 
|
| 33153 | 46  | 
|
47  | 
text{*Quotient related value of dividing a polynomial by x + a*}
 | 
|
48  | 
(* Useful for divisor properties in inductive proofs *)  | 
|
| 39246 | 49  | 
primrec pquot :: "['a list, 'a::field] => 'a list" where  | 
50  | 
pquot_Nil: "pquot [] a= []"  | 
|
51  | 
| pquot_Cons: "pquot (h#t) a = (if t = [] then [h]  | 
|
| 33153 | 52  | 
else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))"  | 
53  | 
||
54  | 
||
55  | 
text{*normalization of polynomials (remove extra 0 coeff)*}
 | 
|
| 39246 | 56  | 
primrec pnormalize :: "('a::comm_ring_1) list => 'a list" where
 | 
57  | 
pnormalize_Nil: "pnormalize [] = []"  | 
|
58  | 
| pnormalize_Cons: "pnormalize (h#p) = (if ( (pnormalize p) = [])  | 
|
| 33153 | 59  | 
then (if (h = 0) then [] else [h])  | 
60  | 
else (h#(pnormalize p)))"  | 
|
61  | 
||
62  | 
definition "pnormal p = ((pnormalize p = p) \<and> p \<noteq> [])"  | 
|
63  | 
definition "nonconstant p = (pnormal p \<and> (\<forall>x. p \<noteq> [x]))"  | 
|
64  | 
text{*Other definitions*}
 | 
|
65  | 
||
66  | 
definition  | 
|
67  | 
  poly_minus :: "'a list => ('a :: comm_ring_1) list"      ("-- _" [80] 80) where
 | 
|
68  | 
"-- p = (- 1) %* p"  | 
|
69  | 
||
70  | 
definition  | 
|
71  | 
  divides :: "[('a::comm_ring_1) list, 'a list] => bool"  (infixl "divides" 70) where
 | 
|
72  | 
"p1 divides p2 = (\<exists>q. poly p2 = poly(p1 *** q))"  | 
|
73  | 
||
74  | 
definition  | 
|
75  | 
  order :: "('a::comm_ring_1) => 'a list => nat" where
 | 
|
76  | 
    --{*order of a polynomial*}
 | 
|
77  | 
"order a p = (SOME n. ([-a, 1] %^ n) divides p &  | 
|
78  | 
~ (([-a, 1] %^ (Suc n)) divides p))"  | 
|
79  | 
||
80  | 
definition  | 
|
81  | 
  degree :: "('a::comm_ring_1) list => nat" where
 | 
|
82  | 
     --{*degree of a polynomial*}
 | 
|
83  | 
"degree p = length (pnormalize p) - 1"  | 
|
84  | 
||
85  | 
definition  | 
|
86  | 
  rsquarefree :: "('a::comm_ring_1) list => bool" where
 | 
|
87  | 
     --{*squarefree polynomials --- NB with respect to real roots only.*}
 | 
|
88  | 
"rsquarefree p = (poly p \<noteq> poly [] &  | 
|
89  | 
(\<forall>a. (order a p = 0) | (order a p = 1)))"  | 
|
90  | 
||
91  | 
lemma padd_Nil2: "p +++ [] = p"  | 
|
92  | 
by (induct p) auto  | 
|
93  | 
declare padd_Nil2 [simp]  | 
|
94  | 
||
95  | 
lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)"  | 
|
96  | 
by auto  | 
|
97  | 
||
98  | 
lemma pminus_Nil: "-- [] = []"  | 
|
99  | 
by (simp add: poly_minus_def)  | 
|
100  | 
declare pminus_Nil [simp]  | 
|
101  | 
||
102  | 
lemma pmult_singleton: "[h1] *** p1 = h1 %* p1"  | 
|
103  | 
by simp  | 
|
104  | 
||
105  | 
lemma poly_ident_mult: "1 %* t = t"  | 
|
106  | 
by (induct "t", auto)  | 
|
107  | 
declare poly_ident_mult [simp]  | 
|
108  | 
||
109  | 
lemma poly_simple_add_Cons: "[a] +++ ((0)#t) = (a#t)"  | 
|
110  | 
by simp  | 
|
111  | 
declare poly_simple_add_Cons [simp]  | 
|
112  | 
||
113  | 
text{*Handy general properties*}
 | 
|
114  | 
||
115  | 
lemma padd_commut: "b +++ a = a +++ b"  | 
|
116  | 
apply (subgoal_tac "\<forall>a. b +++ a = a +++ b")  | 
|
117  | 
apply (induct_tac [2] "b", auto)  | 
|
118  | 
apply (rule padd_Cons [THEN ssubst])  | 
|
119  | 
apply (case_tac "aa", auto)  | 
|
120  | 
done  | 
|
121  | 
||
122  | 
lemma padd_assoc [rule_format]: "\<forall>b c. (a +++ b) +++ c = a +++ (b +++ c)"  | 
|
123  | 
apply (induct "a", simp, clarify)  | 
|
124  | 
apply (case_tac b, simp_all)  | 
|
125  | 
done  | 
|
126  | 
||
127  | 
lemma poly_cmult_distr [rule_format]:  | 
|
128  | 
"\<forall>q. a %* ( p +++ q) = (a %* p +++ a %* q)"  | 
|
129  | 
apply (induct "p", simp, clarify)  | 
|
130  | 
apply (case_tac "q")  | 
|
131  | 
apply (simp_all add: right_distrib)  | 
|
132  | 
done  | 
|
133  | 
||
134  | 
lemma pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)"  | 
|
135  | 
apply (induct "t", simp)  | 
|
136  | 
by (auto simp add: mult_zero_left poly_ident_mult padd_commut)  | 
|
137  | 
||
138  | 
||
139  | 
text{*properties of evaluation of polynomials.*}
 | 
|
140  | 
||
141  | 
lemma poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x"  | 
|
142  | 
apply (subgoal_tac "\<forall>p2. poly (p1 +++ p2) x = poly (p1) x + poly (p2) x")  | 
|
143  | 
apply (induct_tac [2] "p1", auto)  | 
|
144  | 
apply (case_tac "p2")  | 
|
145  | 
apply (auto simp add: right_distrib)  | 
|
146  | 
done  | 
|
147  | 
||
148  | 
lemma poly_cmult: "poly (c %* p) x = c * poly p x"  | 
