| author | wenzelm | 
| Tue, 18 Apr 2023 11:58:12 +0200 | |
| changeset 77866 | 3bd1aa2f3517 | 
| parent 75564 | d32201f08e98 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 49087 | 1 | (* Title: HOL/Library/Sublist.thy | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 2 | Author: Tobias Nipkow and Markus Wenzel, TU München | 
| 49087 | 3 | Author: Christian Sternagel, JAIST | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 4 | Author: Manuel Eberl, TU München | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 5 | *) | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 6 | |
| 60500 | 7 | section \<open>List prefixes, suffixes, and homeomorphic embedding\<close> | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 8 | |
| 49087 | 9 | theory Sublist | 
| 10 | imports Main | |
| 15131 | 11 | begin | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 12 | |
| 60500 | 13 | subsection \<open>Prefix order on lists\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 14 | |
| 63117 | 15 | definition prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 16 | where "prefix xs ys \<longleftrightarrow> (\<exists>zs. ys = xs @ zs)" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 17 | |
| 63117 | 18 | definition strict_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 19 | where "strict_prefix xs ys \<longleftrightarrow> prefix xs ys \<and> xs \<noteq> ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 20 | |
| 73411 | 21 | global_interpretation prefix_order: ordering prefix strict_prefix | 
| 22 | by standard (auto simp add: prefix_def strict_prefix_def) | |
| 23 | ||
| 63117 | 24 | interpretation prefix_order: order prefix strict_prefix | 
| 25 | by standard (auto simp: prefix_def strict_prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 26 | |
| 73411 | 27 | global_interpretation prefix_bot: ordering_top \<open>\<lambda>xs ys. prefix ys xs\<close> \<open>\<lambda>xs ys. strict_prefix ys xs\<close> \<open>[]\<close> | 
| 28 | by standard (simp add: prefix_def) | |
| 29 | ||
| 63117 | 30 | interpretation prefix_bot: order_bot Nil prefix strict_prefix | 
| 31 | by standard (simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 32 | |
| 63117 | 33 | lemma prefixI [intro?]: "ys = xs @ zs \<Longrightarrow> prefix xs ys" | 
| 34 | unfolding prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 35 | |
| 63117 | 36 | lemma prefixE [elim?]: | 
| 37 | assumes "prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 38 | obtains zs where "ys = xs @ zs" | 
| 63117 | 39 | using assms unfolding prefix_def by blast | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 40 | |
| 63117 | 41 | lemma strict_prefixI' [intro?]: "ys = xs @ z # zs \<Longrightarrow> strict_prefix xs ys" | 
| 42 | unfolding strict_prefix_def prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 43 | |
| 63117 | 44 | lemma strict_prefixE' [elim?]: | 
| 45 | assumes "strict_prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 46 | obtains z zs where "ys = xs @ z # zs" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 47 | proof - | 
| 63117 | 48 | from \<open>strict_prefix xs ys\<close> obtain us where "ys = xs @ us" and "xs \<noteq> ys" | 
| 49 | unfolding strict_prefix_def prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 50 | with that show ?thesis by (auto simp add: neq_Nil_conv) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 51 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 52 | |
| 63155 | 53 | (* FIXME rm *) | 
| 63117 | 54 | lemma strict_prefixI [intro?]: "prefix xs ys \<Longrightarrow> xs \<noteq> ys \<Longrightarrow> strict_prefix xs ys" | 
| 63155 | 55 | by(fact prefix_order.le_neq_trans) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 56 | |
| 63117 | 57 | lemma strict_prefixE [elim?]: | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 58 | fixes xs ys :: "'a list" | 
| 63117 | 59 | assumes "strict_prefix xs ys" | 
| 60 | obtains "prefix xs ys" and "xs \<noteq> ys" | |
| 61 | using assms unfolding strict_prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 62 | |
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 63 | |
| 60500 | 64 | subsection \<open>Basic properties of prefixes\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 65 | |
| 63155 | 66 | (* FIXME rm *) | 
| 65869 | 67 | theorem Nil_prefix [simp]: "prefix [] xs" | 
| 68 | by (fact prefix_bot.bot_least) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 69 | |
| 63155 | 70 | (* FIXME rm *) | 
| 63117 | 71 | theorem prefix_Nil [simp]: "(prefix xs []) = (xs = [])" | 
| 65869 | 72 | by (fact prefix_bot.bot_unique) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 73 | |
| 63117 | 74 | lemma prefix_snoc [simp]: "prefix xs (ys @ [y]) \<longleftrightarrow> xs = ys @ [y] \<or> prefix xs ys" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 75 | proof | 
| 63117 | 76 | assume "prefix xs (ys @ [y])" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 77 | then obtain zs where zs: "ys @ [y] = xs @ zs" .. | 
| 63117 | 78 | show "xs = ys @ [y] \<or> prefix xs ys" | 
| 79 | by (metis append_Nil2 butlast_append butlast_snoc prefixI zs) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 80 | next | 
| 63117 | 81 | assume "xs = ys @ [y] \<or> prefix xs ys" | 
| 82 | then show "prefix xs (ys @ [y])" | |
| 73411 | 83 | by auto (metis append.assoc prefix_def) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 84 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 85 | |
| 63117 | 86 | lemma Cons_prefix_Cons [simp]: "prefix (x # xs) (y # ys) = (x = y \<and> prefix xs ys)" | 
| 87 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 88 | |
| 63117 | 89 | lemma prefix_code [code]: | 
| 90 | "prefix [] xs \<longleftrightarrow> True" | |
| 91 | "prefix (x # xs) [] \<longleftrightarrow> False" | |
| 92 | "prefix (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 93 | by simp_all | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 94 | |
| 63117 | 95 | lemma same_prefix_prefix [simp]: "prefix (xs @ ys) (xs @ zs) = prefix ys zs" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 96 | by (induct xs) simp_all | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 97 | |
| 65869 | 98 | lemma same_prefix_nil [simp]: "prefix (xs @ ys) xs = (ys = [])" | 
| 73411 | 99 | by (simp add: prefix_def) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 100 | |
| 63117 | 101 | lemma prefix_prefix [simp]: "prefix xs ys \<Longrightarrow> prefix xs (ys @ zs)" | 
| 64886 | 102 | unfolding prefix_def by fastforce | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 103 | |
| 63117 | 104 | lemma append_prefixD: "prefix (xs @ ys) zs \<Longrightarrow> prefix xs zs" | 
| 105 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 106 | |
| 63117 | 107 | theorem prefix_Cons: "prefix xs (y # ys) = (xs = [] \<or> (\<exists>zs. xs = y # zs \<and> prefix zs ys))" | 
| 108 | by (cases xs) (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 109 | |
| 63117 | 110 | theorem prefix_append: | 
| 111 | "prefix xs (ys @ zs) = (prefix xs ys \<or> (\<exists>us. xs = ys @ us \<and> prefix us zs))" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 112 | apply (induct zs rule: rev_induct) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 113 | apply force | 
| 68406 | 114 | apply (simp flip: append_assoc) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 115 | apply (metis append_eq_appendI) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 116 | done | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 117 | |
| 63117 | 118 | lemma append_one_prefix: | 
| 119 | "prefix xs ys \<Longrightarrow> length xs < length ys \<Longrightarrow> prefix (xs @ [ys ! length xs]) ys" | |
| 120 | proof (unfold prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 121 | assume a1: "\<exists>zs. ys = xs @ zs" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 122 | then obtain sk :: "'a list" where sk: "ys = xs @ sk" by fastforce | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 123 | assume a2: "length xs < length ys" | 
| 61076 | 124 | have f1: "\<And>v. ([]::'a list) @ v = v" using append_Nil2 by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 125 | have "[] \<noteq> sk" using a1 a2 sk less_not_refl by force | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 126 | hence "\<exists>v. xs @ hd sk # v = ys" using sk by (metis hd_Cons_tl) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 127 | thus "\<exists>zs. ys = (xs @ [ys ! length xs]) @ zs" using f1 by fastforce | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 128 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 129 | |
| 63117 | 130 | theorem prefix_length_le: "prefix xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 131 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 132 | |
| 63117 | 133 | lemma prefix_same_cases: | 
| 134 | "prefix (xs\<^sub>1::'a list) ys \<Longrightarrow> prefix xs\<^sub>2 ys \<Longrightarrow> prefix xs\<^sub>1 xs\<^sub>2 \<or> prefix xs\<^sub>2 xs\<^sub>1" | |
| 135 | unfolding prefix_def by (force simp: append_eq_append_conv2) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 136 | |
| 63173 | 137 | lemma prefix_length_prefix: | 
| 138 | "prefix ps xs \<Longrightarrow> prefix qs xs \<Longrightarrow> length ps \<le> length qs \<Longrightarrow> prefix ps qs" | |
| 139 | by (auto simp: prefix_def) (metis append_Nil2 append_eq_append_conv_if) | |
| 140 | ||
| 63117 | 141 | lemma set_mono_prefix: "prefix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 142 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 143 | |
| 63117 | 144 | lemma take_is_prefix: "prefix (take n xs) xs" | 
| 145 | unfolding prefix_def by (metis append_take_drop_id) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 146 | |
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 147 | lemma takeWhile_is_prefix: "prefix (takeWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 148 | unfolding prefix_def by (metis takeWhile_dropWhile_id) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 149 | |
| 63155 | 150 | lemma prefixeq_butlast: "prefix (butlast xs) xs" | 
| 151 | by (simp add: butlast_conv_take take_is_prefix) | |
| 152 | ||
| 71789 | 153 | lemma prefix_map_rightE: | 
| 154 | assumes "prefix xs (map f ys)" | |
| 155 | shows "\<exists>xs'. prefix xs' ys \<and> xs = map f xs'" | |
| 156 | proof - | |
| 157 | define n where "n = length xs" | |
| 158 | have "xs = take n (map f ys)" | |
| 159 | using assms by (auto simp: prefix_def n_def) | |
| 160 | thus ?thesis | |
| 161 | by (intro exI[of _ "take n ys"]) (auto simp: take_map take_is_prefix) | |
| 162 | qed | |
| 163 | ||
| 67606 | 164 | lemma map_mono_prefix: "prefix xs ys \<Longrightarrow> prefix (map f xs) (map f ys)" | 
| 165 | by (auto simp: prefix_def) | |
| 166 | ||
| 167 | lemma filter_mono_prefix: "prefix xs ys \<Longrightarrow> prefix (filter P xs) (filter P ys)" | |
| 168 | by (auto simp: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 169 | |
| 67612 | 170 | lemma sorted_antimono_prefix: "prefix xs ys \<Longrightarrow> sorted ys \<Longrightarrow> sorted xs" | 
| 171 | by (metis sorted_append prefix_def) | |
| 172 | ||
| 63117 | 173 | lemma prefix_length_less: "strict_prefix xs ys \<Longrightarrow> length xs < length ys" | 
| 174 | by (auto simp: strict_prefix_def prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 175 | |
| 63155 | 176 | lemma prefix_snocD: "prefix (xs@[x]) ys \<Longrightarrow> strict_prefix xs ys" | 
| 177 | by (simp add: strict_prefixI' prefix_order.dual_order.strict_trans1) | |
| 178 | ||
| 63117 | 179 | lemma strict_prefix_simps [simp, code]: | 
| 180 | "strict_prefix xs [] \<longleftrightarrow> False" | |
| 181 | "strict_prefix [] (x # xs) \<longleftrightarrow> True" | |
| 182 | "strict_prefix (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> strict_prefix xs ys" | |
| 183 | by (simp_all add: strict_prefix_def cong: conj_cong) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 184 | |
| 63117 | 185 | lemma take_strict_prefix: "strict_prefix xs ys \<Longrightarrow> strict_prefix (take n xs) ys" | 
