| author | bulwahn | 
| Mon, 22 Nov 2010 10:41:56 +0100 | |
| changeset 40636 | 3bd9512ca486 | 
| parent 40288 | 520199d8b66e | 
| child 42949 | 618adb3584e5 | 
| permissions | -rw-r--r-- | 
| 40107 | 1  | 
(* Title: HOL/Partial_Function.thy  | 
2  | 
Author: Alexander Krauss, TU Muenchen  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Partial Function Definitions *}
 | 
|
6  | 
||
7  | 
theory Partial_Function  | 
|
8  | 
imports Complete_Partial_Order Option  | 
|
9  | 
uses  | 
|
10  | 
"Tools/Function/function_lib.ML"  | 
|
11  | 
"Tools/Function/partial_function.ML"  | 
|
12  | 
begin  | 
|
13  | 
||
14  | 
setup Partial_Function.setup  | 
|
15  | 
||
16  | 
subsection {* Axiomatic setup *}
 | 
|
17  | 
||
18  | 
text {* This techical locale constains the requirements for function
 | 
|
19  | 
definitions with ccpo fixed points. *}  | 
|
20  | 
||
21  | 
definition "fun_ord ord f g \<longleftrightarrow> (\<forall>x. ord (f x) (g x))"  | 
|
22  | 
definition "fun_lub L A = (\<lambda>x. L {y. \<exists>f\<in>A. y = f x})"
 | 
|
23  | 
definition "img_ord f ord = (\<lambda>x y. ord (f x) (f y))"  | 
|
24  | 
definition "img_lub f g Lub = (\<lambda>A. g (Lub (f ` A)))"  | 
|
25  | 
||
26  | 
lemma call_mono[partial_function_mono]: "monotone (fun_ord ord) ord (\<lambda>f. f t)"  | 
|
27  | 
by (rule monotoneI) (auto simp: fun_ord_def)  | 
|
28  | 
||
| 40288 | 29  | 
lemma let_mono[partial_function_mono]:  | 
30  | 
"(\<And>x. monotone orda ordb (\<lambda>f. b f x))  | 
|
31  | 
\<Longrightarrow> monotone orda ordb (\<lambda>f. Let t (b f))"  | 
|
32  | 
by (simp add: Let_def)  | 
|
33  | 
||
| 40107 | 34  | 
lemma if_mono[partial_function_mono]: "monotone orda ordb F  | 
35  | 
\<Longrightarrow> monotone orda ordb G  | 
|
36  | 
\<Longrightarrow> monotone orda ordb (\<lambda>f. if c then F f else G f)"  | 
|
37  | 
unfolding monotone_def by simp  | 
|
38  | 
||
39  | 
definition "mk_less R = (\<lambda>x y. R x y \<and> \<not> R y x)"  | 
|
40  | 
||
41  | 
locale partial_function_definitions =  | 
|
42  | 
fixes leq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
|
43  | 
fixes lub :: "'a set \<Rightarrow> 'a"  | 
|
44  | 
assumes leq_refl: "leq x x"  | 
|
45  | 
assumes leq_trans: "leq x y \<Longrightarrow> leq y z \<Longrightarrow> leq x z"  | 
|
46  | 
assumes leq_antisym: "leq x y \<Longrightarrow> leq y x \<Longrightarrow> x = y"  | 
|
47  | 
assumes lub_upper: "chain leq A \<Longrightarrow> x \<in> A \<Longrightarrow> leq x (lub A)"  | 
|
48  | 
assumes lub_least: "chain leq A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> leq x z) \<Longrightarrow> leq (lub A) z"  | 
|
49  | 
||
50  | 
lemma partial_function_lift:  | 
|
51  | 
assumes "partial_function_definitions ord lb"  | 
|
52  | 
shows "partial_function_definitions (fun_ord ord) (fun_lub lb)" (is "partial_function_definitions ?ordf ?lubf")  | 
|
53  | 
proof -  | 
|
54  | 
interpret partial_function_definitions ord lb by fact  | 
|
55  | 
||
56  | 
  { fix A a assume A: "chain ?ordf A"
 | 
|
57  | 
    have "chain ord {y. \<exists>f\<in>A. y = f a}" (is "chain ord ?C")