|
149  | 
apply (induct "p")  | 
|
150  | 
apply (case_tac [2] "x=0")  | 
|
151  | 
apply (auto simp add: right_distrib mult_ac)  | 
|
152  | 
done  | 
|
153  | 
||
154  | 
lemma poly_minus: "poly (-- p) x = - (poly p x)"  | 
|
155  | 
apply (simp add: poly_minus_def)  | 
|
156  | 
apply (auto simp add: poly_cmult)  | 
|
157  | 
done  | 
|
158  | 
||
159  | 
lemma poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"  | 
|
160  | 
apply (subgoal_tac "\<forall>p2. poly (p1 *** p2) x = poly p1 x * poly p2 x")  | 
|
161  | 
apply (simp (no_asm_simp))  | 
|
162  | 
apply (induct "p1")  | 
|
163  | 
apply (auto simp add: poly_cmult)  | 
|
164  | 
apply (case_tac p1)  | 
|
165  | 
apply (auto simp add: poly_cmult poly_add left_distrib right_distrib mult_ac)  | 
|
166  | 
done  | 
|
167  | 
||
168  | 
lemma poly_exp: "poly (p %^ n) (x::'a::comm_ring_1) = (poly p x) ^ n"  | 
|
169  | 
apply (induct "n")  | 
|
170  | 
apply (auto simp add: poly_cmult poly_mult power_Suc)  | 
|
171  | 
done  | 
|
172  | 
||
173  | 
text{*More Polynomial Evaluation Lemmas*}
 | 
|
174  | 
||
175  | 
lemma poly_add_rzero: "poly (a +++ []) x = poly a x"  | 
|
176  | 
by simp  | 
|
177  | 
declare poly_add_rzero [simp]  | 
|
178  | 
||
179  | 
lemma poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x"  | 
|
180  | 
by (simp add: poly_mult mult_assoc)  | 
|
181  | 
||
182  | 
lemma poly_mult_Nil2: "poly (p *** []) x = 0"  | 
|
183  | 
by (induct "p", auto)  | 
|
184  | 
declare poly_mult_Nil2 [simp]  | 
|
185  | 
||
186  | 
lemma poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x"  | 
|
187  | 
apply (induct "n")  | 
|
188  | 
apply (auto simp add: poly_mult mult_assoc)  | 
|
189  | 
done  | 
|
190  | 
||
191  | 
subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides
 | 
|
192  | 
 @{term "p(x)"} *}
 | 
|
193  | 
||
194  | 
lemma lemma_poly_linear_rem: "\<forall>h. \<exists>q r. h#t = [r] +++ [-a, 1] *** q"  | 
|
195  | 
apply (induct "t", safe)  | 
|
196  | 
apply (rule_tac x = "[]" in exI)  | 
|
197  | 
apply (rule_tac x = h in exI, simp)  | 
|
198  | 
apply (drule_tac x = aa in spec, safe)  | 
|
199  | 
apply (rule_tac x = "r#q" in exI)  | 
|
200  | 
apply (rule_tac x = "a*r + h" in exI)  | 
|
201  | 
apply (case_tac "q", auto)  | 
|
202  | 
done  | 
|
203  | 
||
204  | 
lemma poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q"  | 
|
205  | 
by (cut_tac t = t and a = a in lemma_poly_linear_rem, auto)  | 
|
206  | 
||
207  | 
||
208  | 
lemma poly_linear_divides: "(poly p a = 0) = ((p = []) | (\<exists>q. p = [-a, 1] *** q))"  | 
|
209  | 
apply (auto simp add: poly_add poly_cmult right_distrib)  | 
|
210  | 
apply (case_tac "p", simp)  | 
|
211  | 
apply (cut_tac h = aa and t = list and a = a in poly_linear_rem, safe)  | 
|
212  | 
apply (case_tac "q", auto)  | 
|
213  | 
apply (drule_tac x = "[]" in spec, simp)  | 
|
214  | 
apply (auto simp add: poly_add poly_cmult add_assoc)  | 
|
215  | 
apply (drule_tac x = "aa#lista" in spec, auto)  | 
|
216  | 
done  | 
|
217  | 
||
218  | 
lemma lemma_poly_length_mult: "\<forall>h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)"  | 
|
219  | 
by (induct "p", auto)  | 
|
220  | 
declare lemma_poly_length_mult [simp]  | 
|
221  | 
||
222  | 
lemma lemma_poly_length_mult2: "\<forall>h k. length (k %* p +++ (h # p)) = Suc (length p)"  | 
|
223  | 
by (induct "p", auto)  | 
|
224  | 
declare lemma_poly_length_mult2 [simp]  | 
|
225  | 
||
226  | 
lemma poly_length_mult: "length([-a,1] *** q) = Suc (length q)"  | 
|
227  | 
by auto  | 
|
228  | 
declare poly_length_mult [simp]  | 
|
229  | 
||
230  | 
||
231  | 
subsection{*Polynomial length*}
 | 
|
232  | 
||
233  | 
lemma poly_cmult_length: "length (a %* p) = length p"  | 
|
234  | 
by (induct "p", auto)  | 
|
235  | 
declare poly_cmult_length [simp]  | 
|
236  | 
||
237  | 
lemma poly_add_length [rule_format]:  | 
|
238  | 
"\<forall>p2. length (p1 +++ p2) =  | 
|
239  | 
(if (length p1 < length p2) then length p2 else length p1)"  | 
|
240  | 
apply (induct "p1", simp_all)  | 
|
241  | 
apply arith  | 
|
242  | 
done  | 
|
243  | 
||
244  | 
lemma poly_root_mult_length: "length([a,b] *** p) = Suc (length p)"  | 
|
245  | 
by (simp add: poly_cmult_length poly_add_length)  | 
|
246  | 
declare poly_root_mult_length [simp]  | 
|
247  | 
||
248  | 
lemma poly_mult_not_eq_poly_Nil: "(poly (p *** q) x \<noteq> poly [] x) =  | 
|
249  | 