| 63649 | 186 | proof (induct n arbitrary: xs ys) | 
| 187 | case 0 | |
| 188 | then show ?case by (cases ys) simp_all | |
| 189 | next | |
| 190 | case (Suc n) | |
| 191 | then show ?case by (metis prefix_order.less_trans strict_prefixI take_is_prefix) | |
| 192 | qed | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 193 | |
| 71789 | 194 | lemma prefix_takeWhile: | 
| 195 | assumes "prefix xs ys" | |
| 196 | shows "prefix (takeWhile P xs) (takeWhile P ys)" | |
| 197 | proof - | |
| 198 | from assms obtain zs where ys: "ys = xs @ zs" | |
| 199 | by (auto simp: prefix_def) | |
| 200 | have "prefix (takeWhile P xs) (takeWhile P (xs @ zs))" | |
| 201 | by (induction xs) auto | |
| 202 | thus ?thesis by (simp add: ys) | |
| 203 | qed | |
| 204 | ||
| 205 | lemma prefix_dropWhile: | |
| 206 | assumes "prefix xs ys" | |
| 207 | shows "prefix (dropWhile P xs) (dropWhile P ys)" | |
| 208 | proof - | |
| 209 | from assms obtain zs where ys: "ys = xs @ zs" | |
| 210 | by (auto simp: prefix_def) | |
| 211 | have "prefix (dropWhile P xs) (dropWhile P (xs @ zs))" | |
| 212 | by (induction xs) auto | |
| 213 | thus ?thesis by (simp add: ys) | |
| 214 | qed | |
| 215 | ||
| 216 | lemma prefix_remdups_adj: | |
| 217 | assumes "prefix xs ys" | |
| 218 | shows "prefix (remdups_adj xs) (remdups_adj ys)" | |
| 219 | using assms | |
| 220 | proof (induction "length xs" arbitrary: xs ys rule: less_induct) | |
| 221 | case (less xs) | |
| 222 | show ?case | |
| 223 | proof (cases xs) | |
| 224 | case [simp]: (Cons x xs') | |
| 225 | then obtain y ys' where [simp]: "ys = y # ys'" | |
| 226 | using \<open>prefix xs ys\<close> by (cases ys) auto | |
| 227 | from less show ?thesis | |
| 228 | by (auto simp: remdups_adj_Cons' less_Suc_eq_le length_dropWhile_le | |
| 229 | intro!: less prefix_dropWhile) | |
| 230 | qed auto | |
| 231 | qed | |
| 232 | ||
| 63117 | 233 | lemma not_prefix_cases: | 
| 234 | assumes pfx: "\<not> prefix ps ls" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 235 | obtains | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 236 | (c1) "ps \<noteq> []" and "ls = []" | 
| 63117 | 237 | | (c2) a as x xs where "ps = a#as" and "ls = x#xs" and "x = a" and "\<not> prefix as xs" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 238 | | (c3) a as x xs where "ps = a#as" and "ls = x#xs" and "x \<noteq> a" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 239 | proof (cases ps) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 240 | case Nil | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 241 | then show ?thesis using pfx by simp | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 242 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 243 | case (Cons a as) | 
| 60500 | 244 | note c = \<open>ps = a#as\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 245 | show ?thesis | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 246 | proof (cases ls) | 
| 63117 | 247 | case Nil then show ?thesis by (metis append_Nil2 pfx c1 same_prefix_nil) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 248 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 249 | case (Cons x xs) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 250 | show ?thesis | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 251 | proof (cases "x = a") | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 252 | case True | 
| 63117 | 253 | have "\<not> prefix as xs" using pfx c Cons True by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 254 | with c Cons True show ?thesis by (rule c2) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 255 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 256 | case False | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 257 | with c Cons show ?thesis by (rule c3) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 258 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 259 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 260 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 261 | |
| 63117 | 262 | lemma not_prefix_induct [consumes 1, case_names Nil Neq Eq]: | 
| 263 | assumes np: "\<not> prefix ps ls" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 264 | and base: "\<And>x xs. P (x#xs) []" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 265 | and r1: "\<And>x xs y ys. x \<noteq> y \<Longrightarrow> P (x#xs) (y#ys)" | 
| 63117 | 266 | and r2: "\<And>x xs y ys. \<lbrakk> x = y; \<not> prefix xs ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys)" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 267 | shows "P ps ls" using np | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 268 | proof (induct ls arbitrary: ps) | 
| 63649 | 269 | case Nil | 
| 270 | then show ?case | |
| 63117 | 271 | by (auto simp: neq_Nil_conv elim!: not_prefix_cases intro!: base) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 272 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 273 | case (Cons y ys) | 
| 63117 | 274 | then have npfx: "\<not> prefix ps (y # ys)" by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 275 | then obtain x xs where pv: "ps = x # xs" | 
| 63117 | 276 | by (rule not_prefix_cases) auto | 
| 277 | show ?case by (metis Cons.hyps Cons_prefix_Cons npfx pv r1 r2) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 278 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 279 | |
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 280 | |
| 63155 | 281 | subsection \<open>Prefixes\<close> | 
| 282 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 283 | primrec prefixes where | 
| 63155 | 284 | "prefixes [] = [[]]" | | 
| 67399 | 285 | "prefixes (x#xs) = [] # map ((#) x) (prefixes xs)" | 
| 63155 | 286 | |
| 287 | lemma in_set_prefixes[simp]: "xs \<in> set (prefixes ys) \<longleftrightarrow> prefix xs ys" | |
| 63649 | 288 | proof (induct xs arbitrary: ys) | 
| 289 | case Nil | |
| 290 | then show ?case by (cases ys) auto | |
| 291 | next | |
| 292 | case (Cons a xs) | |
| 293 | then show ?case by (cases ys) auto | |
| 294 | qed | |
| 63155 | 295 | |
| 296 | lemma length_prefixes[simp]: "length (prefixes xs) = length xs+1" | |
| 65869 | 297 | by (induction xs) auto | 
| 298 | ||
| 299 | lemma distinct_prefixes [intro]: "distinct (prefixes xs)" | |
| 300 | by (induction xs) (auto simp: distinct_map) | |
| 301 | ||
| 302 | lemma prefixes_snoc [simp]: "prefixes (xs@[x]) = prefixes xs @ [xs@[x]]" | |
| 303 | by (induction xs) auto | |
| 304 | ||
| 305 | lemma prefixes_not_Nil [simp]: "prefixes xs \<noteq> []" | |
| 306 | by (cases xs) auto | |
| 63155 | 307 | |
| 65869 | 308 | lemma hd_prefixes [simp]: "hd (prefixes xs) = []" | 
| 309 | by (cases xs) simp_all | |
| 63155 | 310 | |
| 65869 | 311 | lemma last_prefixes [simp]: "last (prefixes xs) = xs" | 
| 312 | by (induction xs) (simp_all add: last_map) | |
| 313 | ||
| 314 | lemma prefixes_append: | |
| 315 | "prefixes (xs @ ys) = prefixes xs @ map (\<lambda>ys'. xs @ ys') (tl (prefixes ys))" | |
| 316 | proof (induction xs) | |
| 317 | case Nil | |
| 318 | thus ?case by (cases ys) auto | |
| 319 | qed simp_all | |
| 320 | ||
| 321 | lemma prefixes_eq_snoc: | |
| 63155 | 322 | "prefixes ys = xs @ [x] \<longleftrightarrow> | 
| 323 | (ys = [] \<and> xs = [] \<or> (\<exists>z zs. ys = zs@[z] \<and> xs = prefixes zs)) \<and> x = ys" | |
| 65869 | 324 | by (cases ys rule: rev_cases) auto | 
| 325 | ||
| 326 | lemma prefixes_tailrec [code]: | |
| 327 | "prefixes xs = rev (snd (foldl (\<lambda>(acc1, acc2) x. (x#acc1, rev (x#acc1)#acc2)) ([],[[]]) xs))" | |
| 328 | proof - | |
| 329 | have "foldl (\<lambda>(acc1, acc2) x. (x#acc1, rev (x#acc1)#acc2)) (ys, rev ys # zs) xs = | |
| 330 | (rev xs @ ys, rev (map (\<lambda>as. rev ys @ as) (prefixes xs)) @ zs)" for ys zs | |
| 331 | proof (induction xs arbitrary: ys zs) | |
| 332 | case (Cons x xs ys zs) | |
| 333 | from Cons.IH[of "x # ys" "rev ys # zs"] | |
| 334 | show ?case by (simp add: o_def) | |
| 335 | qed simp_all | |
| 336 | from this [of "[]" "[]"] show ?thesis by simp | |
| 337 | qed | |
| 338 | ||
| 339 | lemma set_prefixes_eq: "set (prefixes xs) = {ys. prefix ys xs}"
 | |
| 340 | by auto | |
| 341 | ||
| 342 | lemma card_set_prefixes [simp]: "card (set (prefixes xs)) = Suc (length xs)" | |
| 343 | by (subst distinct_card) auto | |
| 344 | ||
| 345 | lemma set_prefixes_append: | |
| 346 |   "set (prefixes (xs @ ys)) = set (prefixes xs) \<union> {xs @ ys' |ys'. ys' \<in> set (prefixes ys)}"
 | |
| 347 | by (subst prefixes_append, cases ys) auto | |
| 63155 | 348 | |
| 349 | ||
| 63173 | 350 | subsection \<open>Longest Common Prefix\<close> | 
| 351 | ||
| 352 | definition Longest_common_prefix :: "'a list set \<Rightarrow> 'a list" where | |
| 65954 | 353 | "Longest_common_prefix L = (ARG_MAX length ps. \<forall>xs \<in> L. prefix ps xs)" | 
| 63173 | 354 | |
| 355 | lemma Longest_common_prefix_ex: "L \<noteq> {} \<Longrightarrow>
 | |
| 356 | \<exists>ps. (\<forall>xs \<in> L. prefix ps xs) \<and> (\<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> size qs \<le> size ps)" | |
| 357 | (is "_ \<Longrightarrow> \<exists>ps. ?P L ps") | |
| 358 | proof(induction "LEAST n. \<exists>xs \<in>L. n = length xs" arbitrary: L) | |
| 359 | case 0 | |
| 67613 | 360 |   have "[] \<in> L" using "0.hyps" LeastI[of "\<lambda>n. \<exists>xs\<in>L. n = length xs"] \<open>L \<noteq> {}\<close>
 | 
| 63173 | 361 | by auto | 
| 362 | hence "?P L []" by(auto) | |
| 363 | thus ?case .. | |
| 364 | next | |
| 365 | case (Suc n) | |
| 366 | let ?EX = "\<lambda>n. \<exists>xs\<in>L. n = length xs" | |
| 367 | obtain x xs where xxs: "x#xs \<in> L" "size xs = n" using Suc.prems Suc.hyps(2) | |
| 368 | by(metis LeastI_ex[of ?EX] Suc_length_conv ex_in_conv) | |
| 369 | hence "[] \<notin> L" using Suc.hyps(2) by auto | |
| 370 | show ?case | |
| 371 | proof (cases "\<forall>xs \<in> L. \<exists>ys. xs = x#ys") | |
| 372 | case True | |
| 373 |     let ?L = "{ys. x#ys \<in> L}"
 | |
| 374 | have 1: "(LEAST n. \<exists>xs \<in> ?L. n = length xs) = n" | |
| 375 | using xxs Suc.prems Suc.hyps(2) Least_le[of "?EX"] | |
| 376 | by - (rule Least_equality, fastforce+) | |
| 377 |     have 2: "?L \<noteq> {}" using \<open>x # xs \<in> L\<close> by auto
 | |
| 378 | from Suc.hyps(1)[OF 1[symmetric] 2] obtain ps where IH: "?P ?L ps" .. | |
| 379 |     { fix qs
 | |
| 380 | assume "\<forall>qs. (\<forall>xa. x # xa \<in> L \<longrightarrow> prefix qs xa) \<longrightarrow> length qs \<le> length ps" | |
| 381 | and "\<forall>xs\<in>L. prefix qs xs" | |
| 382 | hence "length (tl qs) \<le> length ps" | |
| 383 | by (metis Cons_prefix_Cons hd_Cons_tl list.sel(2) Nil_prefix) | |
| 384 | hence "length qs \<le> Suc (length ps)" by auto | |
| 385 | } | |
| 386 | hence "?P L (x#ps)" using True IH by auto | |
| 387 | thus ?thesis .. | |
| 388 | next | |
| 389 | case False | |
| 390 | then obtain y ys where yys: "x\<noteq>y" "y#ys \<in> L" using \<open>[] \<notin> L\<close> | |
| 391 | by (auto) (metis list.exhaust) | |
| 392 | have "\<forall>qs. (\<forall>xs\<in>L. prefix qs xs) \<longrightarrow> qs = []" using yys \<open>x#xs \<in> L\<close> | |
| 393 | by auto (metis Cons_prefix_Cons prefix_Cons) | |
| 394 | hence "?P L []" by auto | |
| 395 | thus ?thesis .. | |
| 396 | qed | |
| 397 | qed | |
| 398 | ||
| 73411 | 399 | lemma Longest_common_prefix_unique: | 
| 400 | \<open>\<exists>! ps. (\<forall>xs \<in> L. prefix ps xs) \<and> (\<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> length qs \<le> length ps)\<close> | |
| 401 |   if \<open>L \<noteq> {}\<close>
 | |
| 402 | using that apply (rule ex_ex1I[OF Longest_common_prefix_ex]) | |
| 403 | using that apply (auto simp add: prefix_def) | |
| 404 | apply (metis append_eq_append_conv_if order.antisym) | |
| 405 | done | |
| 63173 | 406 | |
| 407 | lemma Longest_common_prefix_eq: | |
| 408 |  "\<lbrakk> L \<noteq> {};  \<forall>xs \<in> L. prefix ps xs;
 | |
| 409 | \<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> size qs \<le> size ps \<rbrakk> | |
| 410 | \<Longrightarrow> Longest_common_prefix L = ps" | |
| 65954 | 411 | unfolding Longest_common_prefix_def arg_max_def is_arg_max_linorder | 