 | 
|
58  | 
proof (rule chainI)  | 
|
59  | 
fix x y assume "x \<in> ?C" "y \<in> ?C"  | 
|
60  | 
then obtain f g where fg: "f \<in> A" "g \<in> A"  | 
|
61  | 
and [simp]: "x = f a" "y = g a" by blast  | 
|
62  | 
from chainD[OF A fg]  | 
|
63  | 
show "ord x y \<or> ord y x" unfolding fun_ord_def by auto  | 
|
64  | 
qed }  | 
|
65  | 
note chain_fun = this  | 
|
66  | 
||
67  | 
show ?thesis  | 
|
68  | 
proof  | 
|
69  | 
fix x show "?ordf x x"  | 
|
70  | 
unfolding fun_ord_def by (auto simp: leq_refl)  | 
|
71  | 
next  | 
|
72  | 
fix x y z assume "?ordf x y" "?ordf y z"  | 
|
73  | 
thus "?ordf x z" unfolding fun_ord_def  | 
|
74  | 
by (force dest: leq_trans)  | 
|
75  | 
next  | 
|
76  | 
fix x y assume "?ordf x y" "?ordf y x"  | 
|
77  | 
thus "x = y" unfolding fun_ord_def  | 
|
78  | 
by (force intro!: ext dest: leq_antisym)  | 
|
79  | 
next  | 
|
80  | 
fix A f assume f: "f \<in> A" and A: "chain ?ordf A"  | 
|
81  | 
thus "?ordf f (?lubf A)"  | 
|
82  | 
unfolding fun_lub_def fun_ord_def  | 
|
83  | 
by (blast intro: lub_upper chain_fun[OF A] f)  | 
|
84  | 
next  | 
|
85  | 
    fix A :: "('b \<Rightarrow> 'a) set" and g :: "'b \<Rightarrow> 'a"
 | 
|
86  | 
assume A: "chain ?ordf A" and g: "\<And>f. f \<in> A \<Longrightarrow> ?ordf f g"  | 
|
87  | 
show "?ordf (?lubf A) g" unfolding fun_lub_def fun_ord_def  | 
|
88  | 
by (blast intro: lub_least chain_fun[OF A] dest: g[unfolded fun_ord_def])  | 
|
89  | 
qed  | 
|
90  | 
qed  | 
|
91  | 
||
92  | 
lemma ccpo: assumes "partial_function_definitions ord lb"  | 
|
93  | 
shows "class.ccpo ord (mk_less ord) lb"  | 
|
94  | 
using assms unfolding partial_function_definitions_def mk_less_def  | 
|
95  | 
by unfold_locales blast+  | 
|
96  | 
||
97  | 
lemma partial_function_image:  | 
|
98  | 
assumes "partial_function_definitions ord Lub"  | 
|
99  | 
assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"  | 
|
100  | 
assumes inv: "\<And>x. f (g x) = x"  | 
|
101  | 
shows "partial_function_definitions (img_ord f ord) (img_lub f g Lub)"  | 
|
102  | 
proof -  | 
|
103  | 
let ?iord = "img_ord f ord"  | 
|
104  | 
let ?ilub = "img_lub f g Lub"  | 
|
105  | 
||
106  | 
interpret partial_function_definitions ord Lub by fact  | 
|
107  | 
show ?thesis  | 
|
108  | 
proof  | 
|
109  | 
fix A x assume "chain ?iord A" "x \<in> A"  | 
|
110  | 
then have "chain ord (f ` A)" "f x \<in> f ` A"  | 
|
111  | 
by (auto simp: img_ord_def intro: chainI dest: chainD)  | 
|
112  | 
thus "?iord x (?ilub A)"  | 
|
113  | 
unfolding inv img_lub_def img_ord_def by (rule lub_upper)  | 
|
114  | 
next  | 
|
115  | 
fix A x assume "chain ?iord A"  | 
|
116  | 
and 1: "\<And>z. z \<in> A \<Longrightarrow> ?iord z x"  | 
|
117  | 
then have "chain ord (f ` A)"  | 
|
118  | 
by (auto simp: img_ord_def intro: chainI dest: chainD)  | 
|
119  | 
thus "?iord (?ilub A) x"  | 
|
120  | 
unfolding inv img_lub_def img_ord_def  | 
|
121  | 
by (rule lub_least) (auto dest: 1[unfolded img_ord_def])  | 
|
122  | 
