| author | wenzelm | 
| Thu, 07 Jul 2016 12:08:00 +0200 | |
| changeset 63421 | 3bf02e7fa8a3 | 
| parent 62958 | b41c1cb5e251 | 
| child 63561 | fba08009ff3e | 
| permissions | -rw-r--r-- | 
| 923 | 1  | 
(* Title: HOL/HOL.thy  | 
| 11750 | 2  | 
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson  | 
3  | 
*)  | 
|
| 923 | 4  | 
|
| 60758 | 5  | 
section \<open>The basis of Higher-Order Logic\<close>  | 
| 923 | 6  | 
|
| 15131 | 7  | 
theory HOL  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
8  | 
imports Pure "~~/src/Tools/Code_Generator"  | 
| 
46950
 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 
wenzelm 
parents: 
46497 
diff
changeset
 | 
9  | 
keywords  | 
| 52432 | 10  | 
"try" "solve_direct" "quickcheck" "print_coercions" "print_claset"  | 
11  | 
"print_induct_rules" :: diag and  | 
|
| 
47657
 
1ba213363d0c
moved modules with only vague relation to the code generator to theory HOL rather than theory Code_Generator
 
haftmann 
parents: 
46973 
diff
changeset
 | 
12  | 
"quickcheck_params" :: thy_decl  | 
| 15131 | 13  | 
begin  | 
| 2260 | 14  | 
|
| 48891 | 15  | 
ML_file "~~/src/Tools/misc_legacy.ML"  | 
16  | 
ML_file "~~/src/Tools/try.ML"  | 
|
17  | 
ML_file "~~/src/Tools/quickcheck.ML"  | 
|
18  | 
ML_file "~~/src/Tools/solve_direct.ML"  | 
|
19  | 
ML_file "~~/src/Tools/IsaPlanner/zipper.ML"  | 
|
20  | 
ML_file "~~/src/Tools/IsaPlanner/isand.ML"  | 
|
21  | 
ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML"  | 
|
22  | 
ML_file "~~/src/Provers/hypsubst.ML"  | 
|
23  | 
ML_file "~~/src/Provers/splitter.ML"  | 
|
24  | 
ML_file "~~/src/Provers/classical.ML"  | 
|
25  | 
ML_file "~~/src/Provers/blast.ML"  | 
|
26  | 
ML_file "~~/src/Provers/clasimp.ML"  | 
|
27  | 
ML_file "~~/src/Tools/eqsubst.ML"  | 
|
28  | 
ML_file "~~/src/Provers/quantifier1.ML"  | 
|
29  | 
ML_file "~~/src/Tools/atomize_elim.ML"  | 
|
30  | 
ML_file "~~/src/Tools/cong_tac.ML"  | 
|
| 58826 | 31  | 
ML_file "~~/src/Tools/intuitionistic.ML" setup \<open>Intuitionistic.method_setup @{binding iprover}\<close>
 | 
| 48891 | 32  | 
ML_file "~~/src/Tools/project_rule.ML"  | 
33  | 
ML_file "~~/src/Tools/subtyping.ML"  | 
|
34  | 
ML_file "~~/src/Tools/case_product.ML"  | 
|
35  | 
||
| 
30165
 
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
 
wenzelm 
parents: 
30160 
diff
changeset
 | 
36  | 
|
| 
58659
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
37  | 
ML \<open>Plugin_Name.declare_setup @{binding extraction}\<close>
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
38  | 
|
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
39  | 
ML \<open>  | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
40  | 
  Plugin_Name.declare_setup @{binding quickcheck_random};
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
41  | 
  Plugin_Name.declare_setup @{binding quickcheck_exhaustive};
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
42  | 
  Plugin_Name.declare_setup @{binding quickcheck_bounded_forall};
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
43  | 
  Plugin_Name.declare_setup @{binding quickcheck_full_exhaustive};
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
44  | 
  Plugin_Name.declare_setup @{binding quickcheck_narrowing};
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
45  | 
\<close>  | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
46  | 
ML \<open>  | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
47  | 
  Plugin_Name.define_setup @{binding quickcheck}
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
48  | 
   [@{plugin quickcheck_exhaustive},
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
49  | 
    @{plugin quickcheck_random},
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
50  | 
    @{plugin quickcheck_bounded_forall},
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
51  | 
    @{plugin quickcheck_full_exhaustive},
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
52  | 
    @{plugin quickcheck_narrowing}]
 | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
53  | 
\<close>  | 
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
54  | 
|
| 
 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 
wenzelm 
parents: 
57964 
diff
changeset
 | 
55  | 
|
| 60758 | 56  | 
subsection \<open>Primitive logic\<close>  | 
| 11750 | 57  | 
|
| 60758 | 58  | 
subsubsection \<open>Core syntax\<close>  | 
| 2260 | 59  | 
|
| 60758 | 60  | 
setup \<open>Axclass.class_axiomatization (@{binding type}, [])\<close>
 | 
| 36452 | 61  | 
default_sort type  | 
| 60758 | 62  | 
setup \<open>Object_Logic.add_base_sort @{sort type}\<close>
 | 
| 
25460
 
b80087af2274
interpretation of typedecls: instantiation to class type
 
haftmann 
parents: 
25388 
diff
changeset
 | 
63  | 
|
| 55383 | 64  | 
axiomatization where fun_arity: "OFCLASS('a \<Rightarrow> 'b, type_class)"
 | 
65  | 
instance "fun" :: (type, type) type by (rule fun_arity)  | 
|
66  | 
||
67  | 
axiomatization where itself_arity: "OFCLASS('a itself, type_class)"
 | 
|
68  | 
instance itself :: (type) type by (rule itself_arity)  | 
|
| 
25460
 
b80087af2274
interpretation of typedecls: instantiation to class type
 
haftmann 
parents: 
25388 
diff
changeset
 | 
69  | 
|
| 7357 | 70  | 
typedecl bool  | 
| 923 | 71  | 
|
| 62151 | 72  | 
judgment Trueprop :: "bool \<Rightarrow> prop"  ("(_)" 5)
 | 
73  | 
||
74  | 
axiomatization implies :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longrightarrow>" 25)  | 
|
75  | 
and eq :: "['a, 'a] \<Rightarrow> bool" (infixl "=" 50)  | 
|
76  | 
  and The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
|
77  | 
||
| 923 | 78  | 
|
| 62151 | 79  | 
subsubsection \<open>Defined connectives and quantifiers\<close>  | 
80  | 
||
81  | 
definition True :: bool  | 
|
82  | 
where "True \<equiv> ((\<lambda>x::bool. x) = (\<lambda>x. x))"  | 
|
83  | 
||
84  | 
definition All :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<forall>" 10)
 | 
|
85  | 
where "All P \<equiv> (P = (\<lambda>x. True))"  | 
|
| 46973 | 86  | 
|
| 62151 | 87  | 
definition Ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>" 10)
 | 
88  | 
where "Ex P \<equiv> \<forall>Q. (\<forall>x. P x \<longrightarrow> Q) \<longrightarrow> Q"  | 
|
89  | 
||
90  | 
definition False :: bool  | 
|
91  | 
where "False \<equiv> (\<forall>P. P)"  | 
|
92  | 
||
93  | 
definition Not :: "bool \<Rightarrow> bool"  ("\<not> _" [40] 40)
 | 
|
94  | 
where not_def: "\<not> P \<equiv> P \<longrightarrow> False"  | 
|
| 
38795
 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 
haftmann 
parents: 
38786 
diff
changeset
 | 
95  | 
|
| 62151 | 96  | 
definition conj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<and>" 35)  | 
97  | 
where and_def: "P \<and> Q \<equiv> \<forall>R. (P \<longrightarrow> Q \<longrightarrow> R) \<longrightarrow> R"  | 
|
| 38555 | 98  | 
|
| 62151 | 99  | 
definition disj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<or>" 30)  | 
100  | 
where or_def: "P \<or> Q \<equiv> \<forall>R. (P \<longrightarrow> R) \<longrightarrow> (Q \<longrightarrow> R) \<longrightarrow> R"  | 
|
101  | 
||
102  | 
definition Ex1 :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>!" 10)
 | 
|
103  | 
where "Ex1 P \<equiv> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x)"  | 
|
| 923 | 104  | 
|
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
105  | 
|
| 60758 | 106  | 
subsubsection \<open>Additional concrete syntax\<close>  | 
| 2260 | 107  | 
|
| 62522 | 108  | 
abbreviation Not_Ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<nexists>" 10)
 | 
109  | 
where "\<nexists>x. P x \<equiv> \<not> (\<exists>x. P x)"  | 
|
110  | 
||
111  | 
abbreviation Not_Ex1 :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<nexists>!" 10)
 | 
|
112  | 
where "\<nexists>!x. P x \<equiv> \<not> (\<exists>!x. P x)"  | 
|
113  | 
||
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
114  | 
abbreviation not_equal :: "['a, 'a] \<Rightarrow> bool" (infixl "\<noteq>" 50)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
115  | 
where "x \<noteq> y \<equiv> \<not> (x = y)"  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
116  | 
|
| 21210 | 117  | 
notation (output)  | 
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
118  | 
eq (infix "=" 50) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
119  | 
not_equal (infix "\<noteq>" 50)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
120  | 
|
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
121  | 
notation (ASCII output)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
122  | 
not_equal (infix "~=" 50)  | 
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
123  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
124  | 
notation (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
125  | 
  Not  ("~ _" [40] 40) and
 | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
126  | 
conj (infixr "&" 35) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
127  | 
disj (infixr "|" 30) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
128  | 
implies (infixr "-->" 25) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
129  | 
not_equal (infixl "~=" 50)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
130  | 
|
| 
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
131  | 
abbreviation (iff)  | 
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
132  | 
iff :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longleftrightarrow>" 25)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
133  | 
where "A \<longleftrightarrow> B \<equiv> A = B"  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19607 
diff
changeset
 | 
134  | 
|
| 60759 | 135  | 
syntax "_The" :: "[pttrn, bool] \<Rightarrow> 'a"  ("(3THE _./ _)" [0, 10] 10)
 | 
136  | 
translations "THE x. P" \<rightleftharpoons> "CONST The (\<lambda>x. P)"  | 
|
| 60758 | 137  | 
print_translation \<open>  | 
| 52143 | 138  | 
  [(@{const_syntax The}, fn _ => fn [Abs abs] =>
 | 
| 
46125
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
139  | 
let val (x, t) = Syntax_Trans.atomic_abs_tr' abs  | 
| 
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
140  | 
      in Syntax.const @{syntax_const "_The"} $ x $ t end)]
 | 
| 61799 | 141  | 
\<close> \<comment> \<open>To avoid eta-contraction of body\<close>  | 
| 923 | 142  | 
|
| 
46125
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
143  | 
nonterminal letbinds and letbind  | 
| 923 | 144  | 
syntax  | 
| 60759 | 145  | 
  "_bind"       :: "[pttrn, 'a] \<Rightarrow> letbind"              ("(2_ =/ _)" 10)
 | 
146  | 
  ""            :: "letbind \<Rightarrow> letbinds"                 ("_")
 | 
|
147  | 
  "_binds"      :: "[letbind, letbinds] \<Rightarrow> letbinds"     ("_;/ _")
 | 
|
148  | 
  "_Let"        :: "[letbinds, 'a] \<Rightarrow> 'a"                ("(let (_)/ in (_))" [0, 10] 10)
 | 
|
| 923 | 149  | 
|
| 
46125
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
150  | 
nonterminal case_syn and cases_syn  | 
| 
 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 
wenzelm 
parents: 
45654 
diff
changeset
 | 
151  | 
syntax  | 
| 60759 | 152  | 
  "_case_syntax" :: "['a, cases_syn] \<Rightarrow> 'b"  ("(case _ of/ _)" 10)
 | 
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
153  | 
  "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ \<Rightarrow>/ _)" 10)
 | 
| 60759 | 154  | 
  "" :: "case_syn \<Rightarrow> cases_syn"  ("_")
 | 
155  | 
  "_case2" :: "[case_syn, cases_syn] \<Rightarrow> cases_syn"  ("_/ | _")
 | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
156  | 
syntax (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
157  | 
  "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ =>/ _)" 10)
 | 
| 
13763
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
158  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
159  | 
notation (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
160  | 
All (binder "ALL " 10) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
161  | 
Ex (binder "EX " 10) and  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61941 
diff
changeset
 | 
162  | 
Ex1 (binder "EX! " 10)  | 
| 2372 | 163  | 
|
| 62521 | 164  | 
notation (input)  | 
| 21524 | 165  | 
All (binder "! " 10) and  | 
166  | 
Ex (binder "? " 10) and  | 
|
167  | 
Ex1 (binder "?! " 10)  | 
|
| 
7238
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
168  | 
|
| 
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
169  | 
|
| 60758 | 170  | 
subsubsection \<open>Axioms and basic definitions\<close>  | 
| 2260 | 171  | 
|
| 46973 | 172  | 
axiomatization where  | 
173  | 
refl: "t = (t::'a)" and  | 
|
174  | 
subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" and  | 
|
| 60759 | 175  | 
ext: "(\<And>x::'a. (f x ::'b) = g x) \<Longrightarrow> (\<lambda>x. f x) = (\<lambda>x. g x)"  | 
| 61799 | 176  | 
\<comment> \<open>Extensionality is built into the meta-logic, and this rule expresses  | 
| 15380 | 177  | 
a related property. It is an eta-expanded version of the traditional  | 
| 60758 | 178  | 
rule, and similar to the ABS rule of HOL\<close> and  | 
| 6289 | 179  | 
|
| 
11432
 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 
wenzelm 
parents: 
10489 
diff
changeset
 | 
180  | 
the_eq_trivial: "(THE x. x = a) = (a::'a)"  | 
| 923 | 181  | 
|
| 46973 | 182  | 
axiomatization where  | 
| 60759 | 183  | 
impI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<longrightarrow> Q" and  | 
184  | 
mp: "\<lbrakk>P \<longrightarrow> Q; P\<rbrakk> \<Longrightarrow> Q" and  | 
|
| 15380 | 185  | 
|
| 60759 | 186  | 
iff: "(P \<longrightarrow> Q) \<longrightarrow> (Q \<longrightarrow> P) \<longrightarrow> (P = Q)" and  | 
187  | 
True_or_False: "(P = True) \<or> (P = False)"  | 
|
| 15380 | 188  | 
|
| 46973 | 189  | 
definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10)
 | 
| 60759 | 190  | 
where "If P x y \<equiv> (THE z::'a. (P = True \<longrightarrow> z = x) \<and> (P = False \<longrightarrow> z = y))"  | 
| 923 | 191  | 
|
| 46973 | 192  | 
definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b"
 | 
193  | 
where "Let s f \<equiv> f s"  | 
|
| 38525 | 194  | 
|
195  | 
translations  | 
|
| 60759 | 196  | 
"_Let (_binds b bs) e" \<rightleftharpoons> "_Let b (_Let bs e)"  | 
197  | 
"let x = a in e" \<rightleftharpoons> "CONST Let a (\<lambda>x. e)"  | 
|
| 38525 | 198  | 
|
| 46973 | 199  | 
axiomatization undefined :: 'a  | 
| 
22481
 
