| author | wenzelm | 
| Sat, 18 Jun 2011 23:51:22 +0200 | |
| changeset 43453 | 3c9696efe6b4 | 
| parent 35762 | af3ff2ba4c54 | 
| child 46822 | 95f1e700b712 | 
| permissions | -rw-r--r-- | 
| 35762 | 1  | 
(* Title: ZF/ex/Ramsey.thy  | 
| 1478 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 3  | 
Copyright 1992 University of Cambridge  | 
4  | 
||
5  | 
Ramsey's Theorem (finite exponent 2 version)  | 
|
6  | 
||
7  | 
Based upon the article  | 
|
8  | 
D Basin and M Kaufmann,  | 
|
9  | 
The Boyer-Moore Prover and Nuprl: An Experimental Comparison.  | 
|
10  | 
In G Huet and G Plotkin, editors, Logical Frameworks.  | 
|
| 12867 | 11  | 
(CUP, 1991), pages 89-119  | 
| 0 | 12  | 
|
13  | 
See also  | 
|
14  | 
M Kaufmann,  | 
|
15  | 
An example in NQTHM: Ramsey's Theorem  | 
|
16  | 
Internal Note, Computational Logic, Inc., Austin, Texas 78703  | 
|
17  | 
Available from the author: kaufmann@cli.com  | 
|
| 12867 | 18  | 
|
19  | 
This function compute Ramsey numbers according to the proof given below  | 
|
20  | 
(which, does not constrain the base case values at all.  | 
|
21  | 
||
22  | 
fun ram 0 j = 1  | 
|
23  | 
| ram i 0 = 1  | 
|
24  | 
| ram i j = ram (i-1) j + ram i (j-1)  | 
|
| 0 | 25  | 
*)  | 
26  | 
||
| 16417 | 27  | 
theory Ramsey imports Main begin  | 
| 21233 | 28  | 
|
29  | 
definition  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
30  | 
Symmetric :: "i=>o" where  | 
| 12867 | 31  | 
"Symmetric(E) == (\<forall>x y. <x,y>:E --> <y,x>:E)"  | 
32  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
33  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
34  | 
Atleast :: "[i,i]=>o" where -- "not really necessary: ZF defines cardinality"  | 
| 12867 | 35  | 
"Atleast(n,S) == (\<exists>f. f \<in> inj(n,S))"  | 
36  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
37  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
38  | 
Clique :: "[i,i,i]=>o" where  | 
| 12867 | 39  | 
"Clique(C,V,E) == (C \<subseteq> V) & (\<forall>x \<in> C. \<forall>y \<in> C. x\<noteq>y --> <x,y> \<in> E)"  | 
40  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
41  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
42  | 
Indept :: "[i,i,i]=>o" where  | 
| 12867 | 43  | 
"Indept(I,V,E) == (I \<subseteq> V) & (\<forall>x \<in> I. \<forall>y \<in> I. x\<noteq>y --> <x,y> \<notin> E)"  | 
44  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
45  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
46  | 
Ramsey :: "[i,i,i]=>o" where  | 
| 12867 | 47  | 
"Ramsey(n,i,j) == \<forall>V E. Symmetric(E) & Atleast(n,V) -->  | 
48  | 
(\<exists>C. Clique(C,V,E) & Atleast(i,C)) |  | 
|
49  | 
(\<exists>I. Indept(I,V,E) & Atleast(j,I))"  | 
|
50  | 
||
51  | 
(*** Cliques and Independent sets ***)  | 
|
52  | 
||
53  | 
lemma Clique0 [intro]: "Clique(0,V,E)"  | 
|
54  | 
by (unfold Clique_def, blast)  | 
|
55  | 
||
56  | 
lemma Clique_superset: "[| Clique(C,V',E); V'<=V |] ==> Clique(C,V,E)"  | 
|
57  | 
by (unfold Clique_def, blast)  | 
|
58  | 
||
59  | 
lemma Indept0 [intro]: "Indept(0,V,E)"  | 
|
60  | 
by (unfold Indept_def, blast)  | 
|
| 0 | 61  | 
|
| 12867 | 62  | 
lemma Indept_superset: "[| Indept(I,V',E); V'<=V |] ==> Indept(I,V,E)"  | 
63  | 
by (unfold Indept_def, blast)  | 
|
64  | 
||
65  | 