(poly p x \<noteq> poly [] x & poly q x \<noteq> poly [] (x::'a::idom))"  | 
|
250  | 
apply (auto simp add: poly_mult)  | 
|
251  | 
done  | 
|
252  | 
declare poly_mult_not_eq_poly_Nil [simp]  | 
|
253  | 
||
254  | 
lemma poly_mult_eq_zero_disj: "(poly (p *** q) (x::'a::idom) = 0) = (poly p x = 0 | poly q x = 0)"  | 
|
255  | 
by (auto simp add: poly_mult)  | 
|
256  | 
||
257  | 
text{*Normalisation Properties*}
 | 
|
258  | 
||
259  | 
lemma poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)"  | 
|
260  | 
by (induct "p", auto)  | 
|
261  | 
||
262  | 
text{*A nontrivial polynomial of degree n has no more than n roots*}
 | 
|
263  | 
||
264  | 
lemma poly_roots_index_lemma0 [rule_format]:  | 
|
265  | 
"\<forall>p x. poly p x \<noteq> poly [] x & length p = n  | 
|
266  | 
--> (\<exists>i. \<forall>x. (poly p x = (0::'a::idom)) --> (\<exists>m. (m \<le> n & x = i m)))"  | 
|
267  | 
apply (induct "n", safe)  | 
|
268  | 
apply (rule ccontr)  | 
|
269  | 
apply (subgoal_tac "\<exists>a. poly p a = 0", safe)  | 
|
270  | 
apply (drule poly_linear_divides [THEN iffD1], safe)  | 
|
271  | 
apply (drule_tac x = q in spec)  | 
|
272  | 
apply (drule_tac x = x in spec)  | 
|
273  | 
apply (simp del: poly_Nil pmult_Cons)  | 
|
274  | 
apply (erule exE)  | 
|
275  | 
apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec, safe)  | 
|
276  | 
apply (drule poly_mult_eq_zero_disj [THEN iffD1], safe)  | 
|
277  | 
apply (drule_tac x = "Suc (length q)" in spec)  | 
|
| 36350 | 278  | 
apply (auto simp add: field_simps)  | 
| 33153 | 279  | 
apply (drule_tac x = xa in spec)  | 
| 36350 | 280  | 
apply (clarsimp simp add: field_simps)  | 
| 33153 | 281  | 
apply (drule_tac x = m in spec)  | 
| 36350 | 282  | 
apply (auto simp add:field_simps)  | 
| 33153 | 283  | 
done  | 
284  | 
lemmas poly_roots_index_lemma1 = conjI [THEN poly_roots_index_lemma0, standard]  | 
|
285  | 
||
286  | 
lemma poly_roots_index_length0: "poly p (x::'a::idom) \<noteq> poly [] x ==>  | 
|
287  | 
\<exists>i. \<forall>x. (poly p x = 0) --> (\<exists>n. n \<le> length p & x = i n)"  | 
|
288  | 
by (blast intro: poly_roots_index_lemma1)  | 
|
289  | 
||
290  | 
lemma poly_roots_finite_lemma: "poly p (x::'a::idom) \<noteq> poly [] x ==>  | 
|
291  | 
\<exists>N i. \<forall>x. (poly p x = 0) --> (\<exists>n. (n::nat) < N & x = i n)"  | 
|
292  | 
apply (drule poly_roots_index_length0, safe)  | 
|
293  | 
apply (rule_tac x = "Suc (length p)" in exI)  | 
|
294  | 
apply (rule_tac x = i in exI)  | 
|
295  | 
apply (simp add: less_Suc_eq_le)  | 
|
296  | 
done  | 
|
297  | 
||
298  | 
||
299  | 
lemma real_finite_lemma:  | 
|
300  | 
assumes P: "\<forall>x. P x --> (\<exists>n. n < length j & x = j!n)"  | 
|
301  | 
  shows "finite {(x::'a::idom). P x}"
 | 
|
302  | 
proof-  | 
|
303  | 
  let ?M = "{x. P x}"
 | 
|
304  | 
let ?N = "set j"  | 
|
305  | 
have "?M \<subseteq> ?N" using P by auto  | 
|
306  | 
thus ?thesis using finite_subset by auto  | 
|
307  | 
qed  | 
|
308  | 
||
309  | 
lemma poly_roots_index_lemma [rule_format]:  | 
|
310  | 
"\<forall>p x. poly p x \<noteq> poly [] x & length p = n  | 
|
311  | 
    --> (\<exists>i. \<forall>x. (poly p x = (0::'a::{idom})) --> x \<in> set i)"
 | 
|
312  | 
apply (induct "n", safe)  | 
|
313  | 
apply (rule ccontr)  | 
|
314  | 
apply (subgoal_tac "\<exists>a. poly p a = 0", safe)  | 
|
315  | 
apply (drule poly_linear_divides [THEN iffD1], safe)  | 
|
316  | 
apply (drule_tac x = q in spec)  | 
|
317  | 
apply (drule_tac x = x in spec)  | 
|
318  | 
apply (auto simp del: poly_Nil pmult_Cons)  | 
|
319  | 
apply (drule_tac x = "a#i" in spec)  | 
|
320  | 
apply (auto simp only: poly_mult List.list.size)  | 
|
321  | 
apply (drule_tac x = xa in spec)  | 
|
| 36350 | 322  | 
apply (clarsimp simp add: field_simps)  | 
| 33153 | 323  | 
done  | 
324  | 
||
325  | 
lemmas poly_roots_index_lemma2 = conjI [THEN poly_roots_index_lemma, standard]  | 
|
326  | 
||
327  | 
lemma poly_roots_index_length: "poly p (x::'a::idom) \<noteq> poly [] x ==>  | 
|
328  | 
\<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i"  | 
|
329  | 
by (blast intro: poly_roots_index_lemma2)  | 
|
330  | 
||
331  | 
lemma poly_roots_finite_lemma': "poly p (x::'a::idom) \<noteq> poly [] x ==>  | 
|
332  | 
\<exists>i. \<forall>x. (poly p x = 0) --> x \<in> set i"  | 
|
333  | 
by (drule poly_roots_index_length, safe)  | 
|
334  | 
||
335  | 
lemma UNIV_nat_infinite: "\<not> finite (UNIV :: nat set)"  | 
|