79c2724c36b5
added class "default" and expansion axioms for undefined
 
haftmann 
parents: 
22473 
diff
changeset
 | 
200  | 
|
| 46973 | 201  | 
class default = fixes default :: 'a  | 
| 4868 | 202  | 
|
| 11750 | 203  | 
|
| 60758 | 204  | 
subsection \<open>Fundamental rules\<close>  | 
| 20944 | 205  | 
|
| 60758 | 206  | 
subsubsection \<open>Equality\<close>  | 
| 20944 | 207  | 
|
| 60759 | 208  | 
lemma sym: "s = t \<Longrightarrow> t = s"  | 
| 18457 | 209  | 
by (erule subst) (rule refl)  | 
| 15411 | 210  | 
|
| 60759 | 211  | 
lemma ssubst: "t = s \<Longrightarrow> P s \<Longrightarrow> P t"  | 
| 18457 | 212  | 
by (drule sym) (erule subst)  | 
| 15411 | 213  | 
|
| 60759 | 214  | 
lemma trans: "\<lbrakk>r = s; s = t\<rbrakk> \<Longrightarrow> r = t"  | 
| 18457 | 215  | 
by (erule subst)  | 
| 15411 | 216  | 
|
| 60759 | 217  | 
lemma trans_sym [Pure.elim?]: "r = s \<Longrightarrow> t = s \<Longrightarrow> r = t"  | 
| 
40715
 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 
wenzelm 
parents: 
40582 
diff
changeset
 | 
218  | 
by (rule trans [OF _ sym])  | 
| 
 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 
wenzelm 
parents: 
40582 
diff
changeset
 | 
219  | 
|
| 58826 | 220  | 
lemma meta_eq_to_obj_eq:  | 
| 60759 | 221  | 
assumes meq: "A \<equiv> B"  | 
| 20944 | 222  | 
shows "A = B"  | 
223  | 
by (unfold meq) (rule refl)  | 
|
| 15411 | 224  | 
|
| 61799 | 225  | 
text \<open>Useful with \<open>erule\<close> for proving equalities from known equalities.\<close>  | 
| 20944 | 226  | 
(* a = b  | 
| 15411 | 227  | 
| |  | 
228  | 
c = d *)  | 
|
| 60759 | 229  | 
lemma box_equals: "\<lbrakk>a = b; a = c; b = d\<rbrakk> \<Longrightarrow> c = d"  | 
| 15411 | 230  | 
apply (rule trans)  | 
231  | 
apply (rule trans)  | 
|
232  | 
apply (rule sym)  | 
|
233  | 
apply assumption+  | 
|
234  | 
done  | 
|
235  | 
||
| 60758 | 236  | 
text \<open>For calculational reasoning:\<close>  | 
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
237  | 
|
| 60759 | 238  | 
lemma forw_subst: "a = b \<Longrightarrow> P b \<Longrightarrow> P a"  | 
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
239  | 
by (rule ssubst)  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
240  | 
|
| 60759 | 241  | 
lemma back_subst: "P a \<Longrightarrow> a = b \<Longrightarrow> P b"  | 
| 
15524
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
242  | 
by (rule subst)  | 
| 
 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 
nipkow 
parents: 
15481 
diff
changeset
 | 
243  | 
|
| 15411 | 244  | 
|
| 60758 | 245  | 
subsubsection \<open>Congruence rules for application\<close>  | 
| 15411 | 246  | 
|
| 61799 | 247  | 
text \<open>Similar to \<open>AP_THM\<close> in Gordon's HOL.\<close>  | 
| 60759 | 248  | 
lemma fun_cong: "(f :: 'a \<Rightarrow> 'b) = g \<Longrightarrow> f x = g x"  | 
| 15411 | 249  | 
apply (erule subst)  | 
250  | 
apply (rule refl)  | 
|
251  | 
done  | 
|
252  | 
||
| 61799 | 253  | 
text \<open>Similar to \<open>AP_TERM\<close> in Gordon's HOL and FOL's \<open>subst_context\<close>.\<close>  | 
| 60759 | 254  | 
lemma arg_cong: "x = y \<Longrightarrow> f x = f y"  | 
| 15411 | 255  | 
apply (erule subst)  | 
256  | 
apply (rule refl)  | 
|
257  | 
done  | 
|
258  | 
||
| 60759 | 259  | 
lemma arg_cong2: "\<lbrakk>a = b; c = d\<rbrakk> \<Longrightarrow> f a c = f b d"  | 
| 15655 | 260  | 
apply (erule ssubst)+  | 
261  | 
apply (rule refl)  | 
|
262  | 
done  | 
|
263  | 
||
| 60759 | 264  | 
lemma cong: "\<lbrakk>f = g; (x::'a) = y\<rbrakk> \<Longrightarrow> f x = g y"  | 
| 15411 | 265  | 
apply (erule subst)+  | 
266  | 
apply (rule refl)  | 
|
267  | 
done  | 
|
268  | 
||
| 60758 | 269  | 
ML \<open>fun cong_tac ctxt = Cong_Tac.cong_tac ctxt @{thm cong}\<close>
 | 
| 15411 | 270  | 
|
| 
32733
 
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
 
wenzelm 
parents: 
32668 
diff
changeset
 | 
271  | 
|
| 60758 | 272  | 
subsubsection \<open>Equality of booleans -- iff\<close>  | 
| 15411 | 273  | 
|
| 60759 | 274  | 
lemma iffI: assumes "P \<Longrightarrow> Q" and "Q \<Longrightarrow> P" shows "P = Q"  | 
| 21504 | 275  | 
by (iprover intro: iff [THEN mp, THEN mp] impI assms)  | 
| 15411 | 276  | 
|
| 60759 | 277  | 
lemma iffD2: "\<lbrakk>P = Q; Q\<rbrakk> \<Longrightarrow> P"  | 
| 18457 | 278  | 
by (erule ssubst)  | 
| 15411 | 279  | 
|
| 60759 | 280  | 
lemma rev_iffD2: "\<lbrakk>Q; P = Q\<rbrakk> \<Longrightarrow> P"  | 
| 18457 | 281  | 
by (erule iffD2)  | 
| 15411 | 282  | 
|
| 21504 | 283  | 
lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P"  | 
284  | 
by (drule sym) (rule iffD2)  | 
|
285  | 
||
286  | 
lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P"  | 
|
287  | 
by (drule sym) (rule rev_iffD2)  | 
|
| 15411 | 288  | 
|
289  | 
lemma iffE:  | 
|
| 60759 | 290  | 
assumes major: "P = Q"  | 
291  | 
and minor: "\<lbrakk>P \<longrightarrow> Q; Q \<longrightarrow> P\<rbrakk> \<Longrightarrow> R"  | 
|
| 18457 | 292  | 
shows R  | 
293  | 
by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1])  | 
|
| 15411 | 294  | 
|
295  | 
||
| 60758 | 296  | 
subsubsection \<open>True\<close>  | 
| 15411 | 297  | 
|
298  | 
lemma TrueI: "True"  | 
|
| 21504 | 299  | 
unfolding True_def by (rule refl)  | 
| 15411 | 300  | 
|
| 60759 | 301  | 
lemma eqTrueI: "P \<Longrightarrow> P = True"  | 
| 18457 | 302  | 
by (iprover intro: iffI TrueI)  | 
| 15411 | 303  | 
|
| 60759 | 304  | 
lemma eqTrueE: "P = True \<Longrightarrow> P"  | 
| 21504 | 305  | 
by (erule iffD2) (rule TrueI)  | 
| 15411 | 306  | 
|
307  | 
||
| 60758 | 308  | 
subsubsection \<open>Universal quantifier\<close>  | 
| 15411 | 309  | 
|
| 60759 | 310  | 
lemma allI: assumes "\<And>x::'a. P x" shows "\<forall>x. P x"  | 
| 21504 | 311  | 
unfolding All_def by (iprover intro: ext eqTrueI assms)  | 
| 15411 | 312  | 
|
| 60759 | 313  | 
lemma spec: "\<forall>x::'a. P x \<Longrightarrow> P x"  | 
| 15411 | 314  | 
apply (unfold All_def)  | 
315  | 
apply (rule eqTrueE)  | 
|
316  | 
apply (erule fun_cong)  | 
|
317  | 
done  | 
|
318  | 
||
319  | 
lemma allE:  | 
|
| 60759 | 320  | 
assumes major: "\<forall>x. P x"  | 
321  | 
and minor: "P x \<Longrightarrow> R"  | 
|
| 21504 | 322  | 
shows R  | 
323  | 
by (iprover intro: minor major [THEN spec])  | 
|
| 15411 | 324  | 
|
325  | 
lemma all_dupE:  | 
|
| 60759 | 326  | 
assumes major: "\<forall>x. P x"  | 
327  | 
and minor: "\<lbrakk>P x; \<forall>x. P x\<rbrakk> \<Longrightarrow> R"  | 
|
| 21504 | 328  | 
shows R  | 
329  | 
by (iprover intro: minor major major [THEN spec])  | 
|
| 15411 | 330  | 
|
331  | 
||
| 60758 | 332  | 
subsubsection \<open>False\<close>  | 
| 21504 | 333  | 
|
| 60758 | 334  | 
text \<open>  | 
| 61799 | 335  | 
Depends upon \<open>spec\<close>; it is impossible to do propositional  | 
| 21504 | 336  | 
logic before quantifiers!  | 
| 60758 | 337  | 
\<close>  | 
| 15411 | 338  | 
|
| 60759 | 339  | 
lemma FalseE: "False \<Longrightarrow> P"  | 
| 21504 | 340  | 
apply (unfold False_def)  | 
341  | 
apply (erule spec)  | 
|
342  | 
done  | 
|
| 15411 | 343  | 
|
| 60759 | 344  | 
lemma False_neq_True: "False = True \<Longrightarrow> P"  | 
| 21504 | 345  | 
by (erule eqTrueE [THEN FalseE])  | 
| 15411 | 346  | 
|
347  | 
||
| 60758 | 348  | 
subsubsection \<open>Negation\<close>  | 
| 15411 | 349  | 
|
350  | 
lemma notI:  | 
|
| 60759 | 351  | 
assumes "P \<Longrightarrow> False"  | 
352  | 
shows "\<not> P"  | 
|
| 21504 | 353  | 
apply (unfold not_def)  | 
354  | 
apply (iprover intro: impI assms)  | 
|
355  | 
done  | 
|
| 15411 | 356  | 
|
| 60759 | 357  | 
lemma False_not_True: "False \<noteq> True"  | 
| 21504 | 358  | 
apply (rule notI)  | 
359  | 
apply (erule False_neq_True)  | 
|
360  | 
done  | 
|
| 15411 | 361  | 
|
| 60759 | 362  | 
lemma True_not_False: "True \<noteq> False"  | 
| 21504 | 363  | 
apply (rule notI)  | 
364  | 
apply (drule sym)  | 
|
365  | 
apply (erule False_neq_True)  | 
|
366  | 
done  | 
|
| 15411 | 367  | 
|
| 60759 | 368  | 
lemma notE: "\<lbrakk>\<not> P; P\<rbrakk> \<Longrightarrow> R"  | 
| 21504 | 369  | 
apply (unfold not_def)  | 
370  | 
apply (erule mp [THEN FalseE])  | 
|
371  | 
apply assumption  | 
|
372  | 
done  | 
|
| 15411 | 373  | 
|
| 21504 | 374  | 
lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P"  | 
375  | 
by (erule notE [THEN notI]) (erule meta_mp)  | 
|
| 15411 | 376  | 
|
377  | 
||
| 60758 | 378  | 
subsubsection \<open>Implication\<close>  | 
| 15411 | 379  | 
|
380  | 
lemma impE:  | 
|
| 60759 | 381  | 
assumes "P \<longrightarrow> Q" P "Q \<Longrightarrow> R"  | 
382  | 
shows R  | 
|
| 23553 | 383  | 
by (iprover intro: assms mp)  | 
| 15411 | 384  | 
|
| 60759 | 385  | 
(* Reduces Q to P \<longrightarrow> Q, allowing substitution in P. *)  | 
386  | 
lemma rev_mp: "\<lbrakk>P; P \<longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"  | 
|
| 17589 | 387  | 
by (iprover intro: mp)  | 
| 15411 | 388  | 
|
389  | 
lemma contrapos_nn:  | 
|
| 60759 | 390  | 
assumes major: "\<not> Q"  | 
391  | 
and minor: "P \<Longrightarrow> Q"  | 
|
392  | 
shows "\<not> P"  | 
|
| 17589 | 393  | 
by (iprover intro: notI minor major [THEN notE])  | 
| 15411 | 394  | 
|
395  | 
(*not used at all, but we already have the other 3 combinations *)  | 
|
396  | 
lemma contrapos_pn:  | 
|
397  | 
assumes major: "Q"  | 
|
| 60759 | 398  | 
and minor: "P \<Longrightarrow> \<not> Q"  | 
399  | 
shows "\<not> P"  | 
|
| 17589 | 400  | 
by (iprover intro: notI minor major notE)  | 
| 15411 | 401  | 
|
| 60759 | 402  | 
lemma not_sym: "t \<noteq> s \<Longrightarrow> s \<noteq> t"  | 
| 21250 | 403  | 
by (erule contrapos_nn) (erule sym)  | 
404  | 
||
| 60759 | 405  | 
lemma eq_neq_eq_imp_neq: "\<lbrakk>x = a; a \<noteq> b; b = y\<rbrakk> \<Longrightarrow> x \<noteq> y"  | 
| 21250 | 406  | 
by (erule subst, erule ssubst, assumption)  | 
| 15411 | 407  | 
|
408  | 
||
| 60758 | 409  | 
subsubsection \<open>Existential quantifier\<close>  | 
| 15411 | 410  | 
|
| 60759 | 411  | 
lemma exI: "P x \<Longrightarrow> \<exists>x::'a. P x"  | 
| 15411 | 412  | 
apply (unfold Ex_def)  | 
| 17589 | 413  | 
apply (iprover intro: allI allE impI mp)  | 
| 15411 | 414  | 
done  | 
415  | 
||
416  | 
lemma exE:  | 
|
| 60759 | 417  | 
assumes major: "\<exists>x::'a. P x"  | 
418  | 
and minor: "\<And>x. P x \<Longrightarrow> Q"  | 
|
| 15411 | 419  | 
shows "Q"  | 
420  | 
apply (rule major [unfolded Ex_def, THEN spec, THEN mp])  | 
|
| 17589 | 421  | 
apply (iprover intro: impI [THEN allI] minor)  | 
| 15411 | 422  | 
done  | 
423  | 
||
424  | 
||
| 60758 | 425  | 
subsubsection \<open>Conjunction\<close>  | 
| 15411 | 426  | 
|
| 60759 | 427  | 
lemma conjI: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> P \<and> Q"  | 
| 15411 | 428  | 
apply (unfold and_def)  | 
| 17589 | 429  | 
apply (iprover intro: impI [THEN allI] mp)  | 
| 15411 | 430  | 
done  | 
431  | 
||
| 60759 | 432  | 
lemma conjunct1: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> P"  | 
| 15411 | 433  | 
apply (unfold and_def)  | 
| 17589 | 434  | 
apply (iprover intro: impI dest: spec mp)  | 
| 15411 | 435  | 
done  | 
436  | 
||
| 60759 | 437  | 
lemma conjunct2: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> Q"  | 
| 15411 | 438  | 
apply (unfold and_def)  | 
| 17589 | 439  | 
apply (iprover intro: impI dest: spec mp)  | 
| 15411 | 440  | 
done  | 
441  | 
||
442  | 
lemma conjE:  | 
|
| 60759 | 443  | 
assumes major: "P \<and> Q"  | 
444  | 
and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R"  | 
|
445  | 
shows R  | 
|
| 15411 | 446  | 
apply (rule minor)  | 
447  | 
apply (rule major [THEN conjunct1])  | 
|
448  | 
apply (rule major [THEN conjunct2])  | 
|
449  | 
done  | 
|
450  | 
||
451  | 
lemma context_conjI:  | 
|
| 60759 | 452  | 
assumes P "P \<Longrightarrow> Q" shows "P \<and> Q"  | 
| 23553 | 453  | 
by (iprover intro: conjI assms)  | 
| 15411 | 454  | 
|
455  | 
||
| 60758 | 456  | 
subsubsection \<open>Disjunction\<close>  | 
| 15411 | 457  | 
|
| 60759 | 458  | 
lemma disjI1: "P \<Longrightarrow> P \<or> Q"  | 
| 15411 | 459  | 
apply (unfold or_def)  | 
| 17589 | 460  | 
apply (iprover intro: allI impI mp)  | 
| 15411 | 461  | 
done  | 
462  | 
||
| 60759 | 463  | 
lemma disjI2: "Q \<Longrightarrow> P \<or> Q"  | 
| 15411 | 464  | 
apply (unfold or_def)  | 
| 17589 | 465  | 
apply (iprover intro: allI impI mp)  | 
| 15411 | 466  | 
done  | 
467  | 
||
468  | 
lemma disjE:  | 
|
| 60759 | 469  | 
assumes major: "P \<or> Q"  | 
470  | 
and minorP: "P \<Longrightarrow> R"  | 
|
471  | 
and minorQ: "Q \<Longrightarrow> R"  | 
|
472  | 
shows R  | 
|
| 17589 | 473  | 
by (iprover intro: minorP minorQ impI  | 
| 15411 | 474  | 
major [unfolded or_def, THEN spec, THEN mp, THEN mp])  | 
475  | 
||
476  | 
||
| 60758 | 477  | 
subsubsection \<open>Classical logic\<close>  | 
| 15411 | 478  | 
|
479  | 
lemma classical:  | 
|
| 60759 | 480  | 
assumes prem: "\<not> P \<Longrightarrow> P"  | 
481  | 
shows P  | 
|
| 15411 | 482  | 
apply (rule True_or_False [THEN disjE, THEN eqTrueE])  | 
483  | 
apply assumption  | 
|
484  | 
apply (rule notI [THEN prem, THEN eqTrueI])  | 
|
485  | 
apply (erule subst)  | 
|
486  | 
apply assumption  | 
|
487  | 
done  | 
|
488  | 
||
| 45607 | 489  | 
lemmas ccontr = FalseE [THEN classical]  | 
| 15411 | 490  | 
|
| 60759 | 491  | 
(*notE with premises exchanged; it discharges \<not> R so that it can be used to  | 
| 15411 | 492  | 
make elimination rules*)  | 
493  | 
lemma rev_notE:  | 
|
| 60759 | 494  | 
assumes premp: P  | 
495  | 
and premnot: "\<not> R \<Longrightarrow> \<not> P"  | 
|
496  | 
shows R  | 
|
| 15411 | 497  | 
apply (rule ccontr)  | 
498  | 
apply (erule notE [OF premnot premp])  | 
|
499  | 
done  | 
|
500  | 
||
501  | 
(*Double negation law*)  | 
|
| 60759 | 502  | 
lemma notnotD: "\<not>\<not> P \<Longrightarrow> P"  | 
| 15411 | 503  | 
apply (rule classical)  | 
504  | 
apply (erule notE)  | 
|
505  | 
apply assumption  | 
|
506  | 
done  | 
|
507  | 
||
508  | 
lemma contrapos_pp:  | 
|
| 60759 | 509  | 
assumes p1: Q  | 
510  | 
and p2: "\<not> P \<Longrightarrow> \<not> Q"  | 
|
511  | 
shows P  | 
|
| 17589 | 512  | 
by (iprover intro: classical p1 p2 notE)  | 
| 15411 | 513  | 
|
514  | 
||
| 60758 | 515  | 
subsubsection \<open>Unique existence\<close>  | 
| 15411 | 516  | 
|
517  | 
lemma ex1I:  | 
|
| 60759 | 518  | 
assumes "P a" "\<And>x. P x \<Longrightarrow> x = a"  | 
519  | 
shows "\<exists>!x. P x"  | 
|
| 23553 | 520  | 
by (unfold Ex1_def, iprover intro: assms exI conjI allI impI)  | 
| 15411 | 521  | 
|
| 60758 | 522  | 
text\<open>Sometimes easier to use: the premises have no shared variables. Safe!\<close>  | 
| 15411 | 523  | 
lemma ex_ex1I:  | 
| 60759 | 524  | 
assumes ex_prem: "\<exists>x. P x"  | 
525  | 
and eq: "\<And>x y. \<lbrakk>P x; P y\<rbrakk> \<Longrightarrow> x = y"  | 
|
526  | 
shows "\<exists>!x. P x"  | 
|
| 17589 | 527  | 
by (iprover intro: ex_prem [THEN exE] ex1I eq)  | 
| 15411 | 528  | 
|
529  | 
lemma ex1E:  | 
|
| 60759 | 530  | 
assumes major: "\<exists>!x. P x"  | 
531  | 
and minor: "\<And>x. \<lbrakk>P x; \<forall>y. P y \<longrightarrow> y = x\<rbrakk> \<Longrightarrow> R"  | 
|
532  | 
shows R  | 
|
| 15411 | 533  | 
apply (rule major [unfolded Ex1_def, THEN exE])  | 
534  | 
apply (erule conjE)  | 
|
| 17589 | 535  | 
apply (iprover intro: minor)  | 
| 15411 | 536  | 
done  | 
537  | 
||
| 60759 | 538  | 
lemma ex1_implies_ex: "\<exists>!x. P x \<Longrightarrow> \<exists>x. P x"  | 
| 15411 | 539  | 
apply (erule ex1E)  | 
540  | 
apply (rule exI)  | 
|
541  | 
apply assumption  | 
|
542  | 
done  | 
|
543  | 
||
544  | 
||
| 60758 | 545  | 
subsubsection \<open>Classical intro rules for disjunction and existential quantifiers\<close>  | 
| 15411 | 546  | 
|
547  | 
lemma disjCI:  | 
|
| 60759 | 548  | 
assumes "\<not> Q \<Longrightarrow> P" shows "P \<or> Q"  | 
| 15411 | 549  | 
apply (rule classical)  | 
| 23553 | 550  | 
apply (iprover intro: assms disjI1 disjI2 notI elim: notE)  | 
| 15411 | 551  | 
done  | 
552  | 
||
| 60759 | 553  | 
lemma excluded_middle: "\<not> P \<or> P"  | 
| 17589 | 554  | 
by (iprover intro: disjCI)  | 
| 15411 | 555  | 
|
| 60758 | 556  | 
text \<open>  | 
| 20944 | 557  | 
case distinction as a natural deduction rule.  | 
| 60759 | 558  | 
  Note that @{term "\<not> P"} is the second case, not the first
 | 
| 60758 | 559  | 
\<close>  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
560  | 
lemma case_split [case_names True False]:  | 
| 60759 | 561  | 
assumes prem1: "P \<Longrightarrow> Q"  | 
562  | 
and prem2: "\<not> P \<Longrightarrow> Q"  | 
|
563  | 
shows Q  | 
|
| 15411 | 564  | 
apply (rule excluded_middle [THEN disjE])  | 
565  | 
apply (erule prem2)  | 
|
566  | 
apply (erule prem1)  | 
|
567  | 
done  | 
|
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
568  | 
|
| 60759 | 569  | 
(*Classical implies (\<longrightarrow>) elimination. *)  | 
| 15411 | 570  | 
lemma impCE:  | 
| 60759 | 571  | 
assumes major: "P \<longrightarrow> Q"  | 
572  | 
and minor: "\<not> P \<Longrightarrow> R" "Q \<Longrightarrow> R"  | 
|
573  | 
shows R  | 
|
| 15411 | 574  | 
apply (rule excluded_middle [of P, THEN disjE])  | 
| 17589 | 575  | 
apply (iprover intro: minor major [THEN mp])+  | 
| 15411 | 576  | 
done  | 
577  | 
||
| 60759 | 578  | 
(*This version of \<longrightarrow> elimination works on Q before P. It works best for  | 
| 15411 | 579  | 
those cases in which P holds "almost everywhere". Can't install as  | 
580  | 
default: would break old proofs.*)  | 
|
581  | 
lemma impCE':  | 
|
| 60759 | 582  | 
assumes major: "P \<longrightarrow> Q"  | 
583  | 
and minor: "Q \<Longrightarrow> R" "\<not> P \<Longrightarrow> R"  | 
|
584  | 
shows R  | 
|
| 15411 | 585  | 
apply (rule excluded_middle [of P, THEN disjE])  | 
| 17589 | 586  | 
apply (iprover intro: minor major [THEN mp])+  | 
| 15411 | 587  | 
done  | 
588  | 
||
589  | 
(*Classical <-> elimination. *)  | 
|
590  | 
lemma iffCE:  | 
|
| 60759 | 591  | 
assumes major: "P = Q"  | 
592  | 
and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> R"  | 
|
593  | 
shows R  | 
|
| 15411 | 594  | 
apply (rule major [THEN iffE])  | 
| 17589 | 595  | 
apply (iprover intro: minor elim: impCE notE)  | 
| 15411 | 596  | 
done  | 
597  | 
||
598  | 
lemma exCI:  | 
|
| 60759 | 599  | 
assumes "\<forall>x. \<not> P x \<Longrightarrow> P a"  | 
600  | 
shows "\<exists>x. P x"  | 
|
| 15411 | 601  | 
apply (rule ccontr)  | 
| 23553 | 602  | 
apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"])  | 
| 15411 | 603  | 
done  | 
604  | 
||
605  | 
||
| 60758 | 606  | 
subsubsection \<open>Intuitionistic Reasoning\<close>  | 
| 12386 | 607  | 
|
608  | 
lemma impE':  | 
|
| 60759 | 609  | 
assumes 1: "P \<longrightarrow> Q"  | 
610  | 
and 2: "Q \<Longrightarrow> R"  | 
|
611  | 
and 3: "P \<longrightarrow> Q \<Longrightarrow> P"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
612  | 
shows R  | 
| 12386 | 613  | 
proof -  | 
614  | 
from 3 and 1 have P .  | 
|
615  | 
with 1 have Q by (rule impE)  | 
|
616  | 
with 2 show R .  | 
|
617  | 
qed  | 
|
618  | 
||
619  | 
lemma allE':  | 
|
| 60759 | 620  | 
assumes 1: "\<forall>x. P x"  | 
621  | 
and 2: "P x \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
622  | 
shows Q  | 
| 12386 | 623  | 
proof -  | 
624  | 
from 1 have "P x" by (rule spec)  | 
|
625  | 
from this and 1 show Q by (rule 2)  | 
|
626  | 
qed  | 
|
627  | 
||
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
628  | 
lemma notE':  | 
| 60759 | 629  | 
assumes 1: "\<not> P"  | 
630  | 
and 2: "\<not> P \<Longrightarrow> P"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
631  | 
shows R  | 
| 12386 | 632  | 
proof -  | 
633  | 
from 2 and 1 have P .  | 
|
634  | 
with 1 show R by (rule notE)  | 
|
635  | 
qed  | 
|
636  | 
||
| 60759 | 637  | 
lemma TrueE: "True \<Longrightarrow> P \<Longrightarrow> P" .  | 
638  | 
lemma notFalseE: "\<not> False \<Longrightarrow> P \<Longrightarrow> P" .  | 
|
| 
22444
 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 
dixon 
parents: 
22377 
diff
changeset
 | 
639  | 
|
| 
22467
 