| 63173 | 412 | by(rule some1_equality[OF Longest_common_prefix_unique]) auto | 
| 413 | ||
| 414 | lemma Longest_common_prefix_prefix: | |
| 415 | "xs \<in> L \<Longrightarrow> prefix (Longest_common_prefix L) xs" | |
| 65954 | 416 | unfolding Longest_common_prefix_def arg_max_def is_arg_max_linorder | 
| 63173 | 417 | by(rule someI2_ex[OF Longest_common_prefix_ex]) auto | 
| 418 | ||
| 419 | lemma Longest_common_prefix_longest: | |
| 420 |   "L \<noteq> {} \<Longrightarrow> \<forall>xs\<in>L. prefix ps xs \<Longrightarrow> length ps \<le> length(Longest_common_prefix L)"
 | |
| 65954 | 421 | unfolding Longest_common_prefix_def arg_max_def is_arg_max_linorder | 
| 63173 | 422 | by(rule someI2_ex[OF Longest_common_prefix_ex]) auto | 
| 423 | ||
| 424 | lemma Longest_common_prefix_max_prefix: | |
| 425 |   "L \<noteq> {} \<Longrightarrow> \<forall>xs\<in>L. prefix ps xs \<Longrightarrow> prefix ps (Longest_common_prefix L)"
 | |
| 426 | by(metis Longest_common_prefix_prefix Longest_common_prefix_longest | |
| 427 | prefix_length_prefix ex_in_conv) | |
| 428 | ||
| 429 | lemma Longest_common_prefix_Nil: "[] \<in> L \<Longrightarrow> Longest_common_prefix L = []" | |
| 430 | using Longest_common_prefix_prefix prefix_Nil by blast | |
| 431 | ||
| 432 | lemma Longest_common_prefix_image_Cons: "L \<noteq> {} \<Longrightarrow>
 | |
| 67399 | 433 | Longest_common_prefix ((#) x ` L) = x # Longest_common_prefix L" | 
| 63173 | 434 | apply(rule Longest_common_prefix_eq) | 
| 435 | apply(simp) | |
| 436 | apply (simp add: Longest_common_prefix_prefix) | |
| 437 | apply simp | |
| 438 | by(metis Longest_common_prefix_longest[of L] Cons_prefix_Cons Nitpick.size_list_simp(2) | |
| 439 | Suc_le_mono hd_Cons_tl order.strict_implies_order zero_less_Suc) | |
| 440 | ||
| 441 | lemma Longest_common_prefix_eq_Cons: assumes "L \<noteq> {}" "[] \<notin> L"  "\<forall>xs\<in>L. hd xs = x"
 | |
| 442 | shows "Longest_common_prefix L = x # Longest_common_prefix {ys. x#ys \<in> L}"
 | |
| 443 | proof - | |
| 67399 | 444 |   have "L = (#) x ` {ys. x#ys \<in> L}" using assms(2,3)
 | 
| 63173 | 445 | by (auto simp: image_def)(metis hd_Cons_tl) | 
| 446 | thus ?thesis | |
| 447 | by (metis Longest_common_prefix_image_Cons image_is_empty assms(1)) | |
| 448 | qed | |
| 449 | ||
| 450 | lemma Longest_common_prefix_eq_Nil: | |
| 451 | "\<lbrakk>x#ys \<in> L; y#zs \<in> L; x \<noteq> y \<rbrakk> \<Longrightarrow> Longest_common_prefix L = []" | |
| 452 | by (metis Longest_common_prefix_prefix list.inject prefix_Cons) | |
| 453 | ||
| 454 | fun longest_common_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 455 | "longest_common_prefix (x#xs) (y#ys) = | |
| 456 | (if x=y then x # longest_common_prefix xs ys else [])" | | |
| 457 | "longest_common_prefix _ _ = []" | |
| 458 | ||
| 459 | lemma longest_common_prefix_prefix1: | |
| 460 | "prefix (longest_common_prefix xs ys) xs" | |
| 461 | by(induction xs ys rule: longest_common_prefix.induct) auto | |
| 462 | ||
| 463 | lemma longest_common_prefix_prefix2: | |
| 464 | "prefix (longest_common_prefix xs ys) ys" | |
| 465 | by(induction xs ys rule: longest_common_prefix.induct) auto | |
| 466 | ||
| 467 | lemma longest_common_prefix_max_prefix: | |
| 468 | "\<lbrakk> prefix ps xs; prefix ps ys \<rbrakk> | |
| 469 | \<Longrightarrow> prefix ps (longest_common_prefix xs ys)" | |
| 470 | by(induction xs ys arbitrary: ps rule: longest_common_prefix.induct) | |
| 471 | (auto simp: prefix_Cons) | |
| 472 | ||
| 473 | ||
| 60500 | 474 | subsection \<open>Parallel lists\<close> | 
| 10389 | 475 | |
| 50516 | 476 | definition parallel :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "\<parallel>" 50) | 
| 63117 | 477 | where "(xs \<parallel> ys) = (\<not> prefix xs ys \<and> \<not> prefix ys xs)" | 
| 10389 | 478 | |
| 63117 | 479 | lemma parallelI [intro]: "\<not> prefix xs ys \<Longrightarrow> \<not> prefix ys xs \<Longrightarrow> xs \<parallel> ys" | 
| 25692 | 480 | unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 481 | |
| 10389 | 482 | lemma parallelE [elim]: | 
| 25692 | 483 | assumes "xs \<parallel> ys" | 
| 63117 | 484 | obtains "\<not> prefix xs ys \<and> \<not> prefix ys xs" | 
| 25692 | 485 | using assms unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 486 | |
| 63117 | 487 | theorem prefix_cases: | 
| 488 | obtains "prefix xs ys" | "strict_prefix ys xs" | "xs \<parallel> ys" | |
| 489 | unfolding parallel_def strict_prefix_def by blast | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 490 | |
| 73186 | 491 | lemma parallel_cancel: "a#xs \<parallel> a#ys \<Longrightarrow> xs \<parallel> ys" | 
| 492 | by (simp add: parallel_def) | |
| 493 | ||
| 10389 | 494 | theorem parallel_decomp: | 
| 50516 | 495 | "xs \<parallel> ys \<Longrightarrow> \<exists>as b bs c cs. b \<noteq> c \<and> xs = as @ b # bs \<and> ys = as @ c # cs" | 
| 73186 | 496 | proof (induct rule: list_induct2', blast, force, force) | 
| 497 | case (4 x xs y ys) | |
| 498 | then show ?case | |
| 499 | proof (cases "x \<noteq> y", blast) | |
| 500 | assume "\<not> x \<noteq> y" hence "x = y" by blast | |
| 501 | then show ?thesis | |
| 502 | using "4.hyps"[OF parallel_cancel[OF "4.prems"[folded \<open>x = y\<close>]]] | |
| 503 | by (meson Cons_eq_appendI) | |
| 10389 | 504 | qed | 
| 505 | qed | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 506 | |
| 25564 | 507 | lemma parallel_append: "a \<parallel> b \<Longrightarrow> a @ c \<parallel> b @ d" | 
| 25692 | 508 | apply (rule parallelI) | 
| 509 | apply (erule parallelE, erule conjE, | |
| 63117 | 510 | induct rule: not_prefix_induct, simp+)+ | 
| 25692 | 511 | done | 
| 25299 | 512 | |
| 25692 | 513 | lemma parallel_appendI: "xs \<parallel> ys \<Longrightarrow> x = xs @ xs' \<Longrightarrow> y = ys @ ys' \<Longrightarrow> x \<parallel> y" | 
| 514 | by (simp add: parallel_append) | |
| 25299 | 515 | |
| 25692 | 516 | lemma parallel_commute: "a \<parallel> b \<longleftrightarrow> b \<parallel> a" | 
| 517 | unfolding parallel_def by auto | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 518 | |
| 25356 | 519 | |
| 60500 | 520 | subsection \<open>Suffix order on lists\<close> | 
| 17201 | 521 | |
| 63149 | 522 | definition suffix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 523 | where "suffix xs ys = (\<exists>zs. ys = zs @ xs)" | |
| 49087 | 524 | |
| 63149 | 525 | definition strict_suffix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 65869 | 526 | where "strict_suffix xs ys \<longleftrightarrow> suffix xs ys \<and> xs \<noteq> ys" | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 527 | |
| 73411 | 528 | global_interpretation suffix_order: ordering suffix strict_suffix | 
| 529 | by standard (auto simp: suffix_def strict_suffix_def) | |
| 530 | ||
| 65869 | 531 | interpretation suffix_order: order suffix strict_suffix | 
| 532 | by standard (auto simp: suffix_def strict_suffix_def) | |
| 533 | ||
| 73411 | 534 | global_interpretation suffix_bot: ordering_top \<open>\<lambda>xs ys. suffix ys xs\<close> \<open>\<lambda>xs ys. strict_suffix ys xs\<close> \<open>[]\<close> | 
| 535 | by standard (simp add: suffix_def) | |
| 536 | ||
| 65869 | 537 | interpretation suffix_bot: order_bot Nil suffix strict_suffix | 
| 538 | by standard (simp add: suffix_def) | |
| 49087 | 539 | |
| 63149 | 540 | lemma suffixI [intro?]: "ys = zs @ xs \<Longrightarrow> suffix xs ys" | 
| 541 | unfolding suffix_def by blast | |
| 21305 | 542 | |
| 63149 | 543 | lemma suffixE [elim?]: | 
| 544 | assumes "suffix xs ys" | |
| 49087 | 545 | obtains zs where "ys = zs @ xs" | 
| 63149 | 546 | using assms unfolding suffix_def by blast | 
| 65957 | 547 | |
| 63149 | 548 | lemma suffix_tl [simp]: "suffix (tl xs) xs" | 
| 49087 | 549 | by (induct xs) (auto simp: suffix_def) | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 550 | |
| 63149 | 551 | lemma strict_suffix_tl [simp]: "xs \<noteq> [] \<Longrightarrow> strict_suffix (tl xs) xs" | 
| 65869 | 552 | by (induct xs) (auto simp: strict_suffix_def suffix_def) | 
| 63149 | 553 | |
| 65869 | 554 | lemma Nil_suffix [simp]: "suffix [] xs" | 
| 63149 | 555 | by (simp add: suffix_def) | 
| 49087 | 556 | |
| 63149 | 557 | lemma suffix_Nil [simp]: "(suffix xs []) = (xs = [])" | 
| 558 | by (auto simp add: suffix_def) | |
| 559 | ||
| 560 | lemma suffix_ConsI: "suffix xs ys \<Longrightarrow> suffix xs (y # ys)" | |
| 561 | by (auto simp add: suffix_def) | |
| 562 | ||
| 563 | lemma suffix_ConsD: "suffix (x # xs) ys \<Longrightarrow> suffix xs ys" | |
| 564 | by (auto simp add: suffix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 565 | |
| 63149 | 566 | lemma suffix_appendI: "suffix xs ys \<Longrightarrow> suffix xs (zs @ ys)" | 
| 567 | by (auto simp add: suffix_def) | |
| 568 | ||
| 569 | lemma suffix_appendD: "suffix (zs @ xs) ys \<Longrightarrow> suffix xs ys" | |
| 570 | by (auto simp add: suffix_def) | |
| 49087 | 571 | |
| 63149 | 572 | lemma strict_suffix_set_subset: "strict_suffix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 65869 | 573 | by (auto simp: strict_suffix_def suffix_def) | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 574 | |
| 67606 | 575 | lemma set_mono_suffix: "suffix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 576 | by (auto simp: suffix_def) | |
| 49087 | 577 | |
| 67612 | 578 | lemma sorted_antimono_suffix: "suffix xs ys \<Longrightarrow> sorted ys \<Longrightarrow> sorted xs" | 
| 579 | by (metis sorted_append suffix_def) | |
| 580 | ||
| 63149 | 581 | lemma suffix_ConsD2: "suffix (x # xs) (y # ys) \<Longrightarrow> suffix xs ys" | 
| 21305 | 582 | proof - | 
| 63149 | 583 | assume "suffix (x # xs) (y # ys)" | 
| 49107 | 584 | then obtain zs where "y # ys = zs @ x # xs" .. | 
| 49087 | 585 | then show ?thesis | 
| 63149 | 586 | by (induct zs) (auto intro!: suffix_appendI suffix_ConsI) | 
| 21305 | 587 | qed | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 588 | |
| 63149 | 589 | lemma suffix_to_prefix [code]: "suffix xs ys \<longleftrightarrow> prefix (rev xs) (rev ys)" | 
| 49087 | 590 | proof | 
| 63149 | 591 | assume "suffix xs ys" | 
| 49087 | 592 | then obtain zs where "ys = zs @ xs" .. | 
| 593 | then have "rev ys = rev xs @ rev zs" by simp | |
| 63117 | 594 | then show "prefix (rev xs) (rev ys)" .. | 
| 49087 | 595 | next | 
| 63117 | 596 | assume "prefix (rev xs) (rev ys)" | 
| 49087 | 597 | then obtain zs where "rev ys = rev xs @ zs" .. | 
| 598 | then have "rev (rev ys) = rev zs @ rev (rev xs)" by simp | |
| 599 | then have "ys = rev zs @ xs" by simp | |
| 63149 | 600 | then show "suffix xs ys" .. | 
| 21305 | 601 | qed | 
| 65869 | 602 | |
| 603 | lemma strict_suffix_to_prefix [code]: "strict_suffix xs ys \<longleftrightarrow> strict_prefix (rev xs) (rev ys)" | |
| 604 | by (auto simp: suffix_to_prefix strict_suffix_def strict_prefix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 605 | |
| 63149 | 606 | lemma distinct_suffix: "distinct ys \<Longrightarrow> suffix xs ys \<Longrightarrow> distinct xs" | 
| 607 | by (clarsimp elim!: suffixE) | |
| 17201 | 608 | |
| 67606 | 609 | lemma map_mono_suffix: "suffix xs ys \<Longrightarrow> suffix (map f xs) (map f ys)" | 
| 610 | by (auto elim!: suffixE intro: suffixI) | |
| 611 | ||
| 75564 | 612 | lemma map_mono_strict_suffix: "strict_suffix xs ys \<Longrightarrow> strict_suffix (map f xs) (map f ys)" | 
| 613 | by (auto simp: strict_suffix_def suffix_def) | |
| 614 | ||
| 67606 | 615 | lemma filter_mono_suffix: "suffix xs ys \<Longrightarrow> suffix (filter P xs) (filter P ys)" | 
| 616 | by (auto simp: suffix_def) | |
| 25299 | 617 | |
| 63149 | 618 | lemma suffix_drop: "suffix (drop n as) as" | 
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 619 | unfolding suffix_def by (metis append_take_drop_id) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 620 | |
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 621 | lemma suffix_dropWhile: "suffix (dropWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 622 | unfolding suffix_def by (metis takeWhile_dropWhile_id) | 
| 25299 | 623 | |