336  | 
unfolding finite_conv_nat_seg_image  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39246 
diff
changeset
 | 
337  | 
proof(auto simp add: set_eq_iff image_iff)  | 
| 33153 | 338  | 
fix n::nat and f:: "nat \<Rightarrow> nat"  | 
339  | 
  let ?N = "{i. i < n}"
 | 
|
340  | 
let ?fN = "f ` ?N"  | 
|
341  | 
let ?y = "Max ?fN + 1"  | 
|
342  | 
from nat_seg_image_imp_finite[of "?fN" "f" n]  | 
|
343  | 
have thfN: "finite ?fN" by simp  | 
|
344  | 
  {assume "n =0" hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto}
 | 
|
345  | 
moreover  | 
|
346  | 
  {assume nz: "n \<noteq> 0"
 | 
|
347  | 
    hence thne: "?fN \<noteq> {}" by (auto simp add: neq0_conv)
 | 
|
348  | 
have "\<forall>x\<in> ?fN. Max ?fN \<ge> x" using nz Max_ge_iff[OF thfN thne] by auto  | 
|
349  | 
hence "\<forall>x\<in> ?fN. ?y > x" by (auto simp add: less_Suc_eq_le)  | 
|
350  | 
hence "?y \<notin> ?fN" by auto  | 
|
351  | 
hence "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by auto }  | 
|
352  | 
ultimately show "\<exists>x. \<forall>xa<n. x \<noteq> f xa" by blast  | 
|
353  | 
qed  | 
|
354  | 
||
355  | 
lemma UNIV_ring_char_0_infinte: "\<not> finite (UNIV:: ('a::ring_char_0) set)"
 | 
|
356  | 
proof  | 
|
357  | 
assume F: "finite (UNIV :: 'a set)"  | 
|
358  | 
have th0: "of_nat ` UNIV \<subseteq> (UNIV:: 'a set)" by simp  | 
|
359  | 
from finite_subset[OF th0 F] have th: "finite (of_nat ` UNIV :: 'a set)" .  | 
|
360  | 
have th': "inj_on (of_nat::nat \<Rightarrow> 'a) (UNIV)"  | 
|
361  | 
unfolding inj_on_def by auto  | 
|
362  | 
from finite_imageD[OF th th'] UNIV_nat_infinite  | 
|
363  | 
show False by blast  | 
|
364  | 
qed  | 
|
365  | 
||
366  | 
lemma poly_roots_finite: "(poly p \<noteq> poly []) =  | 
|
367  | 
  finite {x. poly p x = (0::'a::{idom, ring_char_0})}"
 | 
|
368  | 
proof  | 
|
369  | 
assume H: "poly p \<noteq> poly []"  | 
|
370  | 
  show "finite {x. poly p x = (0::'a)}"
 | 
|
371  | 
using H  | 
|
372  | 
apply -  | 
|
373  | 
apply (erule contrapos_np, rule ext)  | 
|
374  | 
apply (rule ccontr)  | 
|
375  | 
apply (clarify dest!: poly_roots_finite_lemma')  | 
|
376  | 
using finite_subset  | 
|
377  | 
proof-  | 
|
378  | 
fix x i  | 
|
379  | 
    assume F: "\<not> finite {x. poly p x = (0\<Colon>'a)}" 
 | 
|
380  | 
and P: "\<forall>x. poly p x = (0\<Colon>'a) \<longrightarrow> x \<in> set i"  | 
|
381  | 
    let ?M= "{x. poly p x = (0\<Colon>'a)}"
 | 
|
382  | 
from P have "?M \<subseteq> set i" by auto  | 
|
383  | 
with finite_subset F show False by auto  | 
|
384  | 
qed  | 
|
385  | 
next  | 
|
386  | 
  assume F: "finite {x. poly p x = (0\<Colon>'a)}"
 | 
|
387  | 
show "poly p \<noteq> poly []" using F UNIV_ring_char_0_infinte by auto  | 
|
388  | 
qed  | 
|
389  | 
||
390  | 
text{*Entirety and Cancellation for polynomials*}
 | 
|
391  | 
||
392  | 
lemma poly_entire_lemma: "[| poly (p:: ('a::{idom,ring_char_0}) list) \<noteq> poly [] ; poly q \<noteq> poly [] |]
 | 
|
393  | 
==> poly (p *** q) \<noteq> poly []"  | 
|
394  | 
by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq)  | 
|
395  | 
||
396  | 
lemma poly_entire: "(poly (p *** q) = poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p = poly []) | (poly q = poly []))"
 | 
|
397  | 
apply (auto intro: ext dest: fun_cong simp add: poly_entire_lemma poly_mult)  | 
|
398  | 
apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst])  | 
|
399  | 
done  | 
|
400  | 
||
401  | 
lemma poly_entire_neg: "(poly (p *** q) \<noteq> poly ([]::('a::{idom,ring_char_0}) list)) = ((poly p \<noteq> poly []) & (poly q \<noteq> poly []))"
 | 
|
402  | 
by (simp add: poly_entire)  | 
|
403  | 
||
404  | 
lemma fun_eq: " (f = g) = (\<forall>x. f x = g x)"  | 
|
405  | 
by (auto intro!: ext)  | 
|
406  | 
||
407  | 
lemma poly_add_minus_zero_iff: "(poly (p +++ -- q) = poly []) = (poly p = poly q)"  | 
|
| 36350 | 408  | 
by (auto simp add: field_simps poly_add poly_minus_def fun_eq poly_cmult)  | 
| 33153 | 409  | 
|
410  | 
lemma poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"  | 
|
411  | 
by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult right_distrib)  | 
|
412  | 
||
413  | 
lemma poly_mult_left_cancel: "(poly (p *** q) = poly (p *** r)) = (poly p = poly ([]::('a::{idom, ring_char_0}) list) | poly q = poly r)"
 | 
|
414  | 
apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst])  | 
|
415  | 
apply (auto intro: ext simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff)  | 