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
 
dixon 
parents: 
22445 
diff
changeset
 | 
640  | 
lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE  | 
| 15801 | 641  | 
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl  | 
642  | 
and [Pure.elim 2] = allE notE' impE'  | 
|
643  | 
and [Pure.intro] = exI disjI2 disjI1  | 
|
| 12386 | 644  | 
|
645  | 
lemmas [trans] = trans  | 
|
646  | 
and [sym] = sym not_sym  | 
|
| 15801 | 647  | 
and [Pure.elim?] = iffD1 iffD2 impE  | 
| 11750 | 648  | 
|
| 
11438
 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 
wenzelm 
parents: 
11432 
diff
changeset
 | 
649  | 
|
| 60758 | 650  | 
subsubsection \<open>Atomizing meta-level connectives\<close>  | 
| 11750 | 651  | 
|
| 28513 | 652  | 
axiomatization where  | 
653  | 
eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*)  | 
|
654  | 
||
| 60759 | 655  | 
lemma atomize_all [atomize]: "(\<And>x. P x) \<equiv> Trueprop (\<forall>x. P x)"  | 
| 12003 | 656  | 
proof  | 
| 60759 | 657  | 
assume "\<And>x. P x"  | 
658  | 
then show "\<forall>x. P x" ..  | 
|
| 9488 | 659  | 
next  | 
| 60759 | 660  | 
assume "\<forall>x. P x"  | 
661  | 
then show "\<And>x. P x" by (rule allE)  | 
|
| 9488 | 662  | 
qed  | 
663  | 
||
| 60759 | 664  | 
lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)"  | 
| 12003 | 665  | 
proof  | 
| 60759 | 666  | 
assume r: "A \<Longrightarrow> B"  | 
667  | 
show "A \<longrightarrow> B" by (rule impI) (rule r)  | 
|
| 9488 | 668  | 
next  | 
| 60759 | 669  | 
assume "A \<longrightarrow> B" and A  | 
| 23553 | 670  | 
then show B by (rule mp)  | 
| 9488 | 671  | 
qed  | 
672  | 
||
| 60759 | 673  | 
lemma atomize_not: "(A \<Longrightarrow> False) \<equiv> Trueprop (\<not> A)"  | 
| 14749 | 674  | 
proof  | 
| 60759 | 675  | 
assume r: "A \<Longrightarrow> False"  | 
676  | 
show "\<not> A" by (rule notI) (rule r)  | 
|
| 14749 | 677  | 
next  | 
| 60759 | 678  | 
assume "\<not> A" and A  | 
| 23553 | 679  | 
then show False by (rule notE)  | 
| 14749 | 680  | 
qed  | 
681  | 
||
| 60759 | 682  | 
lemma atomize_eq [atomize, code]: "(x \<equiv> y) \<equiv> Trueprop (x = y)"  | 
| 12003 | 683  | 
proof  | 
| 60759 | 684  | 
assume "x \<equiv> y"  | 
685  | 
show "x = y" by (unfold \<open>x \<equiv> y\<close>) (rule refl)  | 
|
| 
10432
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
686  | 
next  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
687  | 
assume "x = y"  | 
| 60759 | 688  | 
then show "x \<equiv> y" by (rule eq_reflection)  | 
| 
10432
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
689  | 
qed  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
690  | 
|
| 60759 | 691  | 
lemma atomize_conj [atomize]: "(A &&& B) \<equiv> Trueprop (A \<and> B)"  | 
| 12003 | 692  | 
proof  | 
| 
28856
 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 
wenzelm 
parents: 
28741 
diff
changeset
 | 
693  | 
assume conj: "A &&& B"  | 
| 60759 | 694  | 
show "A \<and> B"  | 
| 19121 | 695  | 
proof (rule conjI)  | 
696  | 
from conj show A by (rule conjunctionD1)  | 
|
697  | 
from conj show B by (rule conjunctionD2)  | 
|
698  | 
qed  | 
|
| 11953 | 699  | 
next  | 
| 60759 | 700  | 
assume conj: "A \<and> B"  | 
| 
28856
 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 
wenzelm 
parents: 
28741 
diff
changeset
 | 
701  | 
show "A &&& B"  | 
| 19121 | 702  | 
proof -  | 
703  | 
from conj show A ..  | 
|
704  | 
from conj show B ..  | 
|
| 11953 | 705  | 
qed  | 
706  | 
qed  | 
|
707  | 
||
| 12386 | 708  | 
lemmas [symmetric, rulify] = atomize_all atomize_imp  | 
| 18832 | 709  | 
and [symmetric, defn] = atomize_all atomize_imp atomize_eq  | 
| 12386 | 710  | 
|
| 11750 | 711  | 
|
| 60758 | 712  | 
subsubsection \<open>Atomizing elimination rules\<close>  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
713  | 
|
| 60759 | 714  | 
lemma atomize_exL[atomize_elim]: "(\<And>x. P x \<Longrightarrow> Q) \<equiv> ((\<exists>x. P x) \<Longrightarrow> Q)"  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
715  | 
by rule iprover+  | 
| 
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
716  | 
|
| 60759 | 717  | 
lemma atomize_conjL[atomize_elim]: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (A \<and> B \<Longrightarrow> C)"  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
718  | 
by rule iprover+  | 
| 
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
719  | 
|
| 60759 | 720  | 
lemma atomize_disjL[atomize_elim]: "((A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C) \<equiv> ((A \<or> B \<Longrightarrow> C) \<Longrightarrow> C)"  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
721  | 
by rule iprover+  | 
| 
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
722  | 
|
| 60759 | 723  | 
lemma atomize_elimL[atomize_elim]: "(\<And>B. (A \<Longrightarrow> B) \<Longrightarrow> B) \<equiv> Trueprop A" ..  | 
| 
26580
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
724  | 
|
| 
 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 
krauss 
parents: 
26555 
diff
changeset
 | 
725  | 
|
| 60758 | 726  | 
subsection \<open>Package setup\<close>  | 
| 20944 | 727  | 
|
| 
51314
 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 
wenzelm 
parents: 
51304 
diff
changeset
 | 
728  | 
ML_file "Tools/hologic.ML"  | 
| 
 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 
wenzelm 
parents: 
51304 
diff
changeset
 | 
729  | 
|
| 
 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 
wenzelm 
parents: 
51304 
diff
changeset
 | 
730  | 
|
| 60758 | 731  | 
subsubsection \<open>Sledgehammer setup\<close>  | 
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
732  | 
|
| 60758 | 733  | 
text \<open>  | 
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
734  | 
Theorems blacklisted to Sledgehammer. These theorems typically produce clauses  | 
| 
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
735  | 
that are prolific (match too many equality or membership literals) and relate to  | 
| 
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
736  | 
seldom-used facts. Some duplicate other rules.  | 
| 60758 | 737  | 
\<close>  | 
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
738  | 
|
| 57963 | 739  | 
named_theorems no_atp "theorems that should be filtered out by Sledgehammer"  | 
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
740  | 
|
| 
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
741  | 
|
| 60758 | 742  | 
subsubsection \<open>Classical Reasoner setup\<close>  | 
| 9529 | 743  | 
|
| 60759 | 744  | 
lemma imp_elim: "P \<longrightarrow> Q \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"  | 
| 26411 | 745  | 
by (rule classical) iprover  | 
746  | 
||
| 60759 | 747  | 
lemma swap: "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R"  | 
| 26411 | 748  | 
by (rule classical) iprover  | 
749  | 
||
| 
62958
 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 
wenzelm 
parents: 
62913 
diff
changeset
 | 
750  | 
lemma thin_refl: "\<lbrakk>x = x; PROP W\<rbrakk> \<Longrightarrow> PROP W" .  | 
| 20944 | 751  | 
|
| 60758 | 752  | 
ML \<open>  | 
| 42799 | 753  | 
structure Hypsubst = Hypsubst  | 
754  | 
(  | 
|
| 21218 | 755  | 
val dest_eq = HOLogic.dest_eq  | 
| 21151 | 756  | 
val dest_Trueprop = HOLogic.dest_Trueprop  | 
757  | 
val dest_imp = HOLogic.dest_imp  | 
|
| 26411 | 758  | 
  val eq_reflection = @{thm eq_reflection}
 | 
759  | 
  val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
 | 
|
760  | 
  val imp_intr = @{thm impI}
 | 
|
761  | 
  val rev_mp = @{thm rev_mp}
 | 
|
762  | 
  val subst = @{thm subst}
 | 
|
763  | 
  val sym = @{thm sym}
 | 
|
| 22129 | 764  | 
  val thin_refl = @{thm thin_refl};
 | 
| 42799 | 765  | 
);  | 
| 21671 | 766  | 
open Hypsubst;  | 
| 21151 | 767  | 
|
| 42799 | 768  | 
structure Classical = Classical  | 
769  | 
(  | 
|
| 26411 | 770  | 
  val imp_elim = @{thm imp_elim}
 | 
771  | 
  val not_elim = @{thm notE}
 | 
|
772  | 
  val swap = @{thm swap}
 | 
|
773  | 
  val classical = @{thm classical}
 | 
|
| 21151 | 774  | 
val sizef = Drule.size_of_thm  | 
775  | 
val hyp_subst_tacs = [Hypsubst.hyp_subst_tac]  | 
|
| 42799 | 776  | 
);  | 
| 21151 | 777  | 
|
| 58826 | 778  | 
structure Basic_Classical: BASIC_CLASSICAL = Classical;  | 
| 
33308
 