| 63149 | 624 | lemma suffix_take: "suffix xs ys \<Longrightarrow> ys = take (length ys - length xs) ys @ xs" | 
| 625 | by (auto elim!: suffixE) | |
| 25299 | 626 | |
| 63149 | 627 | lemma strict_suffix_reflclp_conv: "strict_suffix\<^sup>=\<^sup>= = suffix" | 
| 65869 | 628 | by (intro ext) (auto simp: suffix_def strict_suffix_def) | 
| 63149 | 629 | |
| 630 | lemma suffix_lists: "suffix xs ys \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A" | |
| 631 | unfolding suffix_def by auto | |
| 49087 | 632 | |
| 65869 | 633 | lemma suffix_snoc [simp]: "suffix xs (ys @ [y]) \<longleftrightarrow> xs = [] \<or> (\<exists>zs. xs = zs @ [y] \<and> suffix zs ys)" | 
| 634 | by (cases xs rule: rev_cases) (auto simp: suffix_def) | |
| 635 | ||
| 636 | lemma snoc_suffix_snoc [simp]: "suffix (xs @ [x]) (ys @ [y]) = (x = y \<and> suffix xs ys)" | |
| 637 | by (auto simp add: suffix_def) | |
| 638 | ||
| 639 | lemma same_suffix_suffix [simp]: "suffix (ys @ xs) (zs @ xs) = suffix ys zs" | |
| 640 | by (simp add: suffix_to_prefix) | |
| 641 | ||
| 642 | lemma same_suffix_nil [simp]: "suffix (ys @ xs) xs = (ys = [])" | |
| 643 | by (simp add: suffix_to_prefix) | |
| 644 | ||
| 645 | theorem suffix_Cons: "suffix xs (y # ys) \<longleftrightarrow> xs = y # ys \<or> suffix xs ys" | |
| 646 | unfolding suffix_def by (auto simp: Cons_eq_append_conv) | |
| 647 | ||
| 648 | theorem suffix_append: | |
| 649 | "suffix xs (ys @ zs) \<longleftrightarrow> suffix xs zs \<or> (\<exists>xs'. xs = xs' @ zs \<and> suffix xs' ys)" | |
| 650 | by (auto simp: suffix_def append_eq_append_conv2) | |
| 651 | ||
| 652 | theorem suffix_length_le: "suffix xs ys \<Longrightarrow> length xs \<le> length ys" | |
| 653 | by (auto simp add: suffix_def) | |
| 654 | ||
| 655 | lemma suffix_same_cases: | |
| 656 | "suffix (xs\<^sub>1::'a list) ys \<Longrightarrow> suffix xs\<^sub>2 ys \<Longrightarrow> suffix xs\<^sub>1 xs\<^sub>2 \<or> suffix xs\<^sub>2 xs\<^sub>1" | |
| 657 | unfolding suffix_def by (force simp: append_eq_append_conv2) | |
| 658 | ||
| 659 | lemma suffix_length_suffix: | |
| 660 | "suffix ps xs \<Longrightarrow> suffix qs xs \<Longrightarrow> length ps \<le> length qs \<Longrightarrow> suffix ps qs" | |
| 661 | by (auto simp: suffix_to_prefix intro: prefix_length_prefix) | |
| 662 | ||
| 663 | lemma suffix_length_less: "strict_suffix xs ys \<Longrightarrow> length xs < length ys" | |
| 664 | by (auto simp: strict_suffix_def suffix_def) | |
| 665 | ||
| 666 | lemma suffix_ConsD': "suffix (x#xs) ys \<Longrightarrow> strict_suffix xs ys" | |
| 667 | by (auto simp: strict_suffix_def suffix_def) | |
| 668 | ||
| 669 | lemma drop_strict_suffix: "strict_suffix xs ys \<Longrightarrow> strict_suffix (drop n xs) ys" | |
| 670 | proof (induct n arbitrary: xs ys) | |
| 671 | case 0 | |
| 672 | then show ?case by (cases ys) simp_all | |
| 673 | next | |
| 674 | case (Suc n) | |
| 675 | then show ?case | |
| 676 | by (cases xs) (auto intro: Suc dest: suffix_ConsD' suffix_order.less_imp_le) | |
| 677 | qed | |
| 678 | ||
| 71789 | 679 | lemma suffix_map_rightE: | 
| 680 | assumes "suffix xs (map f ys)" | |
| 681 | shows "\<exists>xs'. suffix xs' ys \<and> xs = map f xs'" | |
| 682 | proof - | |
| 683 | from assms obtain xs' where xs': "map f ys = xs' @ xs" | |
| 684 | by (auto simp: suffix_def) | |
| 685 | define n where "n = length xs'" | |
| 686 | have "xs = drop n (map f ys)" | |
| 687 | by (simp add: xs' n_def) | |
| 688 | thus ?thesis | |
| 689 | by (intro exI[of _ "drop n ys"]) (auto simp: drop_map suffix_drop) | |
| 690 | qed | |
| 691 | ||
| 692 | lemma suffix_remdups_adj: "suffix xs ys \<Longrightarrow> suffix (remdups_adj xs) (remdups_adj ys)" | |
| 693 | using prefix_remdups_adj[of "rev xs" "rev ys"] | |
| 694 | by (simp add: suffix_to_prefix) | |
| 695 | ||
| 65869 | 696 | lemma not_suffix_cases: | 
| 697 | assumes pfx: "\<not> suffix ps ls" | |
| 698 | obtains | |
| 699 | (c1) "ps \<noteq> []" and "ls = []" | |
| 700 | | (c2) a as x xs where "ps = as@[a]" and "ls = xs@[x]" and "x = a" and "\<not> suffix as xs" | |
| 701 | | (c3) a as x xs where "ps = as@[a]" and "ls = xs@[x]" and "x \<noteq> a" | |
| 702 | proof (cases ps rule: rev_cases) | |
| 703 | case Nil | |
| 704 | then show ?thesis using pfx by simp | |
| 705 | next | |
| 706 | case (snoc as a) | |
| 707 | note c = \<open>ps = as@[a]\<close> | |
| 708 | show ?thesis | |
| 709 | proof (cases ls rule: rev_cases) | |
| 710 | case Nil then show ?thesis by (metis append_Nil2 pfx c1 same_suffix_nil) | |
| 711 | next | |
| 712 | case (snoc xs x) | |
| 713 | show ?thesis | |
| 714 | proof (cases "x = a") | |
| 715 | case True | |
| 716 | have "\<not> suffix as xs" using pfx c snoc True by simp | |
| 717 | with c snoc True show ?thesis by (rule c2) | |
| 718 | next | |
| 719 | case False | |
| 720 | with c snoc show ?thesis by (rule c3) | |
| 721 | qed | |
| 722 | qed | |
| 723 | qed | |
| 724 | ||
| 725 | lemma not_suffix_induct [consumes 1, case_names Nil Neq Eq]: | |
| 726 | assumes np: "\<not> suffix ps ls" | |
| 727 | and base: "\<And>x xs. P (xs@[x]) []" | |
| 728 | and r1: "\<And>x xs y ys. x \<noteq> y \<Longrightarrow> P (xs@[x]) (ys@[y])" | |
| 729 | and r2: "\<And>x xs y ys. \<lbrakk> x = y; \<not> suffix xs ys; P xs ys \<rbrakk> \<Longrightarrow> P (xs@[x]) (ys@[y])" | |
| 730 | shows "P ps ls" using np | |
| 731 | proof (induct ls arbitrary: ps rule: rev_induct) | |
| 732 | case Nil | |
| 733 | then show ?case by (cases ps rule: rev_cases) (auto intro: base) | |
| 734 | next | |
| 735 | case (snoc y ys ps) | |
| 736 | then have npfx: "\<not> suffix ps (ys @ [y])" by simp | |
| 737 | then obtain x xs where pv: "ps = xs @ [x]" | |
| 738 | by (rule not_suffix_cases) auto | |
| 739 | show ?case by (metis snoc.hyps snoc_suffix_snoc npfx pv r1 r2) | |
| 740 | qed | |
| 741 | ||
| 742 | ||
| 63117 | 743 | lemma parallelD1: "x \<parallel> y \<Longrightarrow> \<not> prefix x y" | 
| 25692 | 744 | by blast | 
| 25299 | 745 | |
| 63117 | 746 | lemma parallelD2: "x \<parallel> y \<Longrightarrow> \<not> prefix y x" | 
| 25692 | 747 | by blast | 
| 25355 | 748 | |
| 749 | lemma parallel_Nil1 [simp]: "\<not> x \<parallel> []" | |
| 25692 | 750 | unfolding parallel_def by simp | 
| 25355 | 751 | |
| 25299 | 752 | lemma parallel_Nil2 [simp]: "\<not> [] \<parallel> x" | 
| 25692 | 753 | unfolding parallel_def by simp | 
| 25299 | 754 | |
| 25564 | 755 | lemma Cons_parallelI1: "a \<noteq> b \<Longrightarrow> a # as \<parallel> b # bs" | 
| 25692 | 756 | by auto | 
| 25299 | 757 | |
| 25564 | 758 | lemma Cons_parallelI2: "\<lbrakk> a = b; as \<parallel> bs \<rbrakk> \<Longrightarrow> a # as \<parallel> b # bs" | 
| 63117 | 759 | by (metis Cons_prefix_Cons parallelE parallelI) | 
| 25665 | 760 | |
| 25299 | 761 | lemma not_equal_is_parallel: | 
| 762 | assumes neq: "xs \<noteq> ys" | |
| 25356 | 763 | and len: "length xs = length ys" | 
| 764 | shows "xs \<parallel> ys" | |
| 25299 | 765 | using len neq | 
| 25355 | 766 | proof (induct rule: list_induct2) | 
| 26445 | 767 | case Nil | 
| 25356 | 768 | then show ?case by simp | 
| 25299 | 769 | next | 
| 26445 | 770 | case (Cons a as b bs) | 
| 25355 | 771 | have ih: "as \<noteq> bs \<Longrightarrow> as \<parallel> bs" by fact | 
| 25299 | 772 | show ?case | 
| 773 | proof (cases "a = b") | |
| 25355 | 774 | case True | 
| 26445 | 775 | then have "as \<noteq> bs" using Cons by simp | 
| 25355 | 776 | then show ?thesis by (rule Cons_parallelI2 [OF True ih]) | 
| 25299 | 777 | next | 
| 778 | case False | |
| 25355 | 779 | then show ?thesis by (rule Cons_parallelI1) | 
| 25299 | 780 | qed | 
| 781 | qed | |
| 22178 | 782 | |
| 71789 | 783 | |
| 65869 | 784 | subsection \<open>Suffixes\<close> | 
| 785 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 786 | primrec suffixes where | 
| 65869 | 787 | "suffixes [] = [[]]" | 
| 788 | | "suffixes (x#xs) = suffixes xs @ [x # xs]" | |
| 789 | ||
| 790 | lemma in_set_suffixes [simp]: "xs \<in> set (suffixes ys) \<longleftrightarrow> suffix xs ys" | |
| 791 | by (induction ys) (auto simp: suffix_def Cons_eq_append_conv) | |
| 792 | ||
| 793 | lemma distinct_suffixes [intro]: "distinct (suffixes xs)" | |
| 794 | by (induction xs) (auto simp: suffix_def) | |
| 795 | ||
| 796 | lemma length_suffixes [simp]: "length (suffixes xs) = Suc (length xs)" | |
| 797 | by (induction xs) auto | |
| 798 | ||
| 799 | lemma suffixes_snoc [simp]: "suffixes (xs @ [x]) = [] # map (\<lambda>ys. ys @ [x]) (suffixes xs)" | |
| 800 | by (induction xs) auto | |
| 801 | ||
| 802 | lemma suffixes_not_Nil [simp]: "suffixes xs \<noteq> []" | |
| 803 | by (cases xs) auto | |
| 804 | ||
| 805 | lemma hd_suffixes [simp]: "hd (suffixes xs) = []" | |
| 806 | by (induction xs) simp_all | |
| 807 | ||
| 808 | lemma last_suffixes [simp]: "last (suffixes xs) = xs" | |
| 809 | by (cases xs) simp_all | |
| 810 | ||
| 811 | lemma suffixes_append: | |
| 812 | "suffixes (xs @ ys) = suffixes ys @ map (\<lambda>xs'. xs' @ ys) (tl (suffixes xs))" | |
| 813 | proof (induction ys rule: rev_induct) | |
| 814 | case Nil | |
| 815 | thus ?case by (cases xs rule: rev_cases) auto | |
| 816 | next | |
| 817 | case (snoc y ys) | |
| 818 | show ?case | |
| 819 | by (simp only: append.assoc [symmetric] suffixes_snoc snoc.IH) simp | |
| 820 | qed | |
| 821 | ||
| 822 | lemma suffixes_eq_snoc: | |
| 823 | "suffixes ys = xs @ [x] \<longleftrightarrow> | |
| 824 | (ys = [] \<and> xs = [] \<or> (\<exists>z zs. ys = z#zs \<and> xs = suffixes zs)) \<and> x = ys" | |
| 825 | by (cases ys) auto | |
| 826 | ||
| 827 | lemma suffixes_tailrec [code]: | |
| 828 | "suffixes xs = rev (snd (foldl (\<lambda>(acc1, acc2) x. (x#acc1, (x#acc1)#acc2)) ([],[[]]) (rev xs)))" | |
| 829 | proof - | |
| 830 | have "foldl (\<lambda>(acc1, acc2) x. (x#acc1, (x#acc1)#acc2)) (ys, ys # zs) (rev xs) = | |
| 831 | (xs @ ys, rev (map (\<lambda>as. as @ ys) (suffixes xs)) @ zs)" for ys zs | |
| 832 | proof (induction xs arbitrary: ys zs) | |
| 833 | case (Cons x xs ys zs) | |
| 834 | from Cons.IH[of ys zs] | |
| 835 | show ?case by (simp add: o_def case_prod_unfold) | |
| 836 | qed simp_all | |
| 837 | from this [of "[]" "[]"] show ?thesis by simp | |
| 838 | qed | |
| 839 | ||
| 840 | lemma set_suffixes_eq: "set (suffixes xs) = {ys. suffix ys xs}"
 | |
| 841 | by auto | |
| 842 | ||
| 843 | lemma card_set_suffixes [simp]: "card (set (suffixes xs)) = Suc (length xs)" | |
| 844 | by (subst distinct_card) auto | |
| 845 | ||
| 846 | lemma set_suffixes_append: | |
| 847 |   "set (suffixes (xs @ ys)) = set (suffixes ys) \<union> {xs' @ ys |xs'. xs' \<in> set (suffixes xs)}"
 | |
| 848 | by (subst suffixes_append, cases xs rule: rev_cases) auto | |
| 849 | ||
| 850 | ||
| 851 | lemma suffixes_conv_prefixes: "suffixes xs = map rev (prefixes (rev xs))" | |
| 852 | by (induction xs) auto | |
| 853 | ||
| 854 | lemma prefixes_conv_suffixes: "prefixes xs = map rev (suffixes (rev xs))" | |
| 855 | by (induction xs) auto | |
| 856 | ||
| 857 | lemma prefixes_rev: "prefixes (rev xs) = map rev (suffixes xs)" | |
| 858 | by (induction xs) auto | |
| 859 | ||
| 860 | lemma suffixes_rev: "suffixes (rev xs) = map rev (prefixes xs)" | |
| 861 | by (induction xs) auto | |
| 862 | ||
| 49087 | 863 | |
| 60500 | 864 | subsection \<open>Homeomorphic embedding on lists\<close> | 
| 49087 | 865 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 866 | inductive list_emb :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 49087 | 867 |   for P :: "('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 868 | where | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 869 | list_emb_Nil [intro, simp]: "list_emb P [] ys" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 870 | | list_emb_Cons [intro] : "list_emb P xs ys \<Longrightarrow> list_emb P xs (y#ys)" | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 871 | | list_emb_Cons2 [intro]: "P x y \<Longrightarrow> list_emb P xs ys \<Longrightarrow> list_emb P (x#xs) (y#ys)" | 
| 50516 | 872 | |