(*** Atleast ***)  | 
|
66  | 
||
67  | 
lemma Atleast0 [intro]: "Atleast(0,A)"  | 
|
68  | 
by (unfold Atleast_def inj_def Pi_def function_def, blast)  | 
|
69  | 
||
70  | 
lemma Atleast_succD:  | 
|
71  | 
    "Atleast(succ(m),A) ==> \<exists>x \<in> A. Atleast(m, A-{x})"
 | 
|
72  | 
apply (unfold Atleast_def)  | 
|
73  | 
apply (blast dest: inj_is_fun [THEN apply_type] inj_succ_restrict)  | 
|
74  | 
done  | 
|
| 0 | 75  | 
|
| 12867 | 76  | 
lemma Atleast_superset:  | 
77  | 
"[| Atleast(n,A); A \<subseteq> B |] ==> Atleast(n,B)"  | 
|
78  | 
by (unfold Atleast_def, blast intro: inj_weaken_type)  | 
|
79  | 
||
80  | 
lemma Atleast_succI:  | 
|
81  | 
"[| Atleast(m,B); b\<notin> B |] ==> Atleast(succ(m), cons(b,B))"  | 
|
82  | 
apply (unfold Atleast_def succ_def)  | 
|
83  | 
apply (blast intro: inj_extend elim: mem_irrefl)  | 
|
84  | 
done  | 
|
85  | 
||
86  | 
lemma Atleast_Diff_succI:  | 
|
87  | 
     "[| Atleast(m, B-{x});  x \<in> B |] ==> Atleast(succ(m), B)"
 | 
|
88  | 
by (blast intro: Atleast_succI [THEN Atleast_superset])  | 
|
89  | 
||
90  | 
(*** Main Cardinality Lemma ***)  | 
|
| 0 | 91  | 
|
| 12867 | 92  | 
(*The #-succ(0) strengthens the original theorem statement, but precisely  | 
93  | 
the same proof could be used!!*)  | 
|
94  | 
lemma pigeon2 [rule_format]:  | 
|
95  | 
"m \<in> nat ==>  | 
|
96  | 
\<forall>n \<in> nat. \<forall>A B. Atleast((m#+n) #- succ(0), A Un B) -->  | 
|
97  | 
Atleast(m,A) | Atleast(n,B)"  | 
|
98  | 
apply (induct_tac "m")  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
99  | 
apply (blast intro!: Atleast0, simp)  | 
| 12867 | 100  | 
apply (rule ballI)  | 
101  | 
apply (rename_tac m' n) (*simplifier does NOT preserve bound names!*)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
102  | 
apply (induct_tac "n", auto)  | 
| 12867 | 103  | 
apply (erule Atleast_succD [THEN bexE])  | 
104  | 
apply (rename_tac n' A B z)  | 
|
105  | 
apply (erule UnE)  | 
|
106  | 
(**case z \<in> B. Instantiate the '\<forall>A B' induction hypothesis. **)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
107  | 
apply (drule_tac [2] x1 = A and x = "B-{z}" in spec [THEN spec])
 | 
| 12867 | 108  | 
apply (erule_tac [2] mp [THEN disjE])  | 
109  | 
(*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*)  | 
|
110  | 
apply (erule_tac [3] asm_rl notE Atleast_Diff_succI)+  | 
|
111  | 
(*proving the condition*)  | 
|
112  | 
prefer 2 apply (blast intro: Atleast_superset)  | 
|
113  | 
(**case z \<in> A. Instantiate the '\<forall>n \<in> nat. \<forall>A B' induction hypothesis. **)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
114  | 
apply (drule_tac x2="succ(n')" and x1="A-{z}" and x=B
 | 
| 12867 | 115  | 
in bspec [THEN spec, THEN spec])  | 
116  | 
apply (erule nat_succI)  | 
|
117  | 
apply (erule mp [THEN disjE])  | 
|
118  | 
(*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
119  | 
apply (erule_tac [2] asm_rl Atleast_Diff_succI notE)+  | 
| 12867 | 120  | 
(*proving the condition*)  | 
121  | 
apply simp  | 
|
122  | 
apply (blast intro: Atleast_superset)  | 
|
123  | 
done  | 
|
| 0 | 124  | 
|
| 12867 | 125  | 
|
126  | 
(**** Ramsey's Theorem ****)  | 
|
127  | 
||
128  | 
(** Base cases of induction; they now admit ANY Ramsey number **)  | 
|
129  | 
||
130  | 