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
 
wenzelm 
parents: 
33185 
diff
changeset
 | 
779  | 
open Basic_Classical;  | 
| 60758 | 780  | 
\<close>  | 
| 22129 | 781  | 
|
| 60758 | 782  | 
setup \<open>  | 
| 35389 | 783  | 
(*prevent substitution on bool*)  | 
| 58826 | 784  | 
let  | 
785  | 
    fun non_bool_eq (@{const_name HOL.eq}, Type (_, [T, _])) = T <> @{typ bool}
 | 
|
786  | 
| non_bool_eq _ = false;  | 
|
787  | 
fun hyp_subst_tac' ctxt =  | 
|
788  | 
SUBGOAL (fn (goal, i) =>  | 
|
789  | 
if Term.exists_Const non_bool_eq goal  | 
|
790  | 
then Hypsubst.hyp_subst_tac ctxt i  | 
|
791  | 
else no_tac);  | 
|
792  | 
in  | 
|
793  | 
Context_Rules.addSWrapper (fn ctxt => fn tac => hyp_subst_tac' ctxt ORELSE' tac)  | 
|
794  | 
end  | 
|
| 60758 | 795  | 
\<close>  | 
| 21009 | 796  | 
|
797  | 
declare iffI [intro!]  | 
|
798  | 
and notI [intro!]  | 
|
799  | 
and impI [intro!]  | 
|
800  | 
and disjCI [intro!]  | 
|
801  | 
and conjI [intro!]  | 
|
802  | 
and TrueI [intro!]  | 
|
803  | 
and refl [intro!]  | 
|
804  | 
||
805  | 
declare iffCE [elim!]  | 
|
806  | 
and FalseE [elim!]  | 
|
807  | 
and impCE [elim!]  | 
|
808  | 
and disjE [elim!]  | 
|
809  | 
and conjE [elim!]  | 
|
810  | 
||
811  | 
declare ex_ex1I [intro!]  | 
|
812  | 
and allI [intro!]  | 
|
813  | 
and exI [intro]  | 
|
814  | 
||
815  | 
declare exE [elim!]  | 
|
816  | 
allE [elim]  | 
|
817  | 
||
| 60758 | 818  | 
ML \<open>val HOL_cs = claset_of @{context}\<close>
 | 
| 19162 | 819  | 
|
| 60759 | 820  | 
lemma contrapos_np: "\<not> Q \<Longrightarrow> (\<not> P \<Longrightarrow> Q) \<Longrightarrow> P"  | 
| 20223 | 821  | 
apply (erule swap)  | 
822  | 
apply (erule (1) meta_mp)  | 
|
823  | 
done  | 
|
| 10383 | 824  | 
|
| 
18689
 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 
wenzelm 
parents: 
18595 
diff
changeset
 | 
825  | 
declare ex_ex1I [rule del, intro! 2]  | 
| 
 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 
wenzelm 
parents: 
18595 
diff
changeset
 | 
826  | 
and ex1I [intro]  | 
| 
 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 
wenzelm 
parents: 
18595 
diff
changeset
 | 
827  | 
|
| 
41865
 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 
paulson 
parents: 
41827 
diff
changeset
 | 
828  | 
declare ext [intro]  | 
| 
 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 
paulson 
parents: 
41827 
diff
changeset
 | 
829  | 
|
| 12386 | 830  | 
lemmas [intro?] = ext  | 
831  | 
and [elim?] = ex1_implies_ex  | 
|
| 11977 | 832  | 
|
| 20944 | 833  | 
(*Better then ex1E for classical reasoner: needs no quantifier duplication!*)  | 
| 20973 | 834  | 
lemma alt_ex1E [elim!]:  | 
| 20944 | 835  | 
assumes major: "\<exists>!x. P x"  | 
836  | 
and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R"  | 
|
837  | 
shows R  | 
|
838  | 
apply (rule ex1E [OF major])  | 
|
839  | 
apply (rule prem)  | 
|
| 59499 | 840  | 
apply assumption  | 
841  | 
apply (rule allI)+  | 
|
| 60758 | 842  | 
apply (tactic \<open>eresolve_tac @{context} [Classical.dup_elim @{context} @{thm allE}] 1\<close>)
 | 
| 22129 | 843  | 
apply iprover  | 
844  | 
done  | 
|
| 20944 | 845  | 
|
| 60758 | 846  | 
ML \<open>  | 
| 42477 | 847  | 
structure Blast = Blast  | 
848  | 
(  | 
|
849  | 
structure Classical = Classical  | 
|
| 42802 | 850  | 
    val Trueprop_const = dest_Const @{const Trueprop}
 | 
| 42477 | 851  | 
    val equality_name = @{const_name HOL.eq}
 | 
852  | 
    val not_name = @{const_name Not}
 | 
|
853  | 
    val notE = @{thm notE}
 | 
|
854  | 
    val ccontr = @{thm ccontr}
 | 
|
855  | 
val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac  | 
|
856  | 
);  | 
|
857  | 
val blast_tac = Blast.blast_tac;  | 
|
| 60758 | 858  | 
\<close>  | 
| 20944 | 859  | 
|
860  | 
||
| 60758 | 861  | 
subsubsection \<open>THE: definite description operator\<close>  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
862  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
863  | 
lemma the_equality [intro]:  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
864  | 
assumes "P a"  | 
| 60759 | 865  | 
and "\<And>x. P x \<Longrightarrow> x = a"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
866  | 
shows "(THE x. P x) = a"  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
867  | 
by (blast intro: assms trans [OF arg_cong [where f=The] the_eq_trivial])  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
868  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
869  | 
lemma theI:  | 
| 60759 | 870  | 
assumes "P a" and "\<And>x. P x \<Longrightarrow> x = a"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
871  | 
shows "P (THE x. P x)"  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
872  | 
by (iprover intro: assms the_equality [THEN ssubst])  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
873  | 
|
| 60759 | 874  | 
lemma theI': "\<exists>!x. P x \<Longrightarrow> P (THE x. P x)"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
875  | 
by (blast intro: theI)  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
876  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
877  | 
(*Easier to apply than theI: only one occurrence of P*)  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
878  | 
lemma theI2:  | 
| 60759 | 879  | 
assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" "\<And>x. P x \<Longrightarrow> Q x"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
880  | 
shows "Q (THE x. P x)"  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
881  | 
by (iprover intro: assms theI)  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
882  | 
|
| 60759 | 883  | 
lemma the1I2: assumes "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
884  | 
by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)]  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
885  | 
elim:allE impE)  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
886  | 
|
| 60759 | 887  | 
lemma the1_equality [elim?]: "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> (THE x. P x) = a"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
888  | 
by blast  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
889  | 
|
| 60759 | 890  | 
lemma the_sym_eq_trivial: "(THE y. x = y) = x"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
891  | 
by blast  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
892  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
59028 
diff
changeset
 | 
893  | 
|
| 60758 | 894  | 
subsubsection \<open>Simplifier\<close>  | 
| 12281 | 895  | 
|
| 60759 | 896  | 
lemma eta_contract_eq: "(\<lambda>s. f s) = f" ..  | 
| 12281 | 897  | 
|
898  | 
lemma simp_thms:  | 
|
| 60759 | 899  | 
shows not_not: "(\<not> \<not> P) = P"  | 
900  | 
and Not_eq_iff: "((\<not> P) = (\<not> Q)) = (P = Q)"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
901  | 
and  | 
| 60759 | 902  | 
"(P \<noteq> Q) = (P = (\<not> Q))"  | 
903  | 
"(P \<or> \<not>P) = True" "(\<not> P \<or> P) = True"  | 
|
| 12281 | 904  | 
"(x = x) = True"  | 
| 32068 | 905  | 
and not_True_eq_False [code]: "(\<not> True) = False"  | 
906  | 
and not_False_eq_True [code]: "(\<not> False) = True"  | 
|
| 20944 | 907  | 
and  | 
| 60759 | 908  | 
"(\<not> P) \<noteq> P" "P \<noteq> (\<not> P)"  | 
909  | 
"(True = P) = P"  | 
|
| 20944 | 910  | 
and eq_True: "(P = True) = P"  | 
| 60759 | 911  | 
and "(False = P) = (\<not> P)"  | 
| 20944 | 912  | 
and eq_False: "(P = False) = (\<not> P)"  | 
913  | 
and  | 
|
| 60759 | 914  | 
"(True \<longrightarrow> P) = P" "(False \<longrightarrow> P) = True"  | 
915  | 
"(P \<longrightarrow> True) = True" "(P \<longrightarrow> P) = True"  | 
|
916  | 
"(P \<longrightarrow> False) = (\<not> P)" "(P \<longrightarrow> \<not> P) = (\<not> P)"  | 
|
917  | 
"(P \<and> True) = P" "(True \<and> P) = P"  | 
|
918  | 
"(P \<and> False) = False" "(False \<and> P) = False"  | 
|
919  | 
"(P \<and> P) = P" "(P \<and> (P \<and> Q)) = (P \<and> Q)"  | 
|
920  | 
"(P \<and> \<not> P) = False" "(\<not> P \<and> P) = False"  | 
|
921  | 
"(P \<or> True) = True" "(True \<or> P) = True"  | 
|
922  | 
"(P \<or> False) = P" "(False \<or> P) = P"  | 
|
923  | 
"(P \<or> P) = P" "(P \<or> (P \<or> Q)) = (P \<or> Q)" and  | 
|
924  | 
"(\<forall>x. P) = P" "(\<exists>x. P) = P" "\<exists>x. x = t" "\<exists>x. t = x"  | 
|
| 
31166
 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 
nipkow 
parents: 
31156 
diff
changeset
 | 
925  | 
and  | 
| 60759 | 926  | 
"\<And>P. (\<exists>x. x = t \<and> P x) = P t"  | 
927  | 
"\<And>P. (\<exists>x. t = x \<and> P x) = P t"  | 
|
928  | 
"\<And>P. (\<forall>x. x = t \<longrightarrow> P x) = P t"  | 
|
929  | 
"\<And>P. (\<forall>x. t = x \<longrightarrow> P x) = P t"  | 
|
| 17589 | 930  | 
by (blast, blast, blast, blast, blast, iprover+)  | 
| 13421 | 931  | 
|
| 60759 | 932  | 
lemma disj_absorb: "(A \<or> A) = A"  | 
| 14201 | 933  | 
by blast  | 
934  | 
||
| 60759 | 935  | 
lemma disj_left_absorb: "(A \<or> (A \<or> B)) = (A \<or> B)"  | 
| 14201 | 936  | 
by blast  | 
937  | 
||
| 60759 | 938  | 
lemma conj_absorb: "(A \<and> A) = A"  | 
| 14201 | 939  | 
by blast  | 
940  | 
||
| 60759 | 941  | 
lemma conj_left_absorb: "(A \<and> (A \<and> B)) = (A \<and> B)"  | 
| 14201 | 942  | 
by blast  | 
943  | 
||
| 12281 | 944  | 
lemma eq_ac:  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56941 
diff
changeset
 | 
945  | 
shows eq_commute: "a = b \<longleftrightarrow> b = a"  | 
| 
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56941 
diff
changeset
 | 
946  | 
and iff_left_commute: "(P \<longleftrightarrow> (Q \<longleftrightarrow> R)) \<longleftrightarrow> (Q \<longleftrightarrow> (P \<longleftrightarrow> R))"  | 
| 
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56941 
diff
changeset
 | 
947  | 
and iff_assoc: "((P \<longleftrightarrow> Q) \<longleftrightarrow> R) \<longleftrightarrow> (P \<longleftrightarrow> (Q \<longleftrightarrow> R))" by (iprover, blast+)  | 
| 
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
56941 
diff
changeset
 | 
948  | 
lemma neq_commute: "a \<noteq> b \<longleftrightarrow> b \<noteq> a" by iprover  | 
| 12281 | 949  | 
|
950  | 
lemma conj_comms:  | 
|
| 60759 | 951  | 
shows conj_commute: "(P \<and> Q) = (Q \<and> P)"  | 
952  | 
and conj_left_commute: "(P \<and> (Q \<and> R)) = (Q \<and> (P \<and> R))" by iprover+  | 
|
953  | 
lemma conj_assoc: "((P \<and> Q) \<and> R) = (P \<and> (Q \<and> R))" by iprover  | 
|
| 12281 | 954  | 
|
| 19174 | 955  | 
lemmas conj_ac = conj_commute conj_left_commute conj_assoc  | 
956  | 
||
| 12281 | 957  | 
lemma disj_comms:  | 
| 60759 | 958  | 
shows disj_commute: "(P \<or> Q) = (Q \<or> P)"  | 
959  | 
and disj_left_commute: "(P \<or> (Q \<or> R)) = (Q \<or> (P \<or> R))" by iprover+  | 
|
960  | 
lemma disj_assoc: "((P \<or> Q) \<or> R) = (P \<or> (Q \<or> R))" by iprover  | 
|
| 12281 | 961  | 
|
| 19174 | 962  | 
lemmas disj_ac = disj_commute disj_left_commute disj_assoc  | 
963  | 
||
| 60759 | 964  | 
lemma conj_disj_distribL: "(P \<and> (Q \<or> R)) = (P \<and> Q \<or> P \<and> R)" by iprover  | 
965  | 
lemma conj_disj_distribR: "((P \<or> Q) \<and> R) = (P \<and> R \<or> Q \<and> R)" by iprover  | 
|
| 12281 | 966  | 
|
| 60759 | 967  | 
lemma disj_conj_distribL: "(P \<or> (Q \<and> R)) = ((P \<or> Q) \<and> (P \<or> R))" by iprover  | 
968  | 
lemma disj_conj_distribR: "((P \<and> Q) \<or> R) = ((P \<or> R) \<and> (Q \<or> R))" by iprover  | 
|
| 12281 | 969  | 
|
| 60759 | 970  | 
lemma imp_conjR: "(P \<longrightarrow> (Q \<and> R)) = ((P \<longrightarrow> Q) \<and> (P \<longrightarrow> R))" by iprover  | 
971  | 
lemma imp_conjL: "((P \<and> Q) \<longrightarrow> R) = (P \<longrightarrow> (Q \<longrightarrow> R))" by iprover  | 
|
972  | 
lemma imp_disjL: "((P \<or> Q) \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))" by iprover  | 
|
| 12281 | 973  | 
|
| 61799 | 974  | 
text \<open>These two are specialized, but \<open>imp_disj_not1\<close> is useful in \<open>Auth/Yahalom\<close>.\<close>  | 
| 60759 | 975  | 
lemma imp_disj_not1: "(P \<longrightarrow> Q \<or> R) = (\<not> Q \<longrightarrow> P \<longrightarrow> R)" by blast  | 
976  | 
lemma imp_disj_not2: "(P \<longrightarrow> Q \<or> R) = (\<not> R \<longrightarrow> P \<longrightarrow> Q)" by blast  | 
|
| 12281 | 977  | 
|
| 60759 | 978  | 
lemma imp_disj1: "((P \<longrightarrow> Q) \<or> R) = (P \<longrightarrow> Q \<or> R)" by blast  | 
979  | 
lemma imp_disj2: "(Q \<or> (P \<longrightarrow> R)) = (P \<longrightarrow> Q \<or> R)" by blast  | 
|
| 12281 | 980  | 
|
| 60759 | 981  | 
lemma imp_cong: "(P = P') \<Longrightarrow> (P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<longrightarrow> Q) = (P' \<longrightarrow> Q'))"  | 
| 21151 | 982  | 
by iprover  | 
983  | 
||
| 60759 | 984  | 
lemma de_Morgan_disj: "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not> Q)" by iprover  | 
985  | 
lemma de_Morgan_conj: "(\<not> (P \<and> Q)) = (\<not> P \<or> \<not> Q)" by blast  | 
|
986  | 
lemma not_imp: "(\<not> (P \<longrightarrow> Q)) = (P \<and> \<not> Q)" by blast  | 
|
987  | 
lemma not_iff: "(P \<noteq> Q) = (P = (\<not> Q))" by blast  | 
|
988  | 
lemma disj_not1: "(\<not> P \<or> Q) = (P \<longrightarrow> Q)" by blast  | 
|
| 61799 | 989  | 
lemma disj_not2: "(P \<or> \<not> Q) = (Q \<longrightarrow> P)" \<comment> \<open>changes orientation :-(\<close>  | 
| 12281 | 990  | 
by blast  | 
| 60759 | 991  | 
lemma imp_conv_disj: "(P \<longrightarrow> Q) = ((\<not> P) \<or> Q)" by blast  | 
| 12281 | 992  | 
|
| 60759 | 993  | 
lemma iff_conv_conj_imp: "(P = Q) = ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P))" by iprover  | 
| 12281 | 994  | 
|
995  | 
||
| 60759 | 996  | 
lemma cases_simp: "((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q)) = Q"  | 
| 62390 | 997  | 
\<comment> \<open>Avoids duplication of subgoals after \<open>if_split\<close>, when the true and false\<close>  | 
| 61799 | 998  | 
\<comment> \<open>cases boil down to the same thing.\<close>  | 
| 12281 | 999  | 
by blast  | 
1000  | 
||
| 60759 | 1001  | 
lemma not_all: "(\<not> (\<forall>x. P x)) = (\<exists>x. \<not> P x)" by blast  | 
1002  | 
lemma imp_all: "((\<forall>x. P x) \<longrightarrow> Q) = (\<exists>x. P x \<longrightarrow> Q)" by blast  | 
|
1003  | 
lemma not_ex: "(\<not> (\<exists>x. P x)) = (\<forall>x. \<not> P x)" by iprover  | 
