| author | krauss | 
| Sun, 01 Apr 2012 22:14:59 +0200 | |
| changeset 47260 | 3b9eeb4a2967 | 
| parent 42151 | 4da4fc77664b | 
| child 48659 | 40a87b4dac19 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Tr.thy | 
| 2640 | 2 | Author: Franz Regensburger | 
| 3 | *) | |
| 4 | ||
| 15649 | 5 | header {* The type of lifted booleans *}
 | 
| 6 | ||
| 7 | theory Tr | |
| 16228 | 8 | imports Lift | 
| 15649 | 9 | begin | 
| 2640 | 10 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 11 | subsection {* Type definition and constructors *}
 | 
| 16631 | 12 | |
| 41295 | 13 | type_synonym | 
| 2782 | 14 | tr = "bool lift" | 
| 15 | ||
| 2766 | 16 | translations | 
| 35431 | 17 | (type) "tr" <= (type) "bool lift" | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 18 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 19 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 20 | TT :: "tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 21 | "TT = Def True" | 
| 2640 | 22 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 23 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 24 | FF :: "tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 25 | "FF = Def False" | 
| 2640 | 26 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 27 | text {* Exhaustion and Elimination for type @{typ tr} *}
 | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 28 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 29 | lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF" | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 30 | unfolding FF_def TT_def by (induct t) auto | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 31 | |
| 35783 | 32 | lemma trE [case_names bottom TT FF]: | 
| 33 | "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 34 | unfolding FF_def TT_def by (induct p) auto | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 35 | |
| 35783 | 36 | lemma tr_induct [case_names bottom TT FF]: | 
| 37 | "\<lbrakk>P \<bottom>; P TT; P FF\<rbrakk> \<Longrightarrow> P x" | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 38 | by (cases x rule: trE) simp_all | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 39 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 40 | text {* distinctness for type @{typ tr} *}
 | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 41 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 42 | lemma dist_below_tr [simp]: | 
| 41182 | 43 | "TT \<notsqsubseteq> \<bottom>" "FF \<notsqsubseteq> \<bottom>" "TT \<notsqsubseteq> FF" "FF \<notsqsubseteq> TT" | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 44 | unfolding TT_def FF_def by simp_all | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 45 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 46 | lemma dist_eq_tr [simp]: | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 47 | "TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT" | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 48 | unfolding TT_def FF_def by simp_all | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 49 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 50 | lemma TT_below_iff [simp]: "TT \<sqsubseteq> x \<longleftrightarrow> x = TT" | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 51 | by (induct x rule: tr_induct) simp_all | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 52 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 53 | lemma FF_below_iff [simp]: "FF \<sqsubseteq> x \<longleftrightarrow> x = FF" | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 54 | by (induct x rule: tr_induct) simp_all | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 55 | |
| 41182 | 56 | lemma not_below_TT_iff [simp]: "x \<notsqsubseteq> TT \<longleftrightarrow> x = FF" | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 57 | by (induct x rule: tr_induct) simp_all | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 58 | |
| 41182 | 59 | lemma not_below_FF_iff [simp]: "x \<notsqsubseteq> FF \<longleftrightarrow> x = TT" | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 60 | by (induct x rule: tr_induct) simp_all | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 61 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 62 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 63 | subsection {* Case analysis *}
 | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 64 | |
| 36452 | 65 | default_sort pcpo | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 66 | |
| 40324 | 67 | definition tr_case :: "'a \<rightarrow> 'a \<rightarrow> tr \<rightarrow> 'a" where | 
| 68 | "tr_case = (\<Lambda> t e (Def b). if b then t else e)" | |
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 69 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 70 | abbreviation | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 71 |   cifte_syn :: "[tr, 'c, 'c] \<Rightarrow> 'c"  ("(If (_)/ then (_)/ else (_))" [0, 0, 60] 60)
 | 
| 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 72 | where | 
| 40324 | 73 | "If b then e1 else e2 == tr_case\<cdot>e1\<cdot>e2\<cdot>b" | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 74 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 75 | translations | 
| 40324 | 76 | "\<Lambda> (XCONST TT). t" == "CONST tr_case\<cdot>t\<cdot>\<bottom>" | 
| 77 | "\<Lambda> (XCONST FF). t" == "CONST tr_case\<cdot>\<bottom>\<cdot>t" | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 78 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 79 | lemma ifte_thms [simp]: | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 80 | "If \<bottom> then e1 else e2 = \<bottom>" | 
| 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 81 | "If FF then e1 else e2 = e2" | 
| 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 82 | "If TT then e1 else e2 = e1" | 
| 40324 | 83 | by (simp_all add: tr_case_def TT_def FF_def) | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 84 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 85 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 86 | subsection {* Boolean connectives *}
 | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 87 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 88 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 89 | trand :: "tr \<rightarrow> tr \<rightarrow> tr" where | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 90 | andalso_def: "trand = (\<Lambda> x y. If x then y else FF)" | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 91 | abbreviation | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 92 |   andalso_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ andalso _" [36,35] 35)  where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 93 | "x andalso y == trand\<cdot>x\<cdot>y" | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 94 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 95 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 96 | tror :: "tr \<rightarrow> tr \<rightarrow> tr" where | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 97 | orelse_def: "tror = (\<Lambda> x y. If x then TT else y)" | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 98 | abbreviation | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 99 |   orelse_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ orelse _"  [31,30] 30)  where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 100 | "x orelse y == tror\<cdot>x\<cdot>y" | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 101 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 102 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 103 | neg :: "tr \<rightarrow> tr" where | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 104 | "neg = flift2 Not" | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 105 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 106 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 107 | If2 :: "[tr, 'c, 'c] \<Rightarrow> 'c" where | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 108 | "If2 Q x y = (If Q then x else y)" | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 109 | |
| 15649 | 110 | text {* tactic for tr-thms with case split *}
 | 
| 111 | ||
| 40324 | 112 | lemmas tr_defs = andalso_def orelse_def neg_def tr_case_def TT_def FF_def | 
| 27148 | 113 | |
| 15649 | 114 | text {* lemmas about andalso, orelse, neg and if *}
 | 
| 115 | ||
| 116 | lemma andalso_thms [simp]: | |
| 117 | "(TT andalso y) = y" | |
| 118 | "(FF andalso y) = FF" | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 119 | "(\<bottom> andalso y) = \<bottom>" | 
| 15649 | 120 | "(y andalso TT) = y" | 
| 121 | "(y andalso y) = y" | |
| 122 | apply (unfold andalso_def, simp_all) | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 123 | apply (cases y rule: trE, simp_all) | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 124 | apply (cases y rule: trE, simp_all) | 
| 15649 | 125 | done | 
| 126 | ||
| 127 | lemma orelse_thms [simp]: | |
| 128 | "(TT orelse y) = TT" | |
| 129 | "(FF orelse y) = y" | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 130 | "(\<bottom> orelse y) = \<bottom>" | 
| 15649 | 131 | "(y orelse FF) = y" | 
| 132 | "(y orelse y) = y" | |
| 133 | apply (unfold orelse_def, simp_all) | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 134 | apply (cases y rule: trE, simp_all) | 
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 135 | apply (cases y rule: trE, simp_all) | 
| 15649 | 136 | done | 
| 137 | ||
| 138 | lemma neg_thms [simp]: | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 139 | "neg\<cdot>TT = FF" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 140 | "neg\<cdot>FF = TT" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 141 | "neg\<cdot>\<bottom> = \<bottom>" | 
| 15649 | 142 | by (simp_all add: neg_def TT_def FF_def) | 
| 143 | ||
| 144 | text {* split-tac for If via If2 because the constant has to be a constant *}
 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 145 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 146 | lemma split_If2: | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 147 | "P (If2 Q x y) = ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))" | 
| 15649 | 148 | apply (unfold If2_def) | 
| 149 | apply (rule_tac p = "Q" in trE) | |
| 150 | apply (simp_all) | |
| 151 | done | |
| 152 | ||
| 16121 | 153 | ML {*
 | 
| 15649 | 154 | val split_If_tac = | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 155 |   simp_tac (HOL_basic_ss addsimps [@{thm If2_def} RS sym])
 | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 156 |     THEN' (split_tac [@{thm split_If2}])
 | 
| 15649 | 157 | *} | 
| 158 | ||
| 159 | subsection "Rewriting of HOLCF operations to HOL functions" | |
| 160 | ||
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 161 | lemma andalso_or: | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 162 | "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) = FF) = (t = FF \<or> s = FF)" | 
| 15649 | 163 | apply (rule_tac p = "t" in trE) | 
| 164 | apply simp_all | |
| 165 | done | |
| 166 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 167 | lemma andalso_and: | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 168 | "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) = (t \<noteq> FF \<and> s \<noteq> FF)" | 
| 15649 | 169 | apply (rule_tac p = "t" in trE) | 
| 170 | apply simp_all | |
| 171 | done | |
| 172 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 173 | lemma Def_bool1 [simp]: "(Def x \<noteq> FF) = x" | 
| 15649 | 174 | by (simp add: FF_def) | 
| 175 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 176 | lemma Def_bool2 [simp]: "(Def x = FF) = (\<not> x)" | 
| 15649 | 177 | by (simp add: FF_def) | 
| 178 | ||
| 179 | lemma Def_bool3 [simp]: "(Def x = TT) = x" | |
| 180 | by (simp add: TT_def) | |
| 181 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 182 | lemma Def_bool4 [simp]: "(Def x \<noteq> TT) = (\<not> x)" | 
| 15649 | 183 | by (simp add: TT_def) | 
| 184 | ||
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 185 | lemma If_and_if: | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 186 | "(If Def P then A else B) = (if P then A else B)" | 
| 15649 | 187 | apply (rule_tac p = "Def P" in trE) | 
| 188 | apply (auto simp add: TT_def[symmetric] FF_def[symmetric]) | |
| 189 | done | |
| 190 | ||
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 191 | subsection {* Compactness *}
 | 
| 15649 | 192 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 193 | lemma compact_TT: "compact TT" | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 194 | by (rule compact_chfin) | 
| 15649 | 195 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 196 | lemma compact_FF: "compact FF" | 
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 197 | by (rule compact_chfin) | 
| 2640 | 198 | |
| 199 | end |