| 57499 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 873 | lemma list_emb_mono: | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 874 | assumes "\<And>x y. P x y \<longrightarrow> Q x y" | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 875 | shows "list_emb P xs ys \<longrightarrow> list_emb Q xs ys" | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 876 | proof | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 877 | assume "list_emb P xs ys" | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 878 | then show "list_emb Q xs ys" by (induct) (auto simp: assms) | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 879 | qed | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 880 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 881 | lemma list_emb_Nil2 [simp]: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 882 | assumes "list_emb P xs []" shows "xs = []" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 883 | using assms by (cases rule: list_emb.cases) auto | 
| 49087 | 884 | |
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 885 | lemma list_emb_refl: | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 886 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> P x x" | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 887 | shows "list_emb P xs xs" | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 888 | using assms by (induct xs) auto | 
| 49087 | 889 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 890 | lemma list_emb_Cons_Nil [simp]: "list_emb P (x#xs) [] = False" | 
| 49087 | 891 | proof - | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 892 |   { assume "list_emb P (x#xs) []"
 | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 893 | from list_emb_Nil2 [OF this] have False by simp | 
| 49087 | 894 |   } moreover {
 | 
| 895 | assume False | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 896 | then have "list_emb P (x#xs) []" by simp | 
| 49087 | 897 | } ultimately show ?thesis by blast | 
| 898 | qed | |
| 899 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 900 | lemma list_emb_append2 [intro]: "list_emb P xs ys \<Longrightarrow> list_emb P xs (zs @ ys)" | 
| 49087 | 901 | by (induct zs) auto | 
| 902 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 903 | lemma list_emb_prefix [intro]: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 904 | assumes "list_emb P xs ys" shows "list_emb P xs (ys @ zs)" | 
| 49087 | 905 | using assms | 
| 906 | by (induct arbitrary: zs) auto | |
| 907 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 908 | lemma list_emb_ConsD: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 909 | assumes "list_emb P (x#xs) ys" | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 910 | shows "\<exists>us v vs. ys = us @ v # vs \<and> P x v \<and> list_emb P xs vs" | 
| 49087 | 911 | using assms | 
| 49107 | 912 | proof (induct x \<equiv> "x # xs" ys arbitrary: x xs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 913 | case list_emb_Cons | 
| 49107 | 914 | then show ?case by (metis append_Cons) | 
| 49087 | 915 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 916 | case (list_emb_Cons2 x y xs ys) | 
| 54483 | 917 | then show ?case by blast | 
| 49087 | 918 | qed | 
| 919 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 920 | lemma list_emb_appendD: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 921 | assumes "list_emb P (xs @ ys) zs" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 922 | shows "\<exists>us vs. zs = us @ vs \<and> list_emb P xs us \<and> list_emb P ys vs" | 
| 49087 | 923 | using assms | 
| 924 | proof (induction xs arbitrary: ys zs) | |
| 49107 | 925 | case Nil then show ?case by auto | 
| 49087 | 926 | next | 
| 927 | case (Cons x xs) | |
| 54483 | 928 | then obtain us v vs where | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 929 | zs: "zs = us @ v # vs" and p: "P x v" and lh: "list_emb P (xs @ ys) vs" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 930 | by (auto dest: list_emb_ConsD) | 
| 54483 | 931 | obtain sk\<^sub>0 :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" and sk\<^sub>1 :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 932 | sk: "\<forall>x\<^sub>0 x\<^sub>1. \<not> list_emb P (xs @ x\<^sub>0) x\<^sub>1 \<or> sk\<^sub>0 x\<^sub>0 x\<^sub>1 @ sk\<^sub>1 x\<^sub>0 x\<^sub>1 = x\<^sub>1 \<and> list_emb P xs (sk\<^sub>0 x\<^sub>0 x\<^sub>1) \<and> list_emb P x\<^sub>0 (sk\<^sub>1 x\<^sub>0 x\<^sub>1)" | 
| 54483 | 933 | using Cons(1) by (metis (no_types)) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 934 | hence "\<forall>x\<^sub>2. list_emb P (x # xs) (x\<^sub>2 @ v # sk\<^sub>0 ys vs)" using p lh by auto | 
| 54483 | 935 | thus ?case using lh zs sk by (metis (no_types) append_Cons append_assoc) | 
| 49087 | 936 | qed | 
| 937 | ||
| 63149 | 938 | lemma list_emb_strict_suffix: | 
| 939 | assumes "list_emb P xs ys" and "strict_suffix ys zs" | |
| 940 | shows "list_emb P xs zs" | |
| 65869 | 941 | using assms(2) and list_emb_append2 [OF assms(1)] by (auto simp: strict_suffix_def suffix_def) | 
| 63149 | 942 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 943 | lemma list_emb_suffix: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 944 | assumes "list_emb P xs ys" and "suffix ys zs" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 945 | shows "list_emb P xs zs" | 
| 63149 | 946 | using assms and list_emb_strict_suffix | 
| 947 | unfolding strict_suffix_reflclp_conv[symmetric] by auto | |
| 49087 | 948 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 949 | lemma list_emb_length: "list_emb P xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 950 | by (induct rule: list_emb.induct) auto | 
| 49087 | 951 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 952 | lemma list_emb_trans: | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 953 | assumes "\<And>x y z. \<lbrakk>x \<in> set xs; y \<in> set ys; z \<in> set zs; P x y; P y z\<rbrakk> \<Longrightarrow> P x z" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 954 | shows "\<lbrakk>list_emb P xs ys; list_emb P ys zs\<rbrakk> \<Longrightarrow> list_emb P xs zs" | 
| 50516 | 955 | proof - | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 956 | assume "list_emb P xs ys" and "list_emb P ys zs" | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 957 | then show "list_emb P xs zs" using assms | 
| 49087 | 958 | proof (induction arbitrary: zs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 959 | case list_emb_Nil show ?case by blast | 
| 49087 | 960 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 961 | case (list_emb_Cons xs ys y) | 
| 60500 | 962 | from list_emb_ConsD [OF \<open>list_emb P (y#ys) zs\<close>] obtain us v vs | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 963 | where zs: "zs = us @ v # vs" and "P\<^sup>=\<^sup>= y v" and "list_emb P ys vs" by blast | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 964 | then have "list_emb P ys (v#vs)" by blast | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 965 | then have "list_emb P ys zs" unfolding zs by (rule list_emb_append2) | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 966 | from list_emb_Cons.IH [OF this] and list_emb_Cons.prems show ?case by auto | 
| 49087 | 967 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 968 | case (list_emb_Cons2 x y xs ys) | 
| 60500 | 969 | from list_emb_ConsD [OF \<open>list_emb P (y#ys) zs\<close>] obtain us v vs | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 970 | where zs: "zs = us @ v # vs" and "P y v" and "list_emb P ys vs" by blast | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 971 | with list_emb_Cons2 have "list_emb P xs vs" by auto | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 972 | moreover have "P x v" | 
| 49087 | 973 | proof - | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 974 | from zs have "v \<in> set zs" by auto | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 975 | moreover have "x \<in> set (x#xs)" and "y \<in> set (y#ys)" by simp_all | 
| 50516 | 976 | ultimately show ?thesis | 
| 60500 | 977 | using \<open>P x y\<close> and \<open>P y v\<close> and list_emb_Cons2 | 
| 50516 | 978 | by blast | 
| 49087 | 979 | qed | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 980 | ultimately have "list_emb P (x#xs) (v#vs)" by blast | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 981 | then show ?case unfolding zs by (rule list_emb_append2) | 
| 49087 | 982 | qed | 
| 983 | qed | |
| 984 | ||
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 985 | lemma list_emb_set: | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 986 | assumes "list_emb P xs ys" and "x \<in> set xs" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 987 | obtains y where "y \<in> set ys" and "P x y" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 988 | using assms by (induct) auto | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 989 | |
| 65869 | 990 | lemma list_emb_Cons_iff1 [simp]: | 
| 991 | assumes "P x y" | |
| 992 | shows "list_emb P (x#xs) (y#ys) \<longleftrightarrow> list_emb P xs ys" | |
| 993 | using assms by (subst list_emb.simps) (auto dest: list_emb_ConsD) | |
| 994 | ||
| 995 | lemma list_emb_Cons_iff2 [simp]: | |
| 996 | assumes "\<not>P x y" | |
| 997 | shows "list_emb P (x#xs) (y#ys) \<longleftrightarrow> list_emb P (x#xs) ys" | |
| 998 | using assms by (subst list_emb.simps) auto | |
| 999 | ||
| 1000 | lemma list_emb_code [code]: | |
| 1001 | "list_emb P [] ys \<longleftrightarrow> True" | |
| 1002 | "list_emb P (x#xs) [] \<longleftrightarrow> False" | |
| 1003 | "list_emb P (x#xs) (y#ys) \<longleftrightarrow> (if P x y then list_emb P xs ys else list_emb P (x#xs) ys)" | |
| 1004 | by simp_all | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1005 | |
| 65869 | 1006 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1007 | subsection \<open>Subsequences (special case of homeomorphic embedding)\<close> | 
| 49087 | 1008 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1009 | abbreviation subseq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 67399 | 1010 | where "subseq xs ys \<equiv> list_emb (=) xs ys" | 
| 65869 | 1011 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1012 | definition strict_subseq where "strict_subseq xs ys \<longleftrightarrow> xs \<noteq> ys \<and> subseq xs ys" | 
| 49087 | 1013 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1014 | lemma subseq_Cons2: "subseq xs ys \<Longrightarrow> subseq (x#xs) (x#ys)" by auto | 
| 49087 | 1015 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1016 | lemma subseq_same_length: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1017 | assumes "subseq xs ys" and "length xs = length ys" shows "xs = ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1018 | using assms by (induct) (auto dest: list_emb_length) | 
| 49087 | 1019 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1020 | lemma not_subseq_length [simp]: "length ys < length xs \<Longrightarrow> \<not> subseq xs ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1021 | by (metis list_emb_length linorder_not_less) | 
| 49087 | 1022 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1023 | lemma subseq_Cons': "subseq (x#xs) ys \<Longrightarrow> subseq xs ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1024 | by (induct xs, simp, blast dest: list_emb_ConsD) | 
| 49087 | 1025 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1026 | lemma subseq_Cons2': | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1027 | assumes "subseq (x#xs) (x#ys)" shows "subseq xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1028 | using assms by (cases) (rule subseq_Cons') | 
| 49087 | 1029 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1030 | lemma subseq_Cons2_neq: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1031 | assumes "subseq (x#xs) (y#ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1032 | shows "x \<noteq> y \<Longrightarrow> subseq (x#xs) ys" | 
| 49087 | 1033 | using assms by (cases) auto | 
| 1034 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1035 | lemma subseq_Cons2_iff [simp]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1036 | "subseq (x#xs) (y#ys) = (if x = y then subseq xs ys else subseq (x#xs) ys)" | 