|
1004  | 
lemma imp_ex: "((\<exists>x. P x) \<longrightarrow> Q) = (\<forall>x. P x \<longrightarrow> Q)" by iprover  | 
|
1005  | 
lemma all_not_ex: "(\<forall>x. P x) = (\<not> (\<exists>x. \<not> P x ))" by blast  | 
|
| 12281 | 1006  | 
|
| 
35828
 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 
blanchet 
parents: 
35808 
diff
changeset
 | 
1007  | 
declare All_def [no_atp]  | 
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
24280 
diff
changeset
 | 
1008  | 
|
| 60759 | 1009  | 
lemma ex_disj_distrib: "(\<exists>x. P x \<or> Q x) = ((\<exists>x. P x) \<or> (\<exists>x. Q x))" by iprover  | 
1010  | 
lemma all_conj_distrib: "(\<forall>x. P x \<and> Q x) = ((\<forall>x. P x) \<and> (\<forall>x. Q x))" by iprover  | 
|
| 12281 | 1011  | 
|
| 60758 | 1012  | 
text \<open>  | 
| 61799 | 1013  | 
\medskip The \<open>\<and>\<close> congruence rule: not included by default!  | 
| 60758 | 1014  | 
May slow rewrite proofs down by as much as 50\%\<close>  | 
| 12281 | 1015  | 
|
1016  | 
lemma conj_cong:  | 
|
| 60759 | 1017  | 
"(P = P') \<Longrightarrow> (P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<and> Q) = (P' \<and> Q'))"  | 
| 17589 | 1018  | 
by iprover  | 
| 12281 | 1019  | 
|
1020  | 
lemma rev_conj_cong:  | 
|
| 60759 | 1021  | 
"(Q = Q') \<Longrightarrow> (Q' \<Longrightarrow> (P = P')) \<Longrightarrow> ((P \<and> Q) = (P' \<and> Q'))"  | 
| 17589 | 1022  | 
by iprover  | 
| 12281 | 1023  | 
|
| 61799 | 1024  | 
text \<open>The \<open>|\<close> congruence rule: not included by default!\<close>  | 
| 12281 | 1025  | 
|
1026  | 
lemma disj_cong:  | 
|
| 60759 | 1027  | 
"(P = P') \<Longrightarrow> (\<not> P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<or> Q) = (P' \<or> Q'))"  | 
| 12281 | 1028  | 
by blast  | 
1029  | 
||
1030  | 
||
| 60758 | 1031  | 
text \<open>\medskip if-then-else rules\<close>  | 
| 12281 | 1032  | 
|
| 32068 | 1033  | 
lemma if_True [code]: "(if True then x else y) = x"  | 
| 38525 | 1034  | 
by (unfold If_def) blast  | 
| 12281 | 1035  | 
|
| 32068 | 1036  | 
lemma if_False [code]: "(if False then x else y) = y"  | 
| 38525 | 1037  | 
by (unfold If_def) blast  | 
| 12281 | 1038  | 
|
| 60759 | 1039  | 
lemma if_P: "P \<Longrightarrow> (if P then x else y) = x"  | 
| 38525 | 1040  | 
by (unfold If_def) blast  | 
| 12281 | 1041  | 
|
| 60759 | 1042  | 
lemma if_not_P: "\<not> P \<Longrightarrow> (if P then x else y) = y"  | 
| 38525 | 1043  | 
by (unfold If_def) blast  | 
| 12281 | 1044  | 
|
| 62390 | 1045  | 
lemma if_split: "P (if Q then x else y) = ((Q \<longrightarrow> P x) \<and> (\<not> Q \<longrightarrow> P y))"  | 
| 12281 | 1046  | 
apply (rule case_split [of Q])  | 
| 15481 | 1047  | 
apply (simplesubst if_P)  | 
1048  | 
prefer 3 apply (simplesubst if_not_P, blast+)  | 
|
| 12281 | 1049  | 
done  | 
1050  | 
||
| 62390 | 1051  | 
lemma if_split_asm: "P (if Q then x else y) = (\<not> ((Q \<and> \<not> P x) \<or> (\<not> Q \<and> \<not> P y)))"  | 
1052  | 
by (simplesubst if_split, blast)  | 
|
| 12281 | 1053  | 
|
| 62390 | 1054  | 
lemmas if_splits [no_atp] = if_split if_split_asm  | 
| 12281 | 1055  | 
|
1056  | 
lemma if_cancel: "(if c then x else x) = x"  | 
|
| 62390 | 1057  | 
by (simplesubst if_split, blast)  | 
| 12281 | 1058  | 
|
1059  | 
lemma if_eq_cancel: "(if x = y then y else x) = x"  | 
|
| 62390 | 1060  | 
by (simplesubst if_split, blast)  | 
| 12281 | 1061  | 
|
| 60759 | 1062  | 
lemma if_bool_eq_conj: "(if P then Q else R) = ((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R))"  | 
| 61799 | 1063  | 
\<comment> \<open>This form is useful for expanding \<open>if\<close>s on the RIGHT of the \<open>\<Longrightarrow>\<close> symbol.\<close>  | 
| 62390 | 1064  | 
by (rule if_split)  | 
| 12281 | 1065  | 
|
| 60759 | 1066  | 
lemma if_bool_eq_disj: "(if P then Q else R) = ((P \<and> Q) \<or> (\<not> P \<and> R))"  | 
| 61799 | 1067  | 
\<comment> \<open>And this form is useful for expanding \<open>if\<close>s on the LEFT.\<close>  | 
| 62390 | 1068  | 
by (simplesubst if_split) blast  | 
| 12281 | 1069  | 
|
| 60759 | 1070  | 
lemma Eq_TrueI: "P \<Longrightarrow> P \<equiv> True" by (unfold atomize_eq) iprover  | 
1071  | 
lemma Eq_FalseI: "\<not> P \<Longrightarrow> P \<equiv> False" by (unfold atomize_eq) iprover  | 
|
| 12281 | 1072  | 
|
| 60758 | 1073  | 
text \<open>\medskip let rules for simproc\<close>  | 
| 15423 | 1074  | 
|
| 60759 | 1075  | 
lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g"  | 
| 15423 | 1076  | 
by (unfold Let_def)  | 
1077  | 
||
| 60759 | 1078  | 
lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g"  | 
| 15423 | 1079  | 
by (unfold Let_def)  | 
1080  | 
||
| 60758 | 1081  | 
text \<open>  | 
| 16999 | 1082  | 
The following copy of the implication operator is useful for  | 
1083  | 
fine-tuning congruence rules. It instructs the simplifier to simplify  | 
|
1084  | 
its premise.  | 
|
| 60758 | 1085  | 
\<close>  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1086  | 
|
| 60759 | 1087  | 
definition simp_implies :: "[prop, prop] \<Rightarrow> prop" (infixr "=simp=>" 1) where  | 
1088  | 
"simp_implies \<equiv> op \<Longrightarrow>"  | 
|
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1089  | 
|
| 18457 | 1090  | 
lemma simp_impliesI:  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1091  | 
assumes PQ: "(PROP P \<Longrightarrow> PROP Q)"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1092  | 
shows "PROP P =simp=> PROP Q"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1093  | 
apply (unfold simp_implies_def)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1094  | 
apply (rule PQ)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1095  | 
apply assumption  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1096  | 
done  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1097  | 
|
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1098  | 
lemma simp_impliesE:  | 
| 25388 | 1099  | 
assumes PQ: "PROP P =simp=> PROP Q"  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1100  | 
and P: "PROP P"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1101  | 
and QR: "PROP Q \<Longrightarrow> PROP R"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1102  | 
shows "PROP R"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1103  | 
apply (rule QR)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1104  | 
apply (rule PQ [unfolded simp_implies_def])  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1105  | 
apply (rule P)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1106  | 
done  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1107  | 
|
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1108  | 
lemma simp_implies_cong:  | 
| 60759 | 1109  | 
assumes PP' :"PROP P \<equiv> PROP P'"  | 
1110  | 
and P'QQ': "PROP P' \<Longrightarrow> (PROP Q \<equiv> PROP Q')"  | 
|
1111  | 
shows "(PROP P =simp=> PROP Q) \<equiv> (PROP P' =simp=> PROP Q')"  | 
|
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1112  | 
proof (unfold simp_implies_def, rule equal_intr_rule)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1113  | 
assume PQ: "PROP P \<Longrightarrow> PROP Q"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1114  | 
and P': "PROP P'"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1115  | 
from PP' [symmetric] and P' have "PROP P"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1116  | 
by (rule equal_elim_rule1)  | 
| 23553 | 1117  | 
then have "PROP Q" by (rule PQ)  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1118  | 
with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1119  | 
next  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1120  | 
assume P'Q': "PROP P' \<Longrightarrow> PROP Q'"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1121  | 
and P: "PROP P"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1122  | 
from PP' and P have P': "PROP P'" by (rule equal_elim_rule1)  | 
| 23553 | 1123  | 
then have "PROP Q'" by (rule P'Q')  | 
| 
16633
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1124  | 
with P'QQ' [OF P', symmetric] show "PROP Q"  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1125  | 
by (rule equal_elim_rule1)  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1126  | 
qed  | 
| 
 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 
berghofe 
parents: 
16587 
diff
changeset
 | 
1127  | 
|
| 20944 | 1128  | 
lemma uncurry:  | 
1129  | 
assumes "P \<longrightarrow> Q \<longrightarrow> R"  | 
|
1130  | 
shows "P \<and> Q \<longrightarrow> R"  | 
|
| 23553 | 1131  | 
using assms by blast  | 
| 20944 | 1132  | 
|
1133  | 
lemma iff_allI:  | 
|
1134  | 
assumes "\<And>x. P x = Q x"  | 
|
1135  | 
shows "(\<forall>x. P x) = (\<forall>x. Q x)"  | 
|
| 23553 | 1136  | 
using assms by blast  | 
| 20944 | 1137  | 
|
1138  | 
lemma iff_exI:  | 
|
1139  | 
assumes "\<And>x. P x = Q x"  | 
|
1140  | 
shows "(\<exists>x. P x) = (\<exists>x. Q x)"  | 
|
| 23553 | 1141  | 
using assms by blast  | 
| 20944 | 1142  | 
|
1143  | 
lemma all_comm:  | 
|
1144  | 
"(\<forall>x y. P x y) = (\<forall>y x. P x y)"  | 
|
1145  | 
by blast  | 
|
1146  | 
||
1147  | 
lemma ex_comm:  | 
|
1148  | 
"(\<exists>x y. P x y) = (\<exists>y x. P x y)"  | 
|
1149  | 
by blast  | 
|
1150  | 
||
| 48891 | 1151  | 
ML_file "Tools/simpdata.ML"  | 
| 60758 | 1152  | 
ML \<open>open Simpdata\<close>  | 
| 42455 | 1153  | 
|
| 60758 | 1154  | 
setup \<open>  | 
| 58826 | 1155  | 
map_theory_simpset (put_simpset HOL_basic_ss) #>  | 
1156  | 
Simplifier.method_setup Splitter.split_modifiers  | 
|
| 60758 | 1157  | 
\<close>  | 
| 42455 | 1158  | 
|
| 60759 | 1159  | 
simproc_setup defined_Ex ("\<exists>x. P x") = \<open>fn _ => Quantifier1.rearrange_ex\<close>
 | 
1160  | 
simproc_setup defined_All ("\<forall>x. P x") = \<open>fn _ => Quantifier1.rearrange_all\<close>
 | 
|
| 21671 | 1161  | 
|
| 61799 | 1162  | 
text \<open>Simproc for proving \<open>(y = x) \<equiv> False\<close> from premise \<open>\<not> (x = y)\<close>:\<close>  | 
| 24035 | 1163  | 
|
| 60758 | 1164  | 
simproc_setup neq ("x = y") = \<open>fn _ =>
 | 
| 24035 | 1165  | 
let  | 
1166  | 
  val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | 
|
1167  | 
fun is_neq eq lhs rhs thm =  | 
|
1168  | 
(case Thm.prop_of thm of  | 
|
1169  | 
_ $ (Not $ (eq' $ l' $ r')) =>  | 
|
1170  | 
Not = HOLogic.Not andalso eq' = eq andalso  | 
|
1171  | 
r' aconv lhs andalso l' aconv rhs  | 
|
1172  | 
| _ => false);  | 
|
1173  | 
fun proc ss ct =  | 
|
1174  | 
(case Thm.term_of ct of  | 
|
1175  | 
eq $ lhs $ rhs =>  | 
|
| 43597 | 1176  | 
(case find_first (is_neq eq lhs rhs) (Simplifier.prems_of ss) of  | 
| 24035 | 1177  | 
SOME thm => SOME (thm RS neq_to_EQ_False)  | 
1178  | 
| NONE => NONE)  | 
|
1179  | 
| _ => NONE);  | 
|
1180  | 
in proc end;  | 
|
| 60758 | 1181  | 
\<close>  | 
| 24035 | 1182  | 
|
| 60758 | 1183  | 
simproc_setup let_simp ("Let x f") = \<open>
 | 
| 24035 | 1184  | 
let  | 
| 28741 | 1185  | 
fun count_loose (Bound i) k = if i >= k then 1 else 0  | 
1186  | 
| count_loose (s $ t) k = count_loose s k + count_loose t k  | 
|
1187  | 
| count_loose (Abs (_, _, t)) k = count_loose t (k + 1)  | 
|
1188  | 
| count_loose _ _ = 0;  | 
|
1189  | 
  fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) =
 | 
|
| 59628 | 1190  | 
(case t of  | 
1191  | 
Abs (_, _, t') => count_loose t' 0 <= 1  | 
|
1192  | 
| _ => true);  | 
|
1193  | 
in  | 
|
1194  | 
fn _ => fn ctxt => fn ct =>  | 
|
1195  | 
if is_trivial_let (Thm.term_of ct)  | 
|
1196  | 
    then SOME @{thm Let_def} (*no or one ocurrence of bound variable*)
 | 
|
1197  | 
else  | 
|
1198  | 
let (*Norbert Schirmer's case*)  | 
|
1199  | 
val t = Thm.term_of ct;  | 
|
1200  | 
val ([t'], ctxt') = Variable.import_terms false [t] ctxt;  | 
|
1201  | 
in  | 
|
1202  | 
Option.map (hd o Variable.export ctxt' ctxt o single)  | 
|
1203  | 
          (case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *)
 | 
|
1204  | 
if is_Free x orelse is_Bound x orelse is_Const x  | 
|
1205  | 
            then SOME @{thm Let_def}
 | 
|
1206  | 
else  | 
|
1207  | 
let  | 
|
1208  | 
val n = case f of (Abs (x, _, _)) => x | _ => "x";  | 
|
1209  | 
val cx = Thm.cterm_of ctxt x;  | 
|
1210  | 
val xT = Thm.typ_of_cterm cx;  | 
|
1211  | 
val cf = Thm.cterm_of ctxt f;  | 
|
1212  | 
val fx_g = Simplifier.rewrite ctxt (Thm.apply cf cx);  | 
|
1213  | 
val (_ $ _ $ g) = Thm.prop_of fx_g;  | 
|
1214  | 
val g' = abstract_over (x, g);  | 
|
1215  | 
val abs_g'= Abs (n, xT, g');  | 
|
1216  | 
in  | 
|
1217  | 
if g aconv g' then  | 
|
1218  | 
let  | 
|
1219  | 
val rl =  | 
|
| 60781 | 1220  | 
                      infer_instantiate ctxt [(("f", 0), cf), (("x", 0), cx)] @{thm Let_unfold};
 | 
| 59628 | 1221  | 
in SOME (rl OF [fx_g]) end  | 
1222  | 
else if (Envir.beta_eta_contract f) aconv (Envir.beta_eta_contract abs_g')  | 
|
1223  | 
then NONE (*avoid identity conversion*)  | 
|
1224  | 
else  | 
|
1225  | 
let  | 
|
1226  | 
val g'x = abs_g' $ x;  | 
|
1227  | 
val g_g'x = Thm.symmetric (Thm.beta_conversion false (Thm.cterm_of ctxt g'x));  | 
|
1228  | 
val rl =  | 
|
| 60781 | 1229  | 
                      @{thm Let_folded} |> infer_instantiate ctxt
 | 
1230  | 
                        [(("f", 0), Thm.cterm_of ctxt f),
 | 
|
1231  | 
                         (("x", 0), cx),
 | 
|
1232  | 
                         (("g", 0), Thm.cterm_of ctxt abs_g')];
 | 
|
| 59628 | 1233  | 
in SOME (rl OF [Thm.transitive fx_g g_g'x]) end  | 
1234  | 
end  | 
|
1235  | 
| _ => NONE)  | 
|
1236  | 
end  | 
|
| 60758 | 1237  | 
end\<close>  | 
| 24035 | 1238  | 
|
| 21151 | 1239  | 
lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"  | 
1240  | 
proof  | 
|
| 23389 | 1241  | 
assume "True \<Longrightarrow> PROP P"  | 
1242  | 
from this [OF TrueI] show "PROP P" .  | 
|
| 21151 | 1243  | 
next  | 
1244  | 
assume "PROP P"  | 
|
| 23389 | 1245  | 
then show "PROP P" .  | 
| 21151 | 1246  | 
qed  | 
1247  | 
||
| 59864 | 1248  | 
lemma implies_True_equals: "(PROP P \<Longrightarrow> True) \<equiv> Trueprop True"  | 
| 61169 | 1249  | 
by standard (intro TrueI)  | 
| 59864 | 1250  | 
|
1251  | 
lemma False_implies_equals: "(False \<Longrightarrow> P) \<equiv> Trueprop True"  | 
|
| 61169 | 1252  | 
by standard simp_all  | 
| 59864 | 1253  | 
|
| 
60183
 