|
416  | 
done  | 
|
417  | 
||
418  | 
lemma poly_exp_eq_zero:  | 
|
419  | 
     "(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \<noteq> 0)"
 | 
|
| 37598 | 420  | 
apply (simp only: fun_eq add: HOL.all_simps [symmetric])  | 
| 33153 | 421  | 
apply (rule arg_cong [where f = All])  | 
422  | 
apply (rule ext)  | 
|
423  | 
apply (induct_tac "n")  | 
|
424  | 
apply (auto simp add: poly_mult)  | 
|
425  | 
done  | 
|
426  | 
declare poly_exp_eq_zero [simp]  | 
|
427  | 
||
428  | 
lemma poly_prime_eq_zero: "poly [a,(1::'a::comm_ring_1)] \<noteq> poly []"  | 
|
429  | 
apply (simp add: fun_eq)  | 
|
430  | 
apply (rule_tac x = "1 - a" in exI, simp)  | 
|
431  | 
done  | 
|
432  | 
declare poly_prime_eq_zero [simp]  | 
|
433  | 
||
434  | 
lemma poly_exp_prime_eq_zero: "(poly ([a, (1::'a::idom)] %^ n) \<noteq> poly [])"  | 
|
435  | 
by auto  | 
|
436  | 
declare poly_exp_prime_eq_zero [simp]  | 
|
437  | 
||
438  | 
text{*A more constructive notion of polynomials being trivial*}
 | 
|
439  | 
||
440  | 
lemma poly_zero_lemma': "poly (h # t) = poly [] ==> h = (0::'a::{idom,ring_char_0}) & poly t = poly []"
 | 
|
441  | 
apply(simp add: fun_eq)  | 
|
442  | 
apply (case_tac "h = 0")  | 
|
443  | 
apply (drule_tac [2] x = 0 in spec, auto)  | 
|
444  | 
apply (case_tac "poly t = poly []", simp)  | 
|
445  | 
proof-  | 
|
446  | 
fix x  | 
|
447  | 
assume H: "\<forall>x. x = (0\<Colon>'a) \<or> poly t x = (0\<Colon>'a)" and pnz: "poly t \<noteq> poly []"  | 
|
448  | 
  let ?S = "{x. poly t x = 0}"
 | 
|
449  | 
from H have "\<forall>x. x \<noteq>0 \<longrightarrow> poly t x = 0" by blast  | 
|
450  | 
  hence th: "?S \<supseteq> UNIV - {0}" by auto
 | 
|
451  | 
from poly_roots_finite pnz have th': "finite ?S" by blast  | 
|
452  | 
from finite_subset[OF th th'] UNIV_ring_char_0_infinte[where ?'a = 'a]  | 
|
453  | 
show "poly t x = (0\<Colon>'a)" by simp  | 
|
454  | 
qed  | 
|
455  | 
||
456  | 
lemma poly_zero: "(poly p = poly []) = list_all (%c. c = (0::'a::{idom,ring_char_0})) p"
 | 
|
457  | 
apply (induct "p", simp)  | 
|
458  | 
apply (rule iffI)  | 
|
459  | 
apply (drule poly_zero_lemma', auto)  | 
|
460  | 
done  | 
|
461  | 
||
462  | 
||
463  | 
||
464  | 
text{*Basics of divisibility.*}
 | 
|
465  | 
||
466  | 
lemma poly_primes: "([a, (1::'a::idom)] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)"  | 
|
467  | 
apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult left_distrib [symmetric])  | 
|
468  | 
apply (drule_tac x = "-a" in spec)  | 
|
469  | 
apply (auto simp add: poly_linear_divides poly_add poly_cmult left_distrib [symmetric])  | 
|
470  | 
apply (rule_tac x = "qa *** q" in exI)  | 
|
471  | 
apply (rule_tac [2] x = "p *** qa" in exI)  | 
|
472  | 
apply (auto simp add: poly_add poly_mult poly_cmult mult_ac)  | 
|
473  | 
done  | 
|
474  | 
||
475  | 
lemma poly_divides_refl: "p divides p"  | 
|
476  | 
apply (simp add: divides_def)  | 
|
477  | 
apply (rule_tac x = "[1]" in exI)  | 
|
478  | 
apply (auto simp add: poly_mult fun_eq)  | 
|
479  | 
done  | 
|
480  | 
declare poly_divides_refl [simp]  | 
|
481  | 
||
482  | 
lemma poly_divides_trans: "[| p divides q; q divides r |] ==> p divides r"  | 
|
483  | 
apply (simp add: divides_def, safe)  | 
|
484  | 
apply (rule_tac x = "qa *** qaa" in exI)  | 
|
485  | 
apply (auto simp add: poly_mult fun_eq mult_assoc)  | 
|
486  | 
done  | 
|
487  | 
||
488  | 
lemma poly_divides_exp: "m \<le> n ==> (p %^ m) divides (p %^ n)"  | 
|
489  | 
apply (auto simp add: le_iff_add)  | 
|
490  | 
apply (induct_tac k)  | 
|
491  | 
apply (rule_tac [2] poly_divides_trans)  | 
|
492  | 
apply (auto simp add: divides_def)  | 
|
493  | 
apply (rule_tac x = p in exI)  | 
|
494  | 
apply (auto simp add: poly_mult fun_eq mult_ac)  | 
|
495  | 
done  | 
|
496  | 
||
497  | 
lemma poly_exp_divides: "[| (p %^ n) divides q; m\<le>n |] ==> (p %^ m) divides q"  | 
|
498  | 
by (blast intro: poly_divides_exp poly_divides_trans)  | 
|
499  | 
||
500  | 
lemma poly_divides_add:  | 
|
501  | 
"[| p divides q; p divides r |] ==> p divides (q +++ r)"  | 
|
502  | 
apply (simp add: divides_def, auto)  | 
|
503  | 
apply (rule_tac x = "qa +++ qaa" in exI)  | 
|
504  | 
apply (auto simp add: poly_add fun_eq poly_mult right_distrib)  | 
|
505  | 
done  | 
|
506  | 
||
507  | 
lemma poly_divides_diff:  | 
|
508  | 
"[| p divides q; p divides (q +++ r) |] ==> p divides r"  | 
|
509  | 