qed (auto simp: img_ord_def intro: leq_refl dest: leq_trans leq_antisym inj)  | 
|
123  | 
qed  | 
|
124  | 
||
125  | 
context partial_function_definitions  | 
|
126  | 
begin  | 
|
127  | 
||
128  | 
abbreviation "le_fun \<equiv> fun_ord leq"  | 
|
129  | 
abbreviation "lub_fun \<equiv> fun_lub lub"  | 
|
130  | 
abbreviation "fixp_fun == ccpo.fixp le_fun lub_fun"  | 
|
131  | 
abbreviation "mono_body \<equiv> monotone le_fun leq"  | 
|
132  | 
||
133  | 
text {* Interpret manually, to avoid flooding everything with facts about
 | 
|
134  | 
orders *}  | 
|
135  | 
||
136  | 
lemma ccpo: "class.ccpo le_fun (mk_less le_fun) lub_fun"  | 
|
137  | 
apply (rule ccpo)  | 
|
138  | 
apply (rule partial_function_lift)  | 
|
139  | 
apply (rule partial_function_definitions_axioms)  | 
|
140  | 
done  | 
|
141  | 
||
142  | 
text {* The crucial fixed-point theorem *}
 | 
|
143  | 
||
144  | 
lemma mono_body_fixp:  | 
|
145  | 
"(\<And>x. mono_body (\<lambda>f. F f x)) \<Longrightarrow> fixp_fun F = F (fixp_fun F)"  | 
|
146  | 
by (rule ccpo.fixp_unfold[OF ccpo]) (auto simp: monotone_def fun_ord_def)  | 
|
147  | 
||
148  | 
text {* Version with curry/uncurry combinators, to be used by package *}
 | 
|
149  | 
||
150  | 
lemma fixp_rule_uc:  | 
|
151  | 
fixes F :: "'c \<Rightarrow> 'c" and  | 
|
152  | 
U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and  | 
|
153  | 
    C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c"
 | 
|
154  | 
assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)"  | 
|
155  | 
assumes eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))"  | 
|
156  | 
assumes inverse: "\<And>f. C (U f) = f"  | 
|
157  | 
shows "f = F f"  | 
|
158  | 
proof -  | 
|
159  | 
have "f = C (fixp_fun (\<lambda>f. U (F (C f))))" by (simp add: eq)  | 
|
160  | 
also have "... = C (U (F (C (fixp_fun (\<lambda>f. U (F (C f)))))))"  | 
|
161  | 
by (subst mono_body_fixp[of "%f. U (F (C f))", OF mono]) (rule refl)  | 
|
162  | 
also have "... = F (C (fixp_fun (\<lambda>f. U (F (C f)))))" by (rule inverse)  | 
|
163  | 
also have "... = F f" by (simp add: eq)  | 
|
164  | 
finally show "f = F f" .  | 
|
165  | 
qed  | 
|
166  | 
||
167  | 
text {* Rules for @{term mono_body}: *}
 | 
|
168  | 
||
169  | 
lemma const_mono[partial_function_mono]: "monotone ord leq (\<lambda>f. c)"  | 
|
170  | 
by (rule monotoneI) (rule leq_refl)  | 
|
171  | 
||
172  | 
declaration {* Partial_Function.init @{term fixp_fun}
 | 
|
173  | 
  @{term mono_body} @{thm fixp_rule_uc} *}
 | 
|
174  | 
||
175  | 
end  | 
|
176  | 
||
177  | 
||
178  | 
subsection {* Flat interpretation: tailrec and option *}
 | 
|
179  | 
||
180  | 
definition  | 
|
181  | 
"flat_ord b x y \<longleftrightarrow> x = b \<or> x = y"  | 
|
182  | 
||
183  | 
definition  | 
|
184  | 
  "flat_lub b A = (if A \<subseteq> {b} then b else (THE x. x \<in> A - {b}))"
 | 
|
185  | 
||
186  | 
lemma flat_interpretation:  | 
|
187  | 
"partial_function_definitions (flat_ord b) (flat_lub b)"  | 
|
188  | 
proof  | 
|
189  | 
fix A x assume 1: "chain (flat_ord b) A" "x \<in> A"  | 
|
190  | 