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
 
nipkow 
parents: 
60169 
diff
changeset
 | 
1254  | 
(* This is not made a simp rule because it does not improve any proofs  | 
| 
 
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
 
nipkow 
parents: 
60169 
diff
changeset
 | 
1255  | 
but slows some AFP entries down by 5% (cpu time). May 2015 *)  | 
| 
60169
 
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
 
nipkow 
parents: 
60151 
diff
changeset
 | 
1256  | 
lemma implies_False_swap: "NO_MATCH (Trueprop False) P \<Longrightarrow>  | 
| 
 
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
 
nipkow 
parents: 
60151 
diff
changeset
 | 
1257  | 
(False \<Longrightarrow> PROP P \<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow> False \<Longrightarrow> PROP Q)"  | 
| 
 
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
 
nipkow 
parents: 
60151 
diff
changeset
 | 
1258  | 
by(rule swap_prems_eq)  | 
| 
 
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
 
nipkow 
parents: 
60151 
diff
changeset
 | 
1259  | 
|
| 21151 | 1260  | 
lemma ex_simps:  | 
| 60759 | 1261  | 
"\<And>P Q. (\<exists>x. P x \<and> Q) = ((\<exists>x. P x) \<and> Q)"  | 
1262  | 
"\<And>P Q. (\<exists>x. P \<and> Q x) = (P \<and> (\<exists>x. Q x))"  | 
|
1263  | 
"\<And>P Q. (\<exists>x. P x \<or> Q) = ((\<exists>x. P x) \<or> Q)"  | 
|
1264  | 
"\<And>P Q. (\<exists>x. P \<or> Q x) = (P \<or> (\<exists>x. Q x))"  | 
|
1265  | 
"\<And>P Q. (\<exists>x. P x \<longrightarrow> Q) = ((\<forall>x. P x) \<longrightarrow> Q)"  | 
|
1266  | 
"\<And>P Q. (\<exists>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<exists>x. Q x))"  | 
|
| 61799 | 1267  | 
\<comment> \<open>Miniscoping: pushing in existential quantifiers.\<close>  | 
| 21151 | 1268  | 
by (iprover | blast)+  | 
1269  | 
||
1270  | 
lemma all_simps:  | 
|
| 60759 | 1271  | 
"\<And>P Q. (\<forall>x. P x \<and> Q) = ((\<forall>x. P x) \<and> Q)"  | 
1272  | 
"\<And>P Q. (\<forall>x. P \<and> Q x) = (P \<and> (\<forall>x. Q x))"  | 
|
1273  | 
"\<And>P Q. (\<forall>x. P x \<or> Q) = ((\<forall>x. P x) \<or> Q)"  | 
|
1274  | 
"\<And>P Q. (\<forall>x. P \<or> Q x) = (P \<or> (\<forall>x. Q x))"  | 
|
1275  | 
"\<And>P Q. (\<forall>x. P x \<longrightarrow> Q) = ((\<exists>x. P x) \<longrightarrow> Q)"  | 
|
1276  | 
"\<And>P Q. (\<forall>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<forall>x. Q x))"  | 
|
| 61799 | 1277  | 
\<comment> \<open>Miniscoping: pushing in universal quantifiers.\<close>  | 
| 21151 | 1278  | 
by (iprover | blast)+  | 
| 15481 | 1279  | 
|
| 21671 | 1280  | 
lemmas [simp] =  | 
1281  | 
triv_forall_equality (*prunes params*)  | 
|
| 60143 | 1282  | 
True_implies_equals implies_True_equals (*prune True in asms*)  | 
| 
60183
 
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
 
nipkow 
parents: 
60169 
diff
changeset
 | 
1283  | 
False_implies_equals (*prune False in asms*)  | 
| 21671 | 1284  | 
if_True  | 
1285  | 
if_False  | 
|
1286  | 
if_cancel  | 
|
1287  | 
if_eq_cancel  | 
|
1288  | 
imp_disjL  | 
|
| 20973 | 1289  | 
(*In general it seems wrong to add distributive laws by default: they  | 
1290  | 
might cause exponential blow-up. But imp_disjL has been in for a while  | 
|
1291  | 
and cannot be removed without affecting existing proofs. Moreover,  | 
|
| 60759 | 1292  | 
rewriting by "(P \<or> Q \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))" might be justified on the  | 
| 20973 | 1293  | 
grounds that it allows simplification of R in the two cases.*)  | 
| 21671 | 1294  | 
conj_assoc  | 
1295  | 
disj_assoc  | 
|
1296  | 
de_Morgan_conj  | 
|
1297  | 
de_Morgan_disj  | 
|
1298  | 
imp_disj1  | 
|
1299  | 
imp_disj2  | 
|
1300  | 
not_imp  | 
|
1301  | 
disj_not1  | 
|
1302  | 
not_all  | 
|
1303  | 
not_ex  | 
|
1304  | 
cases_simp  | 
|
1305  | 
the_eq_trivial  | 
|
1306  | 
the_sym_eq_trivial  | 
|
1307  | 
ex_simps  | 
|
1308  | 
all_simps  | 
|
1309  | 
simp_thms  | 
|
1310  | 
||
1311  | 
lemmas [cong] = imp_cong simp_implies_cong  | 
|
| 62390 | 1312  | 
lemmas [split] = if_split  | 
| 20973 | 1313  | 
|
| 60758 | 1314  | 
ML \<open>val HOL_ss = simpset_of @{context}\<close>
 | 
| 20973 | 1315  | 
|
| 60761 | 1316  | 
text \<open>Simplifies @{term x} assuming @{prop c} and @{term y} assuming @{prop "\<not> c"}\<close>
 | 
| 20944 | 1317  | 
lemma if_cong:  | 
1318  | 
assumes "b = c"  | 
|
1319  | 
and "c \<Longrightarrow> x = u"  | 
|
1320  | 
and "\<not> c \<Longrightarrow> y = v"  | 
|
1321  | 
shows "(if b then x else y) = (if c then u else v)"  | 
|
| 38525 | 1322  | 
using assms by simp  | 
| 20944 | 1323  | 
|
| 60758 | 1324  | 
text \<open>Prevents simplification of x and y:  | 
1325  | 
faster and allows the execution of functional programs.\<close>  | 
|
| 20944 | 1326  | 
lemma if_weak_cong [cong]:  | 
1327  | 
assumes "b = c"  | 
|
1328  | 
shows "(if b then x else y) = (if c then x else y)"  | 
|
| 23553 | 1329  | 
using assms by (rule arg_cong)  | 
| 20944 | 1330  | 
|
| 60758 | 1331  | 
text \<open>Prevents simplification of t: much faster\<close>  | 
| 20944 | 1332  | 
lemma let_weak_cong:  | 
1333  | 
assumes "a = b"  | 
|
1334  | 
shows "(let x = a in t x) = (let x = b in t x)"  | 
|
| 23553 | 1335  | 
using assms by (rule arg_cong)  | 
| 20944 | 1336  | 
|
| 60758 | 1337  | 
text \<open>To tidy up the result of a simproc. Only the RHS will be simplified.\<close>  | 
| 20944 | 1338  | 
lemma eq_cong2:  | 
1339  | 
assumes "u = u'"  | 
|
1340  | 
shows "(t \<equiv> u) \<equiv> (t \<equiv> u')"  | 
|
| 23553 | 1341  | 
using assms by simp  | 
| 20944 | 1342  | 
|
1343  | 
lemma if_distrib:  | 
|
1344  | 
"f (if c then x else y) = (if c then f x else f y)"  | 
|
1345  | 
by simp  | 
|
1346  | 
||
| 60758 | 1347  | 
text\<open>As a simplification rule, it replaces all function equalities by  | 
1348  | 
first-order equalities.\<close>  | 
|
| 
44277
 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 
haftmann 
parents: 
44121 
diff
changeset
 | 
1349  | 
lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"  | 
| 
 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 
haftmann 
parents: 
44121 
diff
changeset
 | 
1350  | 
by auto  | 
| 
 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 
haftmann 
parents: 
44121 
diff
changeset
 | 
1351  | 
|
| 17459 | 1352  | 
|
| 60758 | 1353  | 
subsubsection \<open>Generic cases and induction\<close>  | 
| 17459 | 1354  | 
|
| 60758 | 1355  | 
text \<open>Rule projections:\<close>  | 
1356  | 
ML \<open>  | 
|
| 32172 | 1357  | 
structure Project_Rule = Project_Rule  | 
| 25388 | 1358  | 
(  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1359  | 
  val conjunct1 = @{thm conjunct1}
 | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1360  | 
  val conjunct2 = @{thm conjunct2}
 | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1361  | 
  val mp = @{thm mp}
 | 
| 59929 | 1362  | 
);  | 
| 60758 | 1363  | 
\<close>  | 
| 17459 | 1364  | 
|
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1365  | 
context  | 
| 
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1366  | 
begin  | 
| 
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1367  | 
|
| 
59990
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1368  | 
qualified definition "induct_forall P \<equiv> \<forall>x. P x"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1369  | 
qualified definition "induct_implies A B \<equiv> A \<longrightarrow> B"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1370  | 
qualified definition "induct_equal x y \<equiv> x = y"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1371  | 
qualified definition "induct_conj A B \<equiv> A \<and> B"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1372  | 
qualified definition "induct_true \<equiv> True"  | 
| 
 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 
wenzelm 
parents: 
59970 
diff
changeset
 | 
1373  | 
qualified definition "induct_false \<equiv> False"  | 
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
35115 
diff
changeset
 | 
1374  | 
|
| 59929 | 1375  | 
lemma induct_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (induct_forall (\<lambda>x. P x))"  | 
| 18457 | 1376  | 
by (unfold atomize_all induct_forall_def)  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1377  | 
|
| 59929 | 1378  | 
lemma induct_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (induct_implies A B)"  | 
| 18457 | 1379  | 
by (unfold atomize_imp induct_implies_def)  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1380  | 
|
| 59929 | 1381  | 
lemma induct_equal_eq: "(x \<equiv> y) \<equiv> Trueprop (induct_equal x y)"  | 
| 18457 | 1382  | 
by (unfold atomize_eq induct_equal_def)  | 
1383  | 
||
| 59929 | 1384  | 
lemma induct_conj_eq: "(A &&& B) \<equiv> Trueprop (induct_conj A B)"  | 
| 18457 | 1385  | 
by (unfold atomize_conj induct_conj_def)  | 
1386  | 
||
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1387  | 
lemmas induct_atomize' = induct_forall_eq induct_implies_eq induct_conj_eq  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1388  | 
lemmas induct_atomize = induct_atomize' induct_equal_eq  | 
| 45607 | 1389  | 
lemmas induct_rulify' [symmetric] = induct_atomize'  | 
1390  | 
lemmas induct_rulify [symmetric] = induct_atomize  | 
|
| 18457 | 1391  | 
lemmas induct_rulify_fallback =  | 
1392  | 
induct_forall_def induct_implies_def induct_equal_def induct_conj_def  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1393  | 
induct_true_def induct_false_def  | 
| 18457 | 1394  | 
|
| 11989 | 1395  | 
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =  | 
1396  | 
induct_conj (induct_forall A) (induct_forall B)"  | 
|
| 17589 | 1397  | 
by (unfold induct_forall_def induct_conj_def) iprover  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1398  | 
|
| 11989 | 1399  | 
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =  | 
1400  | 
induct_conj (induct_implies C A) (induct_implies C B)"  | 
|
| 17589 | 1401  | 
by (unfold induct_implies_def induct_conj_def) iprover  | 
| 11989 | 1402  | 
|
| 59929 | 1403  | 
lemma induct_conj_curry: "(induct_conj A B \<Longrightarrow> PROP C) \<equiv> (A \<Longrightarrow> B \<Longrightarrow> PROP C)"  | 
| 
13598
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1404  | 
proof  | 
| 59929 | 1405  | 
assume r: "induct_conj A B \<Longrightarrow> PROP C"  | 
1406  | 
assume ab: A B  | 
|
1407  | 
show "PROP C" by (rule r) (simp add: induct_conj_def ab)  | 
|
| 
13598
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1408  | 
next  | 
| 59929 | 1409  | 
assume r: "A \<Longrightarrow> B \<Longrightarrow> PROP C"  | 
1410  | 
assume ab: "induct_conj A B"  | 
|
1411  | 
show "PROP C" by (rule r) (simp_all add: ab [unfolded induct_conj_def])  | 
|
| 
13598
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1412  | 
qed  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1413  | 
|
| 11989 | 1414  | 
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1415  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1416  | 
lemma induct_trueI: "induct_true"  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1417  | 
by (simp add: induct_true_def)  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1418  | 
|
| 60758 | 1419  | 
text \<open>Method setup.\<close>  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1420  | 
|
| 58826 | 1421  | 
ML_file "~~/src/Tools/induct.ML"  | 
| 60758 | 1422  | 
ML \<open>  | 
| 32171 | 1423  | 
structure Induct = Induct  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1424  | 
(  | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1425  | 
  val cases_default = @{thm case_split}
 | 
| 
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1426  | 
  val atomize = @{thms induct_atomize}
 | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1427  | 
  val rulify = @{thms induct_rulify'}
 | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1428  | 
  val rulify_fallback = @{thms induct_rulify_fallback}
 | 
| 
34988
 
cca208c8d619
Added setup for simplification of equality constraints in cases rules.
 
berghofe 
parents: 
34917 
diff
changeset
 | 
1429  | 
  val equal_def = @{thm induct_equal_def}
 | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1430  | 
  fun dest_def (Const (@{const_name induct_equal}, _) $ t $ u) = SOME (t, u)
 | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1431  | 
| dest_def _ = NONE  | 
| 58957 | 1432  | 
  fun trivial_tac ctxt = match_tac ctxt @{thms induct_trueI}
 | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1433  | 
)  | 
| 60758 | 1434  | 
\<close>  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1435  | 
|
| 48891 | 1436  | 
ML_file "~~/src/Tools/induction.ML"  | 
| 
45014
 
0e847655b2d8
New proof method "induction" that gives induction hypotheses the name IH.
 