| 65869 | 1037 | by simp | 
| 49087 | 1038 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1039 | lemma subseq_append': "subseq (zs @ xs) (zs @ ys) \<longleftrightarrow> subseq xs ys" | 
| 49087 | 1040 | by (induct zs) simp_all | 
| 73411 | 1041 | |
| 1042 | global_interpretation subseq_order: ordering subseq strict_subseq | |
| 65869 | 1043 | proof | 
| 73411 | 1044 | show \<open>subseq xs xs\<close> for xs :: \<open>'a list\<close> | 
| 1045 | using refl by (rule list_emb_refl) | |
| 1046 | show \<open>subseq xs zs\<close> if \<open>subseq xs ys\<close> and \<open>subseq ys zs\<close> | |
| 1047 | for xs ys zs :: \<open>'a list\<close> | |
| 1048 | using trans [OF refl] that by (rule list_emb_trans) simp | |
| 1049 | show \<open>xs = ys\<close> if \<open>subseq xs ys\<close> and \<open>subseq ys xs\<close> | |
| 1050 | for xs ys :: \<open>'a list\<close> | |
| 1051 | using that proof induction | |
| 1052 | case list_emb_Nil | |
| 1053 | from list_emb_Nil2 [OF this] show ?case by simp | |
| 1054 | next | |
| 1055 | case list_emb_Cons2 | |
| 1056 | then show ?case by simp | |
| 1057 | next | |
| 1058 | case list_emb_Cons | |
| 1059 | hence False using subseq_Cons' by fastforce | |
| 1060 | then show ?case .. | |
| 1061 | qed | |
| 1062 | show \<open>strict_subseq xs ys \<longleftrightarrow> subseq xs ys \<and> xs \<noteq> ys\<close> | |
| 1063 | for xs ys :: \<open>'a list\<close> | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1064 | by (auto simp: strict_subseq_def) | 
| 73411 | 1065 | qed | 
| 1066 | ||
| 1067 | interpretation subseq_order: order subseq strict_subseq | |
| 1068 | by (rule ordering_orderI) standard | |
| 49087 | 1069 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1070 | lemma in_set_subseqs [simp]: "xs \<in> set (subseqs ys) \<longleftrightarrow> subseq xs ys" | 
| 65869 | 1071 | proof | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1072 | assume "xs \<in> set (subseqs ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1073 | thus "subseq xs ys" | 
| 65869 | 1074 | by (induction ys arbitrary: xs) (auto simp: Let_def) | 
| 49087 | 1075 | next | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1076 | have [simp]: "[] \<in> set (subseqs ys)" for ys :: "'a list" | 
| 65869 | 1077 | by (induction ys) (auto simp: Let_def) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1078 | assume "subseq xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1079 | thus "xs \<in> set (subseqs ys)" | 
| 65869 | 1080 | by (induction xs ys rule: list_emb.induct) (auto simp: Let_def) | 
| 49087 | 1081 | qed | 
| 1082 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1083 | lemma set_subseqs_eq: "set (subseqs ys) = {xs. subseq xs ys}"
 | 
| 65869 | 1084 | by auto | 
| 49087 | 1085 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1086 | lemma subseq_append_le_same_iff: "subseq (xs @ ys) ys \<longleftrightarrow> xs = []" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1087 | by (auto dest: list_emb_length) | 
| 49087 | 1088 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1089 | lemma subseq_singleton_left: "subseq [x] ys \<longleftrightarrow> x \<in> set ys" | 
| 64886 | 1090 | by (fastforce dest: list_emb_ConsD split_list_last) | 
| 1091 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1092 | lemma list_emb_append_mono: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1093 | "\<lbrakk> list_emb P xs xs'; list_emb P ys ys' \<rbrakk> \<Longrightarrow> list_emb P (xs@ys) (xs'@ys')" | 
| 65957 | 1094 | by (induct rule: list_emb.induct) auto | 
| 1095 | ||
| 1096 | lemma prefix_imp_subseq [intro]: "prefix xs ys \<Longrightarrow> subseq xs ys" | |
| 1097 | by (auto simp: prefix_def) | |
| 1098 | ||
| 1099 | lemma suffix_imp_subseq [intro]: "suffix xs ys \<Longrightarrow> subseq xs ys" | |
| 1100 | by (auto simp: suffix_def) | |
| 49087 | 1101 | |
| 1102 | ||
| 60500 | 1103 | subsection \<open>Appending elements\<close> | 
| 49087 | 1104 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1105 | lemma subseq_append [simp]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1106 | "subseq (xs @ zs) (ys @ zs) \<longleftrightarrow> subseq xs ys" (is "?l = ?r") | 
| 49087 | 1107 | proof | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1108 |   { fix xs' ys' xs ys zs :: "'a list" assume "subseq xs' ys'"
 | 
| 67091 | 1109 | then have "xs' = xs @ zs \<and> ys' = ys @ zs \<longrightarrow> subseq xs ys" | 
| 49087 | 1110 | proof (induct arbitrary: xs ys zs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1111 | case list_emb_Nil show ?case by simp | 
| 49087 | 1112 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1113 | case (list_emb_Cons xs' ys' x) | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1114 |       { assume "ys=[]" then have ?case using list_emb_Cons(1) by auto }
 | 
| 49087 | 1115 | moreover | 
| 1116 |       { fix us assume "ys = x#us"
 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1117 | then have ?case using list_emb_Cons(2) by(simp add: list_emb.list_emb_Cons) } | 
| 49087 | 1118 | ultimately show ?case by (auto simp:Cons_eq_append_conv) | 
| 1119 | next | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1120 | case (list_emb_Cons2 x y xs' ys') | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1121 |       { assume "xs=[]" then have ?case using list_emb_Cons2(1) by auto }
 | 
| 49087 | 1122 | moreover | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1123 |       { fix us vs assume "xs=x#us" "ys=x#vs" then have ?case using list_emb_Cons2 by auto}
 | 
| 49087 | 1124 | moreover | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1125 |       { fix us assume "xs=x#us" "ys=[]" then have ?case using list_emb_Cons2(2) by bestsimp }
 | 
| 67399 | 1126 | ultimately show ?case using \<open>(=) x y\<close> by (auto simp: Cons_eq_append_conv) | 
| 49087 | 1127 | qed } | 
| 1128 | moreover assume ?l | |
| 1129 | ultimately show ?r by blast | |
| 1130 | next | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1131 | assume ?r then show ?l by (metis list_emb_append_mono subseq_order.order_refl) | 
| 49087 | 1132 | qed | 
| 1133 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1134 | lemma subseq_append_iff: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1135 | "subseq xs (ys @ zs) \<longleftrightarrow> (\<exists>xs1 xs2. xs = xs1 @ xs2 \<and> subseq xs1 ys \<and> subseq xs2 zs)" | 
| 65869 | 1136 | (is "?lhs = ?rhs") | 
| 1137 | proof | |
| 1138 | assume ?lhs thus ?rhs | |
| 1139 | proof (induction xs "ys @ zs" arbitrary: ys zs rule: list_emb.induct) | |
| 1140 | case (list_emb_Cons xs ws y ys zs) | |
| 1141 | from list_emb_Cons(2)[of "tl ys" zs] and list_emb_Cons(2)[of "[]" "tl zs"] and list_emb_Cons(1,3) | |
| 1142 | show ?case by (cases ys) auto | |
| 1143 | next | |
| 1144 | case (list_emb_Cons2 x y xs ws ys zs) | |
| 1145 | from list_emb_Cons2(3)[of "tl ys" zs] and list_emb_Cons2(3)[of "[]" "tl zs"] | |
| 1146 | and list_emb_Cons2(1,2,4) | |
| 1147 | show ?case by (cases ys) (auto simp: Cons_eq_append_conv) | |
| 1148 | qed auto | |
| 1149 | qed (auto intro: list_emb_append_mono) | |
| 1150 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1151 | lemma subseq_appendE [case_names append]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1152 | assumes "subseq xs (ys @ zs)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1153 | obtains xs1 xs2 where "xs = xs1 @ xs2" "subseq xs1 ys" "subseq xs2 zs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1154 | using assms by (subst (asm) subseq_append_iff) auto | 
| 65869 | 1155 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1156 | lemma subseq_drop_many: "subseq xs ys \<Longrightarrow> subseq xs (zs @ ys)" | 
| 49087 | 1157 | by (induct zs) auto | 
| 1158 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1159 | lemma subseq_rev_drop_many: "subseq xs ys \<Longrightarrow> subseq xs (ys @ zs)" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1160 | by (metis append_Nil2 list_emb_Nil list_emb_append_mono) | 
| 49087 | 1161 | |
| 1162 | ||
| 60500 | 1163 | subsection \<open>Relation to standard list operations\<close> | 
| 49087 | 1164 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1165 | lemma subseq_map: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1166 | assumes "subseq xs ys" shows "subseq (map f xs) (map f ys)" | 
| 49087 | 1167 | using assms by (induct) auto | 
| 1168 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1169 | lemma subseq_filter_left [simp]: "subseq (filter P xs) xs" | 
| 49087 | 1170 | by (induct xs) auto | 
| 1171 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1172 | lemma subseq_filter [simp]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1173 | assumes "subseq xs ys" shows "subseq (filter P xs) (filter P ys)" | 
| 54483 | 1174 | using assms by induct auto | 
| 49087 | 1175 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1176 | lemma subseq_conv_nths: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1177 | "subseq xs ys \<longleftrightarrow> (\<exists>N. xs = nths ys N)" (is "?L = ?R") | 
| 49087 | 1178 | proof | 
| 1179 | assume ?L | |
| 49107 | 1180 | then show ?R | 
| 49087 | 1181 | proof (induct) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1182 | case list_emb_Nil show ?case by (metis nths_empty) | 
| 49087 | 1183 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1184 | case (list_emb_Cons xs ys x) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1185 | then obtain N where "xs = nths ys N" by blast | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1186 | then have "xs = nths (x#ys) (Suc ` N)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1187 | by (clarsimp simp add: nths_Cons inj_image_mem_iff) | 
| 49107 | 1188 | then show ?case by blast | 
| 49087 | 1189 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1190 | case (list_emb_Cons2 x y xs ys) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1191 | then obtain N where "xs = nths ys N" by blast | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1192 | then have "x#xs = nths (x#ys) (insert 0 (Suc ` N))" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1193 | by (clarsimp simp add: nths_Cons inj_image_mem_iff) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1194 | moreover from list_emb_Cons2 have "x = y" by simp | 
| 50516 | 1195 | ultimately show ?case by blast | 
| 49087 | 1196 | qed | 
| 1197 | next | |
| 1198 | assume ?R | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1199 | then obtain N where "xs = nths ys N" .. | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1200 | moreover have "subseq (nths ys N) ys" | 
| 49107 | 1201 | proof (induct ys arbitrary: N) | 
| 49087 | 1202 | case Nil show ?case by simp | 
| 1203 | next | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1204 | case Cons then show ?case by (auto simp: nths_Cons) | 
| 49087 | 1205 | qed | 
| 1206 | ultimately show ?L by simp | |
| 1207 | qed | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1208 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1209 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1210 | subsection \<open>Contiguous sublists\<close> | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1211 | |
| 71789 | 1212 | subsubsection \<open>\<open>sublist\<close>\<close> | 
| 1213 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1214 | definition sublist :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1215 | "sublist xs ys = (\<exists>ps ss. ys = ps @ xs @ ss)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1216 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1217 | definition strict_sublist :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1218 | "strict_sublist xs ys \<longleftrightarrow> sublist xs ys \<and> xs \<noteq> ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1219 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1220 | interpretation sublist_order: order sublist strict_sublist | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1221 | proof | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1222 | fix xs ys zs :: "'a list" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1223 | assume "sublist xs ys" "sublist ys zs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1224 | then obtain xs1 xs2 ys1 ys2 where "ys = xs1 @ xs @ xs2" "zs = ys1 @ ys @ ys2" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1225 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1226 | hence "zs = (ys1 @ xs1) @ xs @ (xs2 @ ys2)" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1227 | thus "sublist xs zs" unfolding sublist_def by blast | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1228 | next | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1229 | fix xs ys :: "'a list" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1230 |   {
 | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1231 | assume "sublist xs ys" "sublist ys xs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1232 | then obtain as bs cs ds | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1233 | where xs: "xs = as @ ys @ bs" and ys: "ys = cs @ xs @ ds" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1234 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1235 | have "xs = as @ cs @ xs @ ds @ bs" by (subst xs, subst ys) auto | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1236 | also have "length \<dots> = length as + length cs + length xs + length bs + length ds" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1237 | by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1238 | finally have "as = []" "bs = []" by simp_all | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1239 | with xs show "xs = ys" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1240 | } | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1241 | thus "strict_sublist xs ys \<longleftrightarrow> (sublist xs ys \<and> \<not>sublist ys xs)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1242 | by (auto simp: strict_sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1243 | qed (auto simp: strict_sublist_def sublist_def intro: exI[of _ "[]"]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1244 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1245 | lemma sublist_Nil_left [simp, intro]: "sublist [] ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1246 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1247 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1248 | lemma sublist_Cons_Nil [simp]: "\<not>sublist (x#xs) []" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1249 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1250 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1251 | lemma sublist_Nil_right [simp]: "sublist xs [] \<longleftrightarrow> xs = []" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1252 | by (cases xs) auto | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1253 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1254 | lemma sublist_appendI [simp, intro]: "sublist xs (ps @ xs @ ss)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1255 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1256 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1257 | lemma sublist_append_leftI [simp, intro]: "sublist xs (ps @ xs)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1258 | by (auto simp: sublist_def intro: exI[of _ "[]"]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1259 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1260 | lemma sublist_append_rightI [simp, intro]: "sublist xs (xs @ ss)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1261 | by (auto simp: sublist_def intro: exI[of _ "[]"]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1262 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1263 | lemma sublist_altdef: "sublist xs ys \<longleftrightarrow> (\<exists>ys'. prefix ys' ys \<and> suffix xs ys')" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1264 | proof safe | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1265 | assume "sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1266 | then obtain ps ss where "ys = ps @ xs @ ss" by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1267 | thus "\<exists>ys'. prefix ys' ys \<and> suffix xs ys'" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1268 | by (intro exI[of _ "ps @ xs"] conjI suffix_appendI) auto | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1269 | next | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1270 | fix ys' | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1271 | assume "prefix ys' ys" "suffix xs ys'" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1272 | thus "sublist xs ys" by (auto simp: prefix_def suffix_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1273 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1274 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1275 | lemma sublist_altdef': "sublist xs ys \<longleftrightarrow> (\<exists>ys'. suffix ys' ys \<and> prefix xs ys')" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1276 | proof safe | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1277 | assume "sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1278 | then obtain ps ss where "ys = ps @ xs @ ss" by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1279 | thus "\<exists>ys'. suffix ys' ys \<and> prefix xs ys'" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1280 | by (intro exI[of _ "xs @ ss"] conjI suffixI) auto | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1281 | next | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1282 | fix ys' | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1283 | assume "suffix ys' ys" "prefix xs ys'" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1284 | thus "sublist xs ys" by (auto simp: prefix_def suffix_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1285 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1286 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1287 | lemma sublist_Cons_right: "sublist xs (y # ys) \<longleftrightarrow> prefix xs (y # ys) \<or> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1288 | by (auto simp: sublist_def prefix_def Cons_eq_append_conv) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1289 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1290 | lemma sublist_code [code]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1291 | "sublist [] ys \<longleftrightarrow> True" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1292 | "sublist (x # xs) [] \<longleftrightarrow> False" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1293 | "sublist (x # xs) (y # ys) \<longleftrightarrow> prefix (x # xs) (y # ys) \<or> sublist (x # xs) ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1294 | by (simp_all add: sublist_Cons_right) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1295 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1296 | lemma sublist_append: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1297 | "sublist xs (ys @ zs) \<longleftrightarrow> | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1298 | sublist xs ys \<or> sublist xs zs \<or> (\<exists>xs1 xs2. xs = xs1 @ xs2 \<and> suffix xs1 ys \<and> prefix xs2 zs)" | 
| 71789 | 1299 | by (auto simp: sublist_altdef prefix_append suffix_append) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1300 | |
| 71789 | 1301 | lemma map_mono_sublist: | 
| 1302 | assumes "sublist xs ys" | |
| 1303 | shows "sublist (map f xs) (map f ys)" | |
| 1304 | proof - | |
| 1305 | from assms obtain xs1 xs2 where ys: "ys = xs1 @ xs @ xs2" | |
| 1306 | by (auto simp: sublist_def) | |
| 1307 | have "map f ys = map f xs1 @ map f xs @ map f xs2" | |
| 1308 | by (auto simp: ys) | |
| 1309 | thus ?thesis | |
| 1310 | by (auto simp: sublist_def) | |
| 1311 | qed | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1312 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1313 | lemma sublist_length_le: "sublist xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1314 | by (auto simp add: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1315 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1316 | lemma set_mono_sublist: "sublist xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1317 | by (auto simp add: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1318 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1319 | lemma prefix_imp_sublist [simp, intro]: "prefix xs ys \<Longrightarrow> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1320 | by (auto simp: sublist_def prefix_def intro: exI[of _ "[]"]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1321 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1322 | lemma suffix_imp_sublist [simp, intro]: "suffix xs ys \<Longrightarrow> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1323 | by (auto simp: sublist_def suffix_def intro: exI[of _ "[]"]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1324 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1325 | lemma sublist_take [simp, intro]: "sublist (take n xs) xs" | 
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1326 | by (rule prefix_imp_sublist[OF take_is_prefix]) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1327 | |
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1328 | lemma sublist_takeWhile [simp, intro]: "sublist (takeWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1329 | by (rule prefix_imp_sublist[OF takeWhile_is_prefix]) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1330 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1331 | lemma sublist_drop [simp, intro]: "sublist (drop n xs) xs" | 
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1332 | by (rule suffix_imp_sublist[OF suffix_drop]) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1333 | |
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1334 | lemma sublist_dropWhile [simp, intro]: "sublist (dropWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1335 | by (rule suffix_imp_sublist[OF suffix_dropWhile]) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1336 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1337 | lemma sublist_tl [simp, intro]: "sublist (tl xs) xs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1338 | by (rule suffix_imp_sublist) (simp_all add: suffix_drop) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1339 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1340 | lemma sublist_butlast [simp, intro]: "sublist (butlast xs) xs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1341 | by (rule prefix_imp_sublist) (simp_all add: prefixeq_butlast) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1342 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1343 | lemma sublist_rev [simp]: "sublist (rev xs) (rev ys) = sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1344 | proof | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1345 | assume "sublist (rev xs) (rev ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1346 | then obtain as bs where "rev ys = as @ rev xs @ bs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1347 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1348 | also have "rev \<dots> = rev bs @ xs @ rev as" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1349 | finally show "sublist xs ys" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1350 | next | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1351 | assume "sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1352 | then obtain as bs where "ys = as @ xs @ bs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1353 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1354 | also have "rev \<dots> = rev bs @ rev xs @ rev as" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1355 | finally show "sublist (rev xs) (rev ys)" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1356 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1357 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1358 | lemma sublist_rev_left: "sublist (rev xs) ys = sublist xs (rev ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1359 | by (subst sublist_rev [symmetric]) (simp only: rev_rev_ident) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1360 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1361 | lemma sublist_rev_right: "sublist xs (rev ys) = sublist (rev xs) ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1362 | by (subst sublist_rev [symmetric]) (simp only: rev_rev_ident) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1363 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1364 | lemma snoc_sublist_snoc: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1365 | "sublist (xs @ [x]) (ys @ [y]) \<longleftrightarrow> | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1366 | (x = y \<and> suffix xs ys \<or> sublist (xs @ [x]) ys) " | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1367 | by (subst (1 2) sublist_rev [symmetric]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1368 | (simp del: sublist_rev add: sublist_Cons_right suffix_to_prefix) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1369 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1370 | lemma sublist_snoc: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1371 | "sublist xs (ys @ [y]) \<longleftrightarrow> suffix xs (ys @ [y]) \<or> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1372 | by (subst (1 2) sublist_rev [symmetric]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1373 | (simp del: sublist_rev add: sublist_Cons_right suffix_to_prefix) | 