apply (simp add: divides_def, auto)  | 
|
510  | 
apply (rule_tac x = "qaa +++ -- qa" in exI)  | 
|
511  | 
apply (auto simp add: poly_add fun_eq poly_mult poly_minus right_diff_distrib algebra_simps)  | 
|
512  | 
done  | 
|
513  | 
||
514  | 
lemma poly_divides_diff2: "[| p divides r; p divides (q +++ r) |] ==> p divides q"  | 
|
515  | 
apply (erule poly_divides_diff)  | 
|
516  | 
apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac)  | 
|
517  | 
done  | 
|
518  | 
||
519  | 
lemma poly_divides_zero: "poly p = poly [] ==> q divides p"  | 
|
520  | 
apply (simp add: divides_def)  | 
|
521  | 
apply (rule exI[where x="[]"])  | 
|
522  | 
apply (auto simp add: fun_eq poly_mult)  | 
|
523  | 
done  | 
|
524  | 
||
525  | 
lemma poly_divides_zero2: "q divides []"  | 
|
526  | 
apply (simp add: divides_def)  | 
|
527  | 
apply (rule_tac x = "[]" in exI)  | 
|
528  | 
apply (auto simp add: fun_eq)  | 
|
529  | 
done  | 
|
530  | 
declare poly_divides_zero2 [simp]  | 
|
531  | 
||
532  | 
text{*At last, we can consider the order of a root.*}
 | 
|
533  | 
||
534  | 
||
535  | 
lemma poly_order_exists_lemma [rule_format]:  | 
|
536  | 
"\<forall>p. length p = d --> poly p \<noteq> poly []  | 
|
537  | 
             --> (\<exists>n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \<noteq> 0)"
 | 
|
538  | 
apply (induct "d")  | 
|
539  | 
apply (simp add: fun_eq, safe)  | 
|
540  | 
apply (case_tac "poly p a = 0")  | 
|
541  | 
apply (drule_tac poly_linear_divides [THEN iffD1], safe)  | 
|
542  | 
apply (drule_tac x = q in spec)  | 
|
543  | 
apply (drule_tac poly_entire_neg [THEN iffD1], safe, force)  | 
|
544  | 
apply (rule_tac x = "Suc n" in exI)  | 
|
545  | 
apply (rule_tac x = qa in exI)  | 
|
546  | 
apply (simp del: pmult_Cons)  | 
|
547  | 
apply (rule_tac x = 0 in exI, force)  | 
|
548  | 
done  | 
|
549  | 
||
550  | 
(* FIXME: Tidy up *)  | 
|
551  | 
lemma poly_order_exists:  | 
|
552  | 
"[| length p = d; poly p \<noteq> poly [] |]  | 
|
553  | 
==> \<exists>n. ([-a, 1] %^ n) divides p &  | 
|
554  | 
                ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)"
 | 
|
555  | 
apply (drule poly_order_exists_lemma [where a=a], assumption, clarify)  | 
|
556  | 
apply (rule_tac x = n in exI, safe)  | 
|
557  | 
apply (unfold divides_def)  | 
|
558  | 
apply (rule_tac x = q in exI)  | 
|
559  | 
apply (induct_tac "n", simp)  | 
|
560  | 
apply (simp (no_asm_simp) add: poly_add poly_cmult poly_mult right_distrib mult_ac)  | 
|
561  | 
apply safe  | 
|
562  | 
apply (subgoal_tac "poly (mulexp n [- a, 1] q) \<noteq> poly ([- a, 1] %^ Suc n *** qa)")  | 
|
563  | 
apply simp  | 
|
564  | 
apply (induct_tac "n")  | 
|
565  | 
apply (simp del: pmult_Cons pexp_Suc)  | 
|
566  | 
apply (erule_tac Q = "poly q a = 0" in contrapos_np)  | 
|
567  | 
apply (simp add: poly_add poly_cmult)  | 
|
568  | 
apply (rule pexp_Suc [THEN ssubst])  | 
|
569  | 
apply (rule ccontr)  | 
|
570  | 
apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc)  | 
|
571  | 
done  | 
|
572  | 
||
573  | 
lemma poly_one_divides: "[1] divides p"  | 
|
574  | 
by (simp add: divides_def, auto)  | 
|
575  | 
declare poly_one_divides [simp]  | 
|
576  | 
||
577  | 
lemma poly_order: "poly p \<noteq> poly []  | 
|
578  | 
      ==> EX! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p &
 | 
|
579  | 
~(([-a, 1] %^ (Suc n)) divides p)"  | 
|
580  | 
apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc)  | 
|
581  | 
apply (cut_tac x = y and y = n in less_linear)  | 
|
582  | 
apply (drule_tac m = n in poly_exp_divides)  | 
|
583  | 
apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides]  | 
|
584  | 
simp del: pmult_Cons pexp_Suc)  | 
|
585  | 
done  | 
|
586  | 
||
587  | 
text{*Order*}
 | 
|
588  | 
||
589  | 
lemma some1_equalityD: "[| n = (@n. P n); EX! n. P n |] ==> P n"  | 
|
590  | 
by (blast intro: someI2)  | 
|
591  | 
||
592  | 
lemma order:  | 
|
593  | 
      "(([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p &
 | 
|
594  | 
~(([-a, 1] %^ (Suc n)) divides p)) =  | 
|
595  | 
((n = order a p) & ~(poly p = poly []))"  | 
|
596  | 
apply (unfold order_def)  | 
|
597  | 
apply (rule iffI)  | 
|
598  | 
apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order)  | 
|
599  | 
apply (blast intro!: poly_order [THEN [2] some1_equalityD])  | 
|
600  | 
done  | 
|
601  | 
||
602  | 
lemma order2: "[| poly p \<noteq> poly [] |]  | 
|
603  | 
      ==> ([-a, (1::'a::{idom,ring_char_0})] %^ (order a p)) divides p &