nipkow 
parents: 
44921 
diff
changeset
 | 
1437  | 
|
| 60758 | 1438  | 
declaration \<open>  | 
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1439  | 
fn _ => Induct.map_simpset (fn ss => ss  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1440  | 
addsimprocs  | 
| 61144 | 1441  | 
      [Simplifier.make_simproc @{context} "swap_induct_false"
 | 
1442  | 
        {lhss = [@{term "induct_false \<Longrightarrow> PROP P \<Longrightarrow> PROP Q"}],
 | 
|
1443  | 
proc = fn _ => fn _ => fn ct =>  | 
|
1444  | 
(case Thm.term_of ct of  | 
|
1445  | 
            _ $ (P as _ $ @{const induct_false}) $ (_ $ Q $ _) =>
 | 
|
1446  | 
if P <> Q then SOME Drule.swap_prems_eq else NONE  | 
|
| 62913 | 1447  | 
| _ => NONE)},  | 
| 61144 | 1448  | 
       Simplifier.make_simproc @{context} "induct_equal_conj_curry"
 | 
1449  | 
        {lhss = [@{term "induct_conj P Q \<Longrightarrow> PROP R"}],
 | 
|
1450  | 
proc = fn _ => fn _ => fn ct =>  | 
|
1451  | 
(case Thm.term_of ct of  | 
|
1452  | 
_ $ (_ $ P) $ _ =>  | 
|
1453  | 
let  | 
|
1454  | 
                fun is_conj (@{const induct_conj} $ P $ Q) =
 | 
|
1455  | 
is_conj P andalso is_conj Q  | 
|
1456  | 
                  | is_conj (Const (@{const_name induct_equal}, _) $ _ $ _) = true
 | 
|
1457  | 
                  | is_conj @{const induct_true} = true
 | 
|
1458  | 
                  | is_conj @{const induct_false} = true
 | 
|
1459  | 
| is_conj _ = false  | 
|
1460  | 
              in if is_conj P then SOME @{thm induct_conj_curry} else NONE end
 | 
|
| 62913 | 1461  | 
| _ => NONE)}]  | 
| 
54742
 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 
wenzelm 
parents: 
53146 
diff
changeset
 | 
1462  | 
|> Simplifier.set_mksimps (fn ctxt =>  | 
| 
 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 
wenzelm 
parents: 
53146 
diff
changeset
 | 
1463  | 
Simpdata.mksimps Simpdata.mksimps_pairs ctxt #>  | 
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1464  | 
        map (rewrite_rule ctxt (map Thm.symmetric @{thms induct_rulify_fallback}))))
 | 
| 60758 | 1465  | 
\<close>  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1466  | 
|
| 60758 | 1467  | 
text \<open>Pre-simplification of induction and cases rules\<close>  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1468  | 
|
| 59929 | 1469  | 
lemma [induct_simp]: "(\<And>x. induct_equal x t \<Longrightarrow> PROP P x) \<equiv> PROP P t"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1470  | 
unfolding induct_equal_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1471  | 
proof  | 
| 59929 | 1472  | 
assume r: "\<And>x. x = t \<Longrightarrow> PROP P x"  | 
1473  | 
show "PROP P t" by (rule r [OF refl])  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1474  | 
next  | 
| 59929 | 1475  | 
fix x  | 
1476  | 
assume "PROP P t" "x = t"  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1477  | 
then show "PROP P x" by simp  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1478  | 
qed  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1479  | 
|
| 59929 | 1480  | 
lemma [induct_simp]: "(\<And>x. induct_equal t x \<Longrightarrow> PROP P x) \<equiv> PROP P t"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1481  | 
unfolding induct_equal_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1482  | 
proof  | 
| 59929 | 1483  | 
assume r: "\<And>x. t = x \<Longrightarrow> PROP P x"  | 
1484  | 
show "PROP P t" by (rule r [OF refl])  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1485  | 
next  | 
| 59929 | 1486  | 
fix x  | 
1487  | 
assume "PROP P t" "t = x"  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1488  | 
then show "PROP P x" by simp  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1489  | 
qed  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1490  | 
|
| 59929 | 1491  | 
lemma [induct_simp]: "(induct_false \<Longrightarrow> P) \<equiv> Trueprop induct_true"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1492  | 
unfolding induct_false_def induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1493  | 
by (iprover intro: equal_intr_rule)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1494  | 
|
| 59929 | 1495  | 
lemma [induct_simp]: "(induct_true \<Longrightarrow> PROP P) \<equiv> PROP P"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1496  | 
unfolding induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1497  | 
proof  | 
| 59929 | 1498  | 
assume "True \<Longrightarrow> PROP P"  | 
1499  | 
then show "PROP P" using TrueI .  | 
|
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1500  | 
next  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1501  | 
assume "PROP P"  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1502  | 
then show "PROP P" .  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1503  | 
qed  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1504  | 
|
| 59929 | 1505  | 
lemma [induct_simp]: "(PROP P \<Longrightarrow> induct_true) \<equiv> Trueprop induct_true"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1506  | 
unfolding induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1507  | 
by (iprover intro: equal_intr_rule)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1508  | 
|
| 
62958
 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 
wenzelm 
parents: 
62913 
diff
changeset
 | 
1509  | 
lemma [induct_simp]: "(\<And>x::'a::{}. induct_true) \<equiv> Trueprop induct_true"
 | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1510  | 
unfolding induct_true_def  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1511  | 
by (iprover intro: equal_intr_rule)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1512  | 
|
| 59929 | 1513  | 
lemma [induct_simp]: "induct_implies induct_true P \<equiv> P"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1514  | 
by (simp add: induct_implies_def induct_true_def)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1515  | 
|
| 59929 | 1516  | 
lemma [induct_simp]: "x = x \<longleftrightarrow> True"  | 
| 
34908
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1517  | 
by (rule simp_thms)  | 
| 
 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 
berghofe 
parents: 
34294 
diff
changeset
 | 
1518  | 
|
| 
59940
 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 
wenzelm 
parents: 
59929 
diff
changeset
 | 
1519  | 
end  | 
| 18457 | 1520  | 
|
| 48891 | 1521  | 
ML_file "~~/src/Tools/induct_tacs.ML"  | 
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1522  | 
|
| 20944 | 1523  | 
|
| 60758 | 1524  | 
subsubsection \<open>Coherent logic\<close>  | 
| 28325 | 1525  | 
|
| 55632 | 1526  | 
ML_file "~~/src/Tools/coherent.ML"  | 
| 60758 | 1527  | 
ML \<open>  | 
| 32734 | 1528  | 
structure Coherent = Coherent  | 
| 28325 | 1529  | 
(  | 
| 55632 | 1530  | 
  val atomize_elimL = @{thm atomize_elimL};
 | 
1531  | 
  val atomize_exL = @{thm atomize_exL};
 | 
|
1532  | 
  val atomize_conjL = @{thm atomize_conjL};
 | 
|
1533  | 
  val atomize_disjL = @{thm atomize_disjL};
 | 
|
1534  | 
  val operator_names = [@{const_name HOL.disj}, @{const_name HOL.conj}, @{const_name Ex}];
 | 
|
| 28325 | 1535  | 
);  | 
| 60758 | 1536  | 
\<close>  | 
| 28325 | 1537  | 
|
1538  | 
||
| 60758 | 1539  | 
subsubsection \<open>Reorienting equalities\<close>  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1540  | 
|
| 60758 | 1541  | 
ML \<open>  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1542  | 
signature REORIENT_PROC =  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1543  | 
sig  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1544  | 
val add : (term -> bool) -> theory -> theory  | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51692 
diff
changeset
 | 
1545  | 
val proc : morphism -> Proof.context -> cterm -> thm option  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1546  | 
end;  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1547  | 
|
| 33523 | 1548  | 
structure Reorient_Proc : REORIENT_PROC =  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1549  | 
struct  | 
| 33523 | 1550  | 
structure Data = Theory_Data  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1551  | 
(  | 
| 33523 | 1552  | 
type T = ((term -> bool) * stamp) list;  | 
1553  | 
val empty = [];  | 
|
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1554  | 
val extend = I;  | 
| 33523 | 1555  | 
fun merge data : T = Library.merge (eq_snd op =) data;  | 
1556  | 
);  | 
|
1557  | 
fun add m = Data.map (cons (m, stamp ()));  | 
|
1558  | 
fun matches thy t = exists (fn (m, _) => m t) (Data.get thy);  | 
|
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1559  | 
|
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1560  | 
  val meta_reorient = @{thm eq_commute [THEN eq_reflection]};
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51692 
diff
changeset
 | 
1561  | 
fun proc phi ctxt ct =  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1562  | 
let  | 
| 42361 | 1563  | 
val thy = Proof_Context.theory_of ctxt;  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1564  | 
in  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1565  | 
case Thm.term_of ct of  | 
| 33523 | 1566  | 
(_ $ t $ u) => if matches thy u then NONE else SOME meta_reorient  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1567  | 
| _ => NONE  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1568  | 
end;  | 
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1569  | 
end;  | 
| 60758 | 1570  | 
\<close>  | 
| 
31024
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1571  | 
|
| 
 
0fdf666e08bf
reimplement reorientation simproc using theory data
 
huffman 
parents: 
30980 
diff
changeset
 | 
1572  | 
|
| 60758 | 1573  | 
subsection \<open>Other simple lemmas and lemma duplicates\<close>  | 
| 20944 | 1574  | 
|
| 60759 | 1575  | 
lemma ex1_eq [iff]: "\<exists>!x. x = t" "\<exists>!x. t = x"  | 
| 20944 | 1576  | 
by blast+  | 
1577  | 
||
| 60759 | 1578  | 
lemma choice_eq: "(\<forall>x. \<exists>!y. P x y) = (\<exists>!f. \<forall>x. P x (f x))"  | 
| 20944 | 1579  | 
apply (rule iffI)  | 
| 60759 | 1580  | 
apply (rule_tac a = "\<lambda>x. THE y. P x y" in ex1I)  | 
| 20944 | 1581  | 
apply (fast dest!: theI')  | 
| 44921 | 1582  | 
apply (fast intro: the1_equality [symmetric])  | 
| 20944 | 1583  | 
apply (erule ex1E)  | 
1584  | 
apply (rule allI)  | 
|
1585  | 
apply (rule ex1I)  | 
|
1586  | 
apply (erule spec)  | 
|
| 60759 | 1587  | 
apply (erule_tac x = "\<lambda>z. if z = x then y else f z" in allE)  | 
| 20944 | 1588  | 
apply (erule impE)  | 
1589  | 
apply (rule allI)  | 
|
| 
27126
 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 
wenzelm 
parents: 
27107 
diff
changeset
 | 
1590  | 
apply (case_tac "xa = x")  | 
| 20944 | 1591  | 
apply (drule_tac [3] x = x in fun_cong, simp_all)  | 
1592  | 
done  | 
|
1593  | 
||
| 22218 | 1594  | 
lemmas eq_sym_conv = eq_commute  | 
1595  | 
||
| 
23037
 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 
chaieb 
parents: 
22993 
diff
changeset
 | 
1596  | 
lemma nnf_simps:  | 
| 58826 | 1597  | 
"(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)"  | 
1598  | 
"(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))"  | 
|
| 
23037
 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 
chaieb 
parents: 
22993 
diff
changeset
 | 
1599  | 
"(\<not> \<not>(P)) = P"  | 
| 
 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 
chaieb 
parents: 
22993 
diff
changeset
 | 
1600  | 
by blast+  | 
| 
 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 
chaieb 
parents: 
22993 
diff
changeset
 | 
1601  | 
|
| 60758 | 1602  | 
subsection \<open>Basic ML bindings\<close>  | 
| 21671 | 1603  | 
|
| 60758 | 1604  | 
ML \<open>  | 
| 22129 | 1605  | 
val FalseE = @{thm FalseE}
 | 
1606  | 
val Let_def = @{thm Let_def}
 | 
|
1607  | 
val TrueI = @{thm TrueI}
 | 
|
1608  | 
val allE = @{thm allE}
 | 
|
1609  | 
val allI = @{thm allI}
 | 
|
1610  | 
val all_dupE = @{thm all_dupE}
 | 
|
1611  | 
val arg_cong = @{thm arg_cong}
 | 
|
1612  | 
val box_equals = @{thm box_equals}
 | 
|
1613  | 
val ccontr = @{thm ccontr}
 | 
|
1614  | 
val classical = @{thm classical}
 | 
|
1615  | 
val conjE = @{thm conjE}
 | 
|
1616  | 
val conjI = @{thm conjI}
 | 
|
1617  | 
val conjunct1 = @{thm conjunct1}
 | 
|
1618  | 
val conjunct2 = @{thm conjunct2}
 | 
|
1619  | 
val disjCI = @{thm disjCI}
 | 
|
1620  | 
val disjE = @{thm disjE}
 | 
|
1621  | 
val disjI1 = @{thm disjI1}
 | 
|
1622  | 
val disjI2 = @{thm disjI2}
 | 
|
1623  | 
val eq_reflection = @{thm eq_reflection}
 | 
|
1624  | 
val ex1E = @{thm ex1E}
 | 
|
1625  | 
val ex1I = @{thm ex1I}
 | 
|
1626  | 
val ex1_implies_ex = @{thm ex1_implies_ex}
 | 
|
1627  | 
val exE = @{thm exE}
 | 
|
1628  | 
val exI = @{thm exI}
 | 
|
1629  | 
val excluded_middle = @{thm excluded_middle}
 | 
|
1630  | 
val ext = @{thm ext}
 | 
|
1631  | 
val fun_cong = @{thm fun_cong}
 | 
|
1632  | 
val iffD1 = @{thm iffD1}
 | 
|
1633  | 
val iffD2 = @{thm iffD2}
 | 
|
1634  | 
val iffI = @{thm iffI}
 | 
|
1635  | 
val impE = @{thm impE}
 | 
|
1636  | 
val impI = @{thm impI}
 | 
|
1637  | 
val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
 | 
|
1638  | 
val mp = @{thm mp}
 | 
|
1639  | 
val notE = @{thm notE}
 | 
|
1640  | 
val notI = @{thm notI}
 | 
|
1641  | 
val not_all = @{thm not_all}
 | 
|
1642  | 
val not_ex = @{thm not_ex}
 | 
|
1643  | 
val not_iff = @{thm not_iff}
 | 
|
1644  | 
val not_not = @{thm not_not}
 | 
|
1645  | 
val not_sym = @{thm not_sym}
 | 
|
1646  | 
val refl = @{thm refl}
 | 
|
1647  | 
val rev_mp = @{thm rev_mp}
 | 
|
1648  | 
val spec = @{thm spec}
 | 
|
1649  | 
val ssubst = @{thm ssubst}
 | 
|
1650  | 
val subst = @{thm subst}
 | 
|
1651  | 
val sym = @{thm sym}
 | 
|
1652  | 
val trans = @{thm trans}
 | 
|
| 60758 | 1653  | 
\<close>  | 
| 21671 | 1654  | 
|
| 55239 | 1655  | 
ML_file "Tools/cnf.ML"  | 
1656  | 
||
| 21671 | 1657  | 
|
| 61799 | 1658  | 
section \<open>\<open>NO_MATCH\<close> simproc\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1659  | 
|
| 60758 | 1660  | 
text \<open>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1661  | 
The simplification procedure can be used to avoid simplification of terms of a certain form  | 
| 60758 | 1662  | 
\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1663  | 
|
| 59779 | 1664  | 
definition NO_MATCH :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where "NO_MATCH pat val \<equiv> True"  | 
| 58830 | 1665  | 
|
| 59779 | 1666  | 
lemma NO_MATCH_cong[cong]: "NO_MATCH pat val = NO_MATCH pat val" by (rule refl)  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1667  | 
|
| 58830 | 1668  | 
declare [[coercion_args NO_MATCH - -]]  | 
1669  | 
||
| 60758 | 1670  | 
simproc_setup NO_MATCH ("NO_MATCH pat val") = \<open>fn _ => fn ctxt => fn ct =>
 | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1671  | 
let  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1672  | 
val thy = Proof_Context.theory_of ctxt  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1673  | 
val dest_binop = Term.dest_comb #> apfst (Term.dest_comb #> snd)  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1674  | 
val m = Pattern.matches thy (dest_binop (Thm.term_of ct))  | 
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1675  | 
  in if m then NONE else SOME @{thm NO_MATCH_def} end
 | 
| 60758 | 1676  | 
\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1677  | 
|
| 60758 | 1678  | 
text \<open>  | 
| 59779 | 1679  | 
  This setup ensures that a rewrite rule of the form @{term "NO_MATCH pat val \<Longrightarrow> t"}
 | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1680  | 
  is only applied, if the pattern @{term pat} does not match the value @{term val}.
 | 
| 60758 | 1681  | 
\<close>  | 
| 
58775
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1682  | 
|
| 
 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 
hoelzl 
parents: 
58659 
diff
changeset
 | 
1683  | 
|
| 61222 | 1684  | 
text\<open>Tagging a premise of a simp rule with ASSUMPTION forces the simplifier  | 
1685  | 
not to simplify the argument and to solve it by an assumption.\<close>  | 
|
| 61202 | 1686  | 
|
1687  | 
definition ASSUMPTION :: "bool \<Rightarrow> bool" where  | 
|
1688  | 
"ASSUMPTION A \<equiv> A"  | 
|
1689  | 
||
1690  | 
lemma ASSUMPTION_cong[cong]: "ASSUMPTION A = ASSUMPTION A"  | 
|
1691  | 
by (rule refl)  | 
|
1692  | 
||
1693  | 
lemma ASSUMPTION_I: "A \<Longrightarrow> ASSUMPTION A"  | 
|
1694  | 
by(simp add: ASSUMPTION_def)  | 
|
1695  | 
||
1696  | 
lemma ASSUMPTION_D: "ASSUMPTION A \<Longrightarrow> A"  | 
|
1697  | 
by(simp add: ASSUMPTION_def)  | 
|
1698  | 
||
| 61222 | 1699  | 
setup \<open>  | 
| 61202 | 1700  | 
let  | 
1701  | 
val asm_sol = mk_solver "ASSUMPTION" (fn ctxt =>  | 
|
1702  | 
    resolve_tac ctxt [@{thm ASSUMPTION_I}] THEN'
 | 
|
1703  | 
resolve_tac ctxt (Simplifier.prems_of ctxt))  | 
|
1704  | 
in  | 
|
1705  | 
map_theory_simpset (fn ctxt => Simplifier.addSolver (ctxt,asm_sol))  | 
|
1706  | 
end  | 
|
| 61222 | 1707  | 
\<close>  | 
| 61202 | 1708  | 
|
1709  | 
||
| 60758 | 1710  | 
subsection \<open>Code generator setup\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1711  | 
|
| 60758 | 1712  | 
subsubsection \<open>Generic code generator preprocessor setup\<close>  | 
| 31151 | 1713  | 
|
| 
53146
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1714  | 
lemma conj_left_cong:  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1715  | 
"P \<longleftrightarrow> Q \<Longrightarrow> P \<and> R \<longleftrightarrow> Q \<and> R"  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1716  | 
by (fact arg_cong)  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1717  | 
|
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1718  | 
lemma disj_left_cong:  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1719  | 
"P \<longleftrightarrow> Q \<Longrightarrow> P \<or> R \<longleftrightarrow> Q \<or> R"  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1720  | 
by (fact arg_cong)  | 
| 
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1721  | 
|
| 60758 | 1722  | 
setup \<open>  | 
| 58826 | 1723  | 
Code_Preproc.map_pre (put_simpset HOL_basic_ss) #>  | 
1724  | 
Code_Preproc.map_post (put_simpset HOL_basic_ss) #>  | 
|
1725  | 
Code_Simp.map_ss (put_simpset HOL_basic_ss #>  | 
|
1726  | 
  Simplifier.add_cong @{thm conj_left_cong} #>
 | 
|
1727  | 
  Simplifier.add_cong @{thm disj_left_cong})
 | 
|
| 60758 | 1728  | 
\<close>  | 
| 31151 | 1729  | 
|
| 
53146
 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 
haftmann 
parents: 
52654 
diff
changeset
 | 
1730  | 
|
| 60758 | 1731  | 
subsubsection \<open>Equality\<close>  | 
| 
24844
 