show "flat_ord b x (flat_lub b A)"  | 
|
191  | 
proof cases  | 
|
192  | 
assume "x = b"  | 
|
193  | 
thus ?thesis by (simp add: flat_ord_def)  | 
|
194  | 
next  | 
|
195  | 
assume "x \<noteq> b"  | 
|
196  | 
    with 1 have "A - {b} = {x}"
 | 
|
197  | 
by (auto elim: chainE simp: flat_ord_def)  | 
|
198  | 
then have "flat_lub b A = x"  | 
|
199  | 
by (auto simp: flat_lub_def)  | 
|
200  | 
thus ?thesis by (auto simp: flat_ord_def)  | 
|
201  | 
qed  | 
|
202  | 
next  | 
|
203  | 
fix A z assume A: "chain (flat_ord b) A"  | 
|
204  | 
and z: "\<And>x. x \<in> A \<Longrightarrow> flat_ord b x z"  | 
|
205  | 
show "flat_ord b (flat_lub b A) z"  | 
|
206  | 
proof cases  | 
|
207  | 
    assume "A \<subseteq> {b}"
 | 
|
208  | 
thus ?thesis  | 
|
209  | 
by (auto simp: flat_lub_def flat_ord_def)  | 
|
210  | 
next  | 
|
211  | 
    assume nb: "\<not> A \<subseteq> {b}"
 | 
|
212  | 
then obtain y where y: "y \<in> A" "y \<noteq> b" by auto  | 
|
213  | 
    with A have "A - {b} = {y}"
 | 
|
214  | 
by (auto elim: chainE simp: flat_ord_def)  | 
|
215  | 
with nb have "flat_lub b A = y"  | 
|
216  | 
by (auto simp: flat_lub_def)  | 
|
217  | 
with z y show ?thesis by auto  | 
|
218  | 
qed  | 
|
219  | 
qed (auto simp: flat_ord_def)  | 
|
220  | 
||
221  | 
interpretation tailrec!:  | 
|
222  | 
partial_function_definitions "flat_ord undefined" "flat_lub undefined"  | 
|
223  | 
by (rule flat_interpretation)  | 
|
224  | 
||
225  | 
interpretation option!:  | 
|
226  | 
partial_function_definitions "flat_ord None" "flat_lub None"  | 
|
227  | 
by (rule flat_interpretation)  | 
|
228  | 
||
229  | 
abbreviation "option_ord \<equiv> flat_ord None"  | 
|
230  | 
abbreviation "mono_option \<equiv> monotone (fun_ord option_ord) option_ord"  | 
|
231  | 
||
232  | 
lemma bind_mono[partial_function_mono]:  | 
|
233  | 
assumes mf: "mono_option B" and mg: "\<And>y. mono_option (\<lambda>f. C y f)"  | 
|
234  | 
shows "mono_option (\<lambda>f. Option.bind (B f) (\<lambda>y. C y f))"  | 
|
235  | 
proof (rule monotoneI)  | 
|
236  | 
fix f g :: "'a \<Rightarrow> 'b option" assume fg: "fun_ord option_ord f g"  | 
|
237  | 
with mf  | 
|
238  | 
have "option_ord (B f) (B g)" by (rule monotoneD[of _ _ _ f g])  | 
|
239  | 
then have "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y. C y f))"  | 
|
240  | 
unfolding flat_ord_def by auto  | 
|
241  | 
also from mg  | 
|
242  | 
have "\<And>y'. option_ord (C y' f) (C y' g)"  | 
|
243  | 
by (rule monotoneD) (rule fg)  | 
|
244  | 
then have "option_ord (Option.bind (B g) (\<lambda>y'. C y' f)) (Option.bind (B g) (\<lambda>y'. C y' g))"  | 
|
245  | 
unfolding flat_ord_def by (cases "B g") auto  | 
|
246  | 
finally (option.leq_trans)  | 
|
247  | 
show "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y'. C y' g))" .  | 
|
248  | 
qed  | 
|
249  | 
||
| 
40252
 
029400b6c893
hide_const various constants, in particular to avoid ugly qualifiers in HOLCF
 
krauss 
parents: 
40107 
diff
changeset
 | 
250  | 
hide_const (open) chain  | 
| 40107 | 251  | 
|
252  | 
end  | 
|
253  |