 | 
|
604  | 
~(([-a, 1] %^ (Suc(order a p))) divides p)"  | 
|
605  | 
by (simp add: order del: pexp_Suc)  | 
|
606  | 
||
607  | 
lemma order_unique: "[| poly p \<noteq> poly []; ([-a, 1] %^ n) divides p;  | 
|
608  | 
         ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)
 | 
|
609  | 
|] ==> (n = order a p)"  | 
|
610  | 
by (insert order [of a n p], auto)  | 
|
611  | 
||
612  | 
lemma order_unique_lemma: "(poly p \<noteq> poly [] & ([-a, 1] %^ n) divides p &  | 
|
613  | 
         ~(([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p))
 | 
|
614  | 
==> (n = order a p)"  | 
|
615  | 
by (blast intro: order_unique)  | 
|
616  | 
||
617  | 
lemma order_poly: "poly p = poly q ==> order a p = order a q"  | 
|
618  | 
by (auto simp add: fun_eq divides_def poly_mult order_def)  | 
|
619  | 
||
620  | 
lemma pexp_one: "p %^ (Suc 0) = p"  | 
|
621  | 
apply (induct "p")  | 
|
622  | 
apply (auto simp add: numeral_1_eq_1)  | 
|
623  | 
done  | 
|
624  | 
declare pexp_one [simp]  | 
|
625  | 
||
626  | 
lemma lemma_order_root [rule_format]:  | 
|
627  | 
"\<forall>p a. 0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p  | 
|
628  | 
--> poly p a = 0"  | 
|
629  | 
apply (induct "n", blast)  | 
|
630  | 
apply (auto simp add: divides_def poly_mult simp del: pmult_Cons)  | 
|
631  | 
done  | 
|
632  | 
||
633  | 
lemma order_root: "(poly p a = (0::'a::{idom,ring_char_0})) = ((poly p = poly []) | order a p \<noteq> 0)"
 | 
|
634  | 
apply (case_tac "poly p = poly []", auto)  | 
|
635  | 
apply (simp add: poly_linear_divides del: pmult_Cons, safe)  | 
|
636  | 
apply (drule_tac [!] a = a in order2)  | 
|
637  | 
apply (rule ccontr)  | 
|
638  | 
apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast)  | 
|
639  | 
using neq0_conv  | 
|
640  | 
apply (blast intro: lemma_order_root)  | 
|
641  | 
done  | 
|
642  | 
||
643  | 
lemma order_divides: "(([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p) = ((poly p = poly []) | n \<le> order a p)"
 | 
|
644  | 
apply (case_tac "poly p = poly []", auto)  | 
|
645  | 
apply (simp add: divides_def fun_eq poly_mult)  | 
|
646  | 
apply (rule_tac x = "[]" in exI)  | 
|
647  | 
apply (auto dest!: order2 [where a=a]  | 
|
| 
33268
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33153 
diff
changeset
 | 
648  | 
intro: poly_exp_divides simp del: pexp_Suc)  | 
| 33153 | 649  | 
done  | 
650  | 
||
651  | 
lemma order_decomp:  | 
|
652  | 
"poly p \<noteq> poly []  | 
|
653  | 
==> \<exists>q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) &  | 
|
654  | 
                ~([-a, 1::'a::{idom,ring_char_0}] divides q)"
 | 
|
655  | 
apply (unfold divides_def)  | 
|
656  | 
apply (drule order2 [where a = a])  | 
|
657  | 
apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe)  | 
|
658  | 
apply (rule_tac x = q in exI, safe)  | 
|
659  | 
apply (drule_tac x = qa in spec)  | 
|
660  | 
apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons)  | 
|
661  | 
done  | 
|
662  | 
||
663  | 
text{*Important composition properties of orders.*}
 | 
|
664  | 
||
665  | 
lemma order_mult: "poly (p *** q) \<noteq> poly []  | 
|
666  | 
      ==> order a (p *** q) = order a p + order (a::'a::{idom,ring_char_0}) q"
 | 
|
667  | 
apply (cut_tac a = a and p = "p***q" and n = "order a p + order a q" in order)  | 
|
668  | 
apply (auto simp add: poly_entire simp del: pmult_Cons)  | 
|
669  | 
apply (drule_tac a = a in order2)+  | 
|
670  | 
apply safe  | 
|
671  | 
apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe)  | 
|
672  | 
apply (rule_tac x = "qa *** qaa" in exI)  | 
|
673  | 
apply (simp add: poly_mult mult_ac del: pmult_Cons)  | 
|
674  | 
apply (drule_tac a = a in order_decomp)+  | 
|
675  | 
apply safe  | 
|
676  | 
apply (subgoal_tac "[-a,1] divides (qa *** qaa) ")  | 
|
677  | 
apply (simp add: poly_primes del: pmult_Cons)  | 
|
678  | 
apply (auto simp add: divides_def simp del: pmult_Cons)  | 
|
679  | 
apply (rule_tac x = qb in exI)  | 
|
680  | 
apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))")  | 
|
681  | 
apply (drule poly_mult_left_cancel [THEN iffD1], force)  | 
|
682  | 
apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")  | 
|
683  | 
apply (drule poly_mult_left_cancel [THEN iffD1], force)  | 
|
684  | 
apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons)  | 
|
685  | 
done  | 
|
686  | 
||
687  | 
||
688  | 
||
689  | 