98c006a30218
certificates for code generator case expressions
 
haftmann 
parents: 
24842 
diff
changeset
 | 
1732  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1733  | 
class equal =  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1734  | 
fixes equal :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1735  | 
assumes equal_eq: "equal x y \<longleftrightarrow> x = y"  | 
| 26513 | 1736  | 
begin  | 
1737  | 
||
| 
45231
 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 
bulwahn 
parents: 
45171 
diff
changeset
 | 
1738  | 
lemma equal: "equal = (op =)"  | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1739  | 
by (rule ext equal_eq)+  | 
| 
28346
 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 
haftmann 
parents: 
28325 
diff
changeset
 | 
1740  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1741  | 
lemma equal_refl: "equal x x \<longleftrightarrow> True"  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1742  | 
unfolding equal by rule+  | 
| 
28346
 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 
haftmann 
parents: 
28325 
diff
changeset
 | 
1743  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1744  | 
lemma eq_equal: "(op =) \<equiv> equal"  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1745  | 
by (rule eq_reflection) (rule ext, rule ext, rule sym, rule equal_eq)  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1746  | 
|
| 26513 | 1747  | 
end  | 
1748  | 
||
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1749  | 
declare eq_equal [symmetric, code_post]  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1750  | 
declare eq_equal [code]  | 
| 30966 | 1751  | 
|
| 60758 | 1752  | 
setup \<open>  | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51692 
diff
changeset
 | 
1753  | 
Code_Preproc.map_pre (fn ctxt =>  | 
| 61144 | 1754  | 
ctxt addsimprocs  | 
1755  | 
      [Simplifier.make_simproc @{context} "equal"
 | 
|
1756  | 
        {lhss = [@{term HOL.eq}],
 | 
|
1757  | 
proc = fn _ => fn _ => fn ct =>  | 
|
1758  | 
(case Thm.term_of ct of  | 
|
1759  | 
            Const (_, Type (@{type_name fun}, [Type _, _])) => SOME @{thm eq_equal}
 | 
|
| 62913 | 1760  | 
| _ => NONE)}])  | 
| 60758 | 1761  | 
\<close>  | 
| 31151 | 1762  | 
|
| 30966 | 1763  | 
|
| 60758 | 1764  | 
subsubsection \<open>Generic code generator foundation\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1765  | 
|
| 60758 | 1766  | 
text \<open>Datatype @{typ bool}\<close>
 | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1767  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1768  | 
code_datatype True False  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1769  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1770  | 
lemma [code]:  | 
| 
33185
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1771  | 
shows "False \<and> P \<longleftrightarrow> False"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1772  | 
and "True \<and> P \<longleftrightarrow> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1773  | 
and "P \<and> False \<longleftrightarrow> False"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1774  | 
and "P \<and> True \<longleftrightarrow> P" by simp_all  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1775  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1776  | 
lemma [code]:  | 
| 
33185
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1777  | 
shows "False \<or> P \<longleftrightarrow> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1778  | 
and "True \<or> P \<longleftrightarrow> True"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1779  | 
and "P \<or> False \<longleftrightarrow> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1780  | 
and "P \<or> True \<longleftrightarrow> True" by simp_all  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1781  | 
|
| 
33185
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1782  | 
lemma [code]:  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1783  | 
shows "(False \<longrightarrow> P) \<longleftrightarrow> True"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1784  | 
and "(True \<longrightarrow> P) \<longleftrightarrow> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1785  | 
and "(P \<longrightarrow> False) \<longleftrightarrow> \<not> P"  | 
| 
 
247f6c6969d9
tuned code setup for primitive boolean connectors
 
haftmann 
parents: 
33084 
diff
changeset
 | 
1786  | 
and "(P \<longrightarrow> True) \<longleftrightarrow> True" by simp_all  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1787  | 
|
| 60758 | 1788  | 
text \<open>More about @{typ prop}\<close>
 | 
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1789  | 
|
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1790  | 
lemma [code nbe]:  | 
| 58826 | 1791  | 
shows "(True \<Longrightarrow> PROP Q) \<equiv> PROP Q"  | 
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1792  | 
and "(PROP Q \<Longrightarrow> True) \<equiv> Trueprop True"  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1793  | 
and "(P \<Longrightarrow> R) \<equiv> Trueprop (P \<longrightarrow> R)" by (auto intro!: equal_intr_rule)  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1794  | 
|
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1795  | 
lemma Trueprop_code [code]:  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1796  | 
"Trueprop True \<equiv> Code_Generator.holds"  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1797  | 
by (auto intro!: equal_intr_rule holds)  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1798  | 
|
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1799  | 
declare Trueprop_code [symmetric, code_post]  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1800  | 
|
| 60758 | 1801  | 
text \<open>Equality\<close>  | 
| 
39421
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1802  | 
|
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1803  | 
declare simp_thms(6) [code nbe]  | 
| 
 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 
haftmann 
parents: 
39403 
diff
changeset
 | 
1804  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1805  | 
instantiation itself :: (type) equal  | 
| 31132 | 1806  | 
begin  | 
1807  | 
||
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1808  | 
definition equal_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool" where  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1809  | 
"equal_itself x y \<longleftrightarrow> x = y"  | 
| 31132 | 1810  | 
|
1811  | 
instance proof  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1812  | 
qed (fact equal_itself_def)  | 
| 31132 | 1813  | 
|
1814  | 
end  | 
|
1815  | 
||
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1816  | 
lemma equal_itself_code [code]:  | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1817  | 
  "equal TYPE('a) TYPE('a) \<longleftrightarrow> True"
 | 
| 
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1818  | 
by (simp add: equal)  | 
| 31132 | 1819  | 
|
| 61076 | 1820  | 
setup \<open>Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a::type \<Rightarrow> 'a \<Rightarrow> bool"})\<close>
 | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
1821  | 
|
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1822  | 
lemma equal_alias_cert: "OFCLASS('a, equal_class) \<equiv> ((op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool) \<equiv> equal)" (is "?ofclass \<equiv> ?equal")
 | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
1823  | 
proof  | 
| 
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
1824  | 
assume "PROP ?ofclass"  | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1825  | 
show "PROP ?equal"  | 
| 60758 | 1826  | 
    by (tactic \<open>ALLGOALS (resolve_tac @{context} [Thm.unconstrainT @{thm eq_equal}])\<close>)
 | 
1827  | 
(fact \<open>PROP ?ofclass\<close>)  | 
|
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
1828  | 
next  | 
| 
38857
 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 
haftmann 
parents: 
38795 
diff
changeset
 | 
1829  | 
assume "PROP ?equal"  | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
1830  | 
show "PROP ?ofclass" proof  | 
| 60758 | 1831  | 
qed (simp add: \<open>PROP ?equal\<close>)  | 
| 
31956
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
1832  | 
qed  | 
| 
 
c3844c4d0c2c
more accurate certificates for constant aliasses
 
haftmann 
parents: 
31902 
diff
changeset
 | 
1833  | 
|
| 61076 | 1834  | 
setup \<open>Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a::equal \<Rightarrow> 'a \<Rightarrow> bool"})\<close>
 | 
| 58826 | 1835  | 
|
| 60758 | 1836  | 
setup \<open>Nbe.add_const_alias @{thm equal_alias_cert}\<close>
 | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1837  | 
|
| 60758 | 1838  | 
text \<open>Cases\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1839  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1840  | 
lemma Let_case_cert:  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1841  | 
assumes "CASE \<equiv> (\<lambda>x. Let x f)"  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1842  | 
shows "CASE x \<equiv> f x"  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1843  | 
using assms by simp_all  | 
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1844  | 
|
| 60758 | 1845  | 
setup \<open>  | 
| 58826 | 1846  | 
  Code.add_case @{thm Let_case_cert} #>
 | 
1847  | 
  Code.add_undefined @{const_name undefined}
 | 
|
| 60758 | 1848  | 
\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1849  | 
|
| 
54890
 
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
 
haftmann 
parents: 
54742 
diff
changeset
 | 
1850  | 
declare [[code abort: undefined]]  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1851  | 
|
| 38972 | 1852  | 
|
| 60758 | 1853  | 
subsubsection \<open>Generic code generator target languages\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1854  | 
|
| 60758 | 1855  | 
text \<open>type @{typ bool}\<close>
 | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1856  | 
|
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1857  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1858  | 
type_constructor bool \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1859  | 
(SML) "bool" and (OCaml) "bool" and (Haskell) "Bool" and (Scala) "Boolean"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1860  | 
| constant True \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1861  | 
(SML) "true" and (OCaml) "true" and (Haskell) "True" and (Scala) "true"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1862  | 
| constant False \<rightharpoonup>  | 
| 58826 | 1863  | 
(SML) "false" and (OCaml) "false" and (Haskell) "False" and (Scala) "false"  | 
| 34294 | 1864  | 
|
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1865  | 
code_reserved SML  | 
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1866  | 
bool true false  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1867  | 
|
| 
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1868  | 
code_reserved OCaml  | 
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1869  | 
bool  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1870  | 
|
| 34294 | 1871  | 
code_reserved Scala  | 
1872  | 
Boolean  | 
|
1873  | 
||
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1874  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1875  | 
constant Not \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1876  | 
(SML) "not" and (OCaml) "not" and (Haskell) "not" and (Scala) "'! _"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1877  | 
| constant HOL.conj \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1878  | 
(SML) infixl 1 "andalso" and (OCaml) infixl 3 "&&" and (Haskell) infixr 3 "&&" and (Scala) infixl 3 "&&"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1879  | 
| constant HOL.disj \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1880  | 
(SML) infixl 0 "orelse" and (OCaml) infixl 2 "||" and (Haskell) infixl 2 "||" and (Scala) infixl 1 "||"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1881  | 
| constant HOL.implies \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1882  | 
(SML) "!(if (_)/ then (_)/ else true)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1883  | 
and (OCaml) "!(if (_)/ then (_)/ else true)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1884  | 
and (Haskell) "!(if (_)/ then (_)/ else True)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1885  | 
and (Scala) "!(if ((_))/ (_)/ else true)"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1886  | 
| constant If \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1887  | 
(SML) "!(if (_)/ then (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1888  | 
and (OCaml) "!(if (_)/ then (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1889  | 
and (Haskell) "!(if (_)/ then (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1890  | 
and (Scala) "!(if ((_))/ (_)/ else (_))"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1891  | 
|
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1892  | 
code_reserved SML  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1893  | 
not  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1894  | 
|
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1895  | 
code_reserved OCaml  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1896  | 
not  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1897  | 
|
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1898  | 
code_identifier  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1899  | 
code_module Pure \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1900  | 
(SML) HOL and (OCaml) HOL and (Haskell) HOL and (Scala) HOL  | 
| 39026 | 1901  | 
|
| 60758 | 1902  | 
text \<open>using built-in Haskell equality\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1903  | 
|
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1904  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1905  | 
type_class equal \<rightharpoonup> (Haskell) "Eq"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1906  | 
| constant HOL.equal \<rightharpoonup> (Haskell) infix 4 "=="  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1907  | 
| constant HOL.eq \<rightharpoonup> (Haskell) infix 4 "=="  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1908  | 
|
| 60758 | 1909  | 
text \<open>undefined\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1910  | 
|
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1911  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1912  | 
constant undefined \<rightharpoonup>  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1913  | 
(SML) "!(raise/ Fail/ \"undefined\")"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1914  | 
and (OCaml) "failwith/ \"undefined\""  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1915  | 
and (Haskell) "error/ \"undefined\""  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1916  | 
and (Scala) "!sys.error(\"undefined\")"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
52432 
diff
changeset
 | 
1917  | 
|
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1918  | 
|
| 60758 | 1919  | 
subsubsection \<open>Evaluation and normalization by evaluation\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1920  | 
|
| 60758 | 1921  | 
method_setup eval = \<open>  | 
| 58826 | 1922  | 
let  | 
1923  | 
fun eval_tac ctxt =  | 
|
1924  | 
let val conv = Code_Runtime.dynamic_holds_conv ctxt  | 
|
| 58839 | 1925  | 
in  | 
1926  | 
CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 conv)) ctxt) THEN'  | 
|
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
59028 
diff
changeset
 | 
1927  | 
resolve_tac ctxt [TrueI]  | 
| 58839 | 1928  | 
end  | 
| 58826 | 1929  | 
in  | 
1930  | 
Scan.succeed (SIMPLE_METHOD' o eval_tac)  | 
|
1931  | 
end  | 
|
| 60758 | 1932  | 
\<close> "solve goal by evaluation"  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1933  | 
|
| 60758 | 1934  | 
method_setup normalization = \<open>  | 
| 
46190
 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 
wenzelm 
parents: 
46161 
diff
changeset
 | 
1935  | 
Scan.succeed (fn ctxt =>  | 
| 
 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 
wenzelm 
parents: 
46161 
diff
changeset
 | 
1936  | 
SIMPLE_METHOD'  | 
| 
 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 
wenzelm 
parents: 
46161 
diff
changeset
 | 
1937  | 
(CHANGED_PROP o  | 
| 55757 | 1938  | 
(CONVERSION (Nbe.dynamic_conv ctxt)  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
59028 
diff
changeset
 | 
1939  | 
THEN_ALL_NEW (TRY o resolve_tac ctxt [TrueI]))))  | 
| 60758 | 1940  | 
\<close> "solve goal by normalization"  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1941  | 
|
| 31902 | 1942  | 
|
| 60758 | 1943  | 
subsection \<open>Counterexample Search Units\<close>  | 
| 33084 | 1944  | 
|
| 60758 | 1945  | 
subsubsection \<open>Quickcheck\<close>  | 
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1946  | 
|
| 33084 | 1947  | 
quickcheck_params [size = 5, iterations = 50]  | 
1948  | 
||
| 
30929
 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 
haftmann 
parents: 
30927 
diff
changeset
 | 
1949  | 
|
| 60758 | 1950  | 
subsubsection \<open>Nitpick setup\<close>  | 
| 
30309
 
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
 
blanchet 
parents: 
30254 
diff
changeset
 | 
1951  | 
|
| 59028 | 1952  | 
named_theorems nitpick_unfold "alternative definitions of constants as needed by Nitpick"  | 
1953  | 
and nitpick_simp "equational specification of constants as needed by Nitpick"  | 
|
1954  | 
and nitpick_psimp "partial equational specification of constants as needed by Nitpick"  | 
|
1955  | 
and nitpick_choice_spec "choice specification of constants as needed by Nitpick"  | 
|
| 30980 | 1956  | 
|
| 
41792
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41636 
diff
changeset
 | 
1957  | 
declare if_bool_eq_conj [nitpick_unfold, no_atp]  | 
| 
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41636 
diff
changeset
 | 
1958  | 
if_bool_eq_disj [no_atp]  | 
| 
 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 
blanchet 
parents: 
41636 
diff
changeset
 | 
1959  | 
|
| 
29863
 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 
blanchet 
parents: 
29608 
diff
changeset
 | 
1960  | 
|
| 60758 | 1961  | 
subsection \<open>Preprocessing for the predicate compiler\<close>  | 
| 33084 | 1962  | 
|
| 59028 | 1963  | 
named_theorems code_pred_def "alternative definitions of constants for the Predicate Compiler"  | 
1964  | 
and code_pred_inline "inlining definitions for the Predicate Compiler"  | 
|
1965  | 
and code_pred_simp "simplification rules for the optimisations in the Predicate Compiler"  | 
|
| 33084 | 1966  | 
|
1967  | 
||
| 60758 | 1968  | 
subsection \<open>Legacy tactics and ML bindings\<close>  | 
| 21671 | 1969  | 
|
| 60758 | 1970  | 
ML \<open>  | 
| 58826 | 1971  | 
(* combination of (spec RS spec RS ...(j times) ... spec RS mp) *)  | 
1972  | 
local  | 
|
1973  | 
    fun wrong_prem (Const (@{const_name All}, _) $ Abs (_, _, t)) = wrong_prem t
 | 
|
1974  | 
| wrong_prem (Bound _) = true  | 
|
1975  | 
| wrong_prem _ = false;  | 
|
1976  | 
val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of);  | 
|
| 61914 | 1977  | 
fun smp i = funpow i (fn m => filter_right ([spec] RL m)) [mp];  | 
| 58826 | 1978  | 
in  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
59028 
diff
changeset
 | 
1979  | 
fun smp_tac ctxt j = EVERY' [dresolve_tac ctxt (smp j), assume_tac ctxt];  | 
| 58826 | 1980  | 
end;  | 
| 22839 | 1981  | 
|
| 58826 | 1982  | 
local  | 
1983  | 
val nnf_ss =  | 
|
1984  | 
      simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms simp_thms nnf_simps});
 | 
|
1985  | 
in  | 
|
1986  | 
fun nnf_conv ctxt = Simplifier.rewrite (put_simpset nnf_ss ctxt);  | 
|
1987  | 
end  | 
|
| 60758 | 1988  | 
\<close>  | 
| 21671 | 1989  | 
|
| 38866 | 1990  | 
hide_const (open) eq equal  | 
1991  | 
||
| 14357 | 1992  | 
end  |