| 65957 | 1374 | |
| 1375 | lemma sublist_imp_subseq [intro]: "sublist xs ys \<Longrightarrow> subseq xs ys" | |
| 1376 | by (auto simp: sublist_def) | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1377 | |
| 71789 | 1378 | lemma sublist_map_rightE: | 
| 1379 | assumes "sublist xs (map f ys)" | |
| 1380 | shows "\<exists>xs'. sublist xs' ys \<and> xs = map f xs'" | |
| 1381 | proof - | |
| 1382 | note takedrop = sublist_take sublist_drop | |
| 1383 | define n where "n = (length ys - length xs)" | |
| 1384 | from assms obtain xs1 xs2 where xs12: "map f ys = xs1 @ xs @ xs2" | |
| 1385 | by (auto simp: sublist_def) | |
| 1386 | define n where "n = length xs1" | |
| 1387 | have "xs = take (length xs) (drop n (map f ys))" | |
| 1388 | by (simp add: xs12 n_def) | |
| 1389 | thus ?thesis | |
| 1390 | by (intro exI[of _ "take (length xs) (drop n ys)"]) | |
| 1391 | (auto simp: take_map drop_map intro!: takedrop[THEN sublist_order.order.trans]) | |
| 1392 | qed | |
| 1393 | ||
| 1394 | lemma sublist_remdups_adj: | |
| 1395 | assumes "sublist xs ys" | |
| 1396 | shows "sublist (remdups_adj xs) (remdups_adj ys)" | |
| 1397 | proof - | |
| 1398 | from assms obtain xs1 xs2 where ys: "ys = xs1 @ xs @ xs2" | |
| 1399 | by (auto simp: sublist_def) | |
| 1400 | have "suffix (remdups_adj (xs @ xs2)) (remdups_adj (xs1 @ xs @ xs2))" | |
| 1401 | by (rule suffix_remdups_adj, rule suffix_appendI) auto | |
| 1402 | then obtain zs1 where zs1: "remdups_adj (xs1 @ xs @ xs2) = zs1 @ remdups_adj (xs @ xs2)" | |
| 1403 | by (auto simp: suffix_def) | |
| 1404 | have "prefix (remdups_adj xs) (remdups_adj (xs @ xs2))" | |
| 1405 | by (intro prefix_remdups_adj) auto | |
| 1406 | then obtain zs2 where zs2: "remdups_adj (xs @ xs2) = remdups_adj xs @ zs2" | |
| 1407 | by (auto simp: prefix_def) | |
| 1408 | show ?thesis | |
| 1409 | by (simp add: ys zs1 zs2) | |
| 1410 | qed | |
| 1411 | ||
| 1412 | subsubsection \<open>\<open>sublists\<close>\<close> | |
| 1413 | ||
| 1414 | primrec sublists :: "'a list \<Rightarrow> 'a list list" where | |
| 1415 | "sublists [] = [[]]" | |
| 1416 | | "sublists (x # xs) = sublists xs @ map ((#) x) (prefixes xs)" | |
| 1417 | ||
| 1418 | lemma in_set_sublists [simp]: "xs \<in> set (sublists ys) \<longleftrightarrow> sublist xs ys" | |
| 1419 | by (induction ys arbitrary: xs) (auto simp: sublist_Cons_right prefix_Cons) | |
| 1420 | ||
| 1421 | lemma set_sublists_eq: "set (sublists xs) = {ys. sublist ys xs}"
 | |
| 1422 | by auto | |
| 1423 | ||
| 1424 | lemma length_sublists [simp]: "length (sublists xs) = Suc (length xs * Suc (length xs) div 2)" | |
| 1425 | by (induction xs) simp_all | |
| 1426 | ||
| 1427 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1428 | subsection \<open>Parametricity\<close> | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1429 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1430 | context includes lifting_syntax | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1431 | begin | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1432 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1433 | private lemma prefix_primrec: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1434 | "prefix = rec_list (\<lambda>xs. True) (\<lambda>x xs xsa ys. | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1435 | case ys of [] \<Rightarrow> False | y # ys \<Rightarrow> x = y \<and> xsa ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1436 | proof (intro ext, goal_cases) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1437 | case (1 xs ys) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1438 | show ?case by (induction xs arbitrary: ys) (auto simp: prefix_Cons split: list.splits) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1439 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1440 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1441 | private lemma sublist_primrec: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1442 | "sublist = (\<lambda>xs ys. rec_list (\<lambda>xs. xs = []) (\<lambda>y ys ysa xs. prefix xs (y # ys) \<or> ysa xs) ys xs)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1443 | proof (intro ext, goal_cases) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1444 | case (1 xs ys) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1445 | show ?case by (induction ys) (auto simp: sublist_Cons_right) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1446 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1447 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1448 | private lemma list_emb_primrec: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1449 | "list_emb = (\<lambda>uu uua uuaa. rec_list (\<lambda>P xs. List.null xs) (\<lambda>y ys ysa P xs. case xs of [] \<Rightarrow> True | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1450 | | x # xs \<Rightarrow> if P x y then ysa P xs else ysa P (x # xs)) uuaa uu uua)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1451 | proof (intro ext, goal_cases) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1452 | case (1 P xs ys) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1453 | show ?case | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1454 | by (induction ys arbitrary: xs) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1455 | (auto simp: list_emb_code List.null_def split: list.splits) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1456 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1457 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1458 | lemma prefix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1459 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1460 | shows "(list_all2 A ===> list_all2 A ===> (=)) prefix prefix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1461 | unfolding prefix_primrec by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1462 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1463 | lemma suffix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1464 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1465 | shows "(list_all2 A ===> list_all2 A ===> (=)) suffix suffix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1466 | unfolding suffix_to_prefix [abs_def] by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1467 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1468 | lemma sublist_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1469 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1470 | shows "(list_all2 A ===> list_all2 A ===> (=)) sublist sublist" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1471 | unfolding sublist_primrec by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1472 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1473 | lemma parallel_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1474 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1475 | shows "(list_all2 A ===> list_all2 A ===> (=)) parallel parallel" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1476 | unfolding parallel_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1477 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1478 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1479 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1480 | lemma list_emb_transfer [transfer_rule]: | 
| 67399 | 1481 | "((A ===> A ===> (=)) ===> list_all2 A ===> list_all2 A ===> (=)) list_emb list_emb" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1482 | unfolding list_emb_primrec by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1483 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1484 | lemma strict_prefix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1485 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1486 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_prefix strict_prefix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1487 | unfolding strict_prefix_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1488 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1489 | lemma strict_suffix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1490 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1491 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_suffix strict_suffix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1492 | unfolding strict_suffix_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1493 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1494 | lemma strict_subseq_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1495 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1496 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_subseq strict_subseq" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1497 | unfolding strict_subseq_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1498 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1499 | lemma strict_sublist_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1500 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1501 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_sublist strict_sublist" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1502 | unfolding strict_sublist_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1503 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1504 | lemma prefixes_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1505 | assumes [transfer_rule]: "bi_unique A" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1506 | shows "(list_all2 A ===> list_all2 (list_all2 A)) prefixes prefixes" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1507 | unfolding prefixes_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1508 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1509 | lemma suffixes_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1510 | assumes [transfer_rule]: "bi_unique A" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1511 | shows "(list_all2 A ===> list_all2 (list_all2 A)) suffixes suffixes" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1512 | unfolding suffixes_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1513 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1514 | lemma sublists_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1515 | assumes [transfer_rule]: "bi_unique A" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1516 | shows "(list_all2 A ===> list_all2 (list_all2 A)) sublists sublists" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1517 | unfolding sublists_def by transfer_prover | 
| 49087 | 1518 | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 1519 | end | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1520 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1521 | end |