lemma order_root2: "poly p \<noteq> poly [] ==> (poly p a = 0) = (order (a::'a::{idom,ring_char_0}) p \<noteq> 0)"
 | 
|
690  | 
by (rule order_root [THEN ssubst], auto)  | 
|
691  | 
||
692  | 
||
693  | 
lemma pmult_one: "[1] *** p = p"  | 
|
694  | 
by auto  | 
|
695  | 
declare pmult_one [simp]  | 
|
696  | 
||
697  | 
lemma poly_Nil_zero: "poly [] = poly [0]"  | 
|
698  | 
by (simp add: fun_eq)  | 
|
699  | 
||
700  | 
lemma rsquarefree_decomp:  | 
|
701  | 
     "[| rsquarefree p; poly p a = (0::'a::{idom,ring_char_0}) |]
 | 
|
702  | 
==> \<exists>q. (poly p = poly ([-a, 1] *** q)) & poly q a \<noteq> 0"  | 
|
703  | 
apply (simp add: rsquarefree_def, safe)  | 
|
704  | 
apply (frule_tac a = a in order_decomp)  | 
|
705  | 
apply (drule_tac x = a in spec)  | 
|
706  | 
apply (drule_tac a = a in order_root2 [symmetric])  | 
|
707  | 
apply (auto simp del: pmult_Cons)  | 
|
708  | 
apply (rule_tac x = q in exI, safe)  | 
|
709  | 
apply (simp add: poly_mult fun_eq)  | 
|
710  | 
apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1])  | 
|
711  | 
apply (simp add: divides_def del: pmult_Cons, safe)  | 
|
712  | 
apply (drule_tac x = "[]" in spec)  | 
|
713  | 
apply (auto simp add: fun_eq)  | 
|
714  | 
done  | 
|
715  | 
||
716  | 
||
717  | 
text{*Normalization of a polynomial.*}
 | 
|
718  | 
||
719  | 
lemma poly_normalize: "poly (pnormalize p) = poly p"  | 
|
720  | 
apply (induct "p")  | 
|
721  | 
apply (auto simp add: fun_eq)  | 
|
722  | 
done  | 
|
723  | 
declare poly_normalize [simp]  | 
|
724  | 
||
725  | 
||
726  | 
text{*The degree of a polynomial.*}
 | 
|
727  | 
||
728  | 
lemma lemma_degree_zero:  | 
|
729  | 
"list_all (%c. c = 0) p \<longleftrightarrow> pnormalize p = []"  | 
|
730  | 
by (induct "p", auto)  | 
|
731  | 
||
732  | 
lemma degree_zero: "(poly p = poly ([]:: (('a::{idom,ring_char_0}) list))) \<Longrightarrow> (degree p = 0)"
 | 
|
733  | 
apply (simp add: degree_def)  | 
|
734  | 
apply (case_tac "pnormalize p = []")  | 
|
735  | 
apply (auto simp add: poly_zero lemma_degree_zero )  | 
|
736  | 
done  | 
|
737  | 
||
738  | 
lemma pnormalize_sing: "(pnormalize [x] = [x]) \<longleftrightarrow> x \<noteq> 0" by simp  | 
|
739  | 
lemma pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> (pnormalize [x, y] = [x, y])" by simp  | 
|
740  | 
lemma pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c#p)"  | 
|
741  | 
unfolding pnormal_def by simp  | 
|
742  | 
lemma pnormal_tail: "p\<noteq>[] \<Longrightarrow> pnormal (c#p) \<Longrightarrow> pnormal p"  | 
|
743  | 
unfolding pnormal_def  | 
|
744  | 
apply (cases "pnormalize p = []", auto)  | 
|
745  | 
by (cases "c = 0", auto)  | 
|
746  | 
lemma pnormal_last_nonzero: "pnormal p ==> last p \<noteq> 0"  | 
|
747  | 
apply (induct p, auto simp add: pnormal_def)  | 
|
748  | 
apply (case_tac "pnormalize p = []", auto)  | 
|
749  | 
by (case_tac "a=0", auto)  | 
|
750  | 
lemma pnormal_length: "pnormal p \<Longrightarrow> 0 < length p"  | 
|
751  | 
unfolding pnormal_def length_greater_0_conv by blast  | 
|
752  | 
lemma pnormal_last_length: "\<lbrakk>0 < length p ; last p \<noteq> 0\<rbrakk> \<Longrightarrow> pnormal p"  | 
|
753  | 
apply (induct p, auto)  | 
|
754  | 
apply (case_tac "p = []", auto)  | 
|
755  | 
apply (simp add: pnormal_def)  | 
|
756  | 
by (rule pnormal_cons, auto)  | 
|
757  | 
lemma pnormal_id: "pnormal p \<longleftrightarrow> (0 < length p \<and> last p \<noteq> 0)"  | 
|
758  | 
using pnormal_last_length pnormal_length pnormal_last_nonzero by blast  | 
|
759  | 
||
760  | 
text{*Tidier versions of finiteness of roots.*}
 | 
|
761  | 
||
762  | 
lemma poly_roots_finite_set: "poly p \<noteq> poly [] ==> finite {x::'a::{idom,ring_char_0}. poly p x = 0}"
 | 
|
763  | 
unfolding poly_roots_finite .  | 
|
764  | 
||
765  | 
text{*bound for polynomial.*}
 | 
|
766  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
33268 
diff
changeset
 | 
767  | 
lemma poly_mono: "abs(x) \<le> k ==> abs(poly p (x::'a::{linordered_idom})) \<le> poly (map abs p) k"
 | 
| 33153 | 768  | 
apply (induct "p", auto)  | 
769  | 
apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans)  | 
|
770  | 
apply (rule abs_triangle_ineq)  | 
|
771  | 
apply (auto intro!: mult_mono simp add: abs_mult)  | 
|
772  | 
done  | 
|
773  | 
||
774  | 
lemma poly_Sing: "poly [c] x = c" by simp  | 
|
| 
33268
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33153 
diff
changeset
 | 
775  | 
|
| 33153 | 776  | 
end  |