lemma Ramsey0j: "Ramsey(n,0,j)"  | 
|
131  | 
by (unfold Ramsey_def, blast)  | 
|
132  | 
||
133  | 
lemma Ramseyi0: "Ramsey(n,i,0)"  | 
|
134  | 
by (unfold Ramsey_def, blast)  | 
|
135  | 
||
136  | 
(** Lemmas for induction step **)  | 
|
| 0 | 137  | 
|
| 12867 | 138  | 
(*The use of succ(m) here, rather than #-succ(0), simplifies the proof of  | 
139  | 
Ramsey_step_lemma.*)  | 
|
140  | 
lemma Atleast_partition: "[| Atleast(m #+ n, A); m \<in> nat; n \<in> nat |]  | 
|
141  | 
      ==> Atleast(succ(m), {x \<in> A. ~P(x)}) | Atleast(n, {x \<in> A. P(x)})"
 | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
142  | 
apply (rule nat_succI [THEN pigeon2], assumption+)  | 
| 
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
143  | 
apply (rule Atleast_superset, auto)  | 
| 12867 | 144  | 
done  | 
145  | 
||
146  | 
(*For the Atleast part, proves ~(a \<in> I) from the second premise!*)  | 
|
147  | 
lemma Indept_succ:  | 
|
148  | 
    "[| Indept(I, {z \<in> V-{a}. <a,z> \<notin> E}, E);  Symmetric(E);  a \<in> V;   
 | 
|
149  | 
Atleast(j,I) |] ==>  | 
|
150  | 
Indept(cons(a,I), V, E) & Atleast(succ(j), cons(a,I))"  | 
|
151  | 
apply (unfold Symmetric_def Indept_def)  | 
|
152  | 
apply (blast intro!: Atleast_succI)  | 
|
153  | 
done  | 
|
154  | 
||
155  | 
||
156  | 
lemma Clique_succ:  | 
|
157  | 
    "[| Clique(C, {z \<in> V-{a}. <a,z>:E}, E);  Symmetric(E);  a \<in> V;   
 | 
|
158  | 
Atleast(j,C) |] ==>  | 
|
159  | 
Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))"  | 
|
160  | 
apply (unfold Symmetric_def Clique_def)  | 
|
161  | 
apply (blast intro!: Atleast_succI)  | 
|
162  | 
done  | 
|
163  | 
||
164  | 
(** Induction step **)  | 
|
| 0 | 165  | 
|
| 12867 | 166  | 
(*Published proofs gloss over the need for Ramsey numbers to be POSITIVE.*)  | 
167  | 
lemma Ramsey_step_lemma:  | 
|
168  | 
"[| Ramsey(succ(m), succ(i), j); Ramsey(n, i, succ(j));  | 
|
169  | 
m \<in> nat; n \<in> nat |] ==> Ramsey(succ(m#+n), succ(i), succ(j))"  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
12867 
diff
changeset
 | 
170  | 
apply (unfold Ramsey_def, clarify)  | 
| 12867 | 171  | 
apply (erule Atleast_succD [THEN bexE])  | 
172  | 
apply (erule_tac P1 = "%z.<x,z>:E" in Atleast_partition [THEN disjE],  | 
|
173  | 
assumption+)  | 
|
174  | 
(*case m*)  | 
|
175  | 
apply (fast dest!: Indept_succ elim: Clique_superset)  | 
|
176  | 
(*case n*)  | 
|
177  | 
apply (fast dest!: Clique_succ elim: Indept_superset)  | 
|
178  | 
done  | 
|
179  | 
||
180  | 
||
181  | 
(** The actual proof **)  | 
|
182  | 
||
183  | 
(*Again, the induction requires Ramsey numbers to be positive.*)  | 
|
184  | 
lemma ramsey_lemma: "i \<in> nat ==> \<forall>j \<in> nat. \<exists>n \<in> nat. Ramsey(succ(n), i, j)"  | 
|
185  | 
apply (induct_tac "i")  | 
|
186  | 
apply (blast intro!: Ramsey0j)  | 
|
187  | 
apply (rule ballI)  | 
|
188  | 
apply (induct_tac "j")  | 
|
189  | 
apply (blast intro!: Ramseyi0)  | 
|
190  | 
apply (blast intro!: add_type Ramsey_step_lemma)  | 
|
191  | 
done  | 
|
192  | 
||
193  | 
(*Final statement in a tidy form, without succ(...) *)  | 
|
194  | 
lemma ramsey: "[| i \<in> nat; j \<in> nat |] ==> \<exists>n \<in> nat. Ramsey(n,i,j)"  | 
|
195  | 
by (blast dest: ramsey_lemma)  | 
|
| 0 | 196  | 
|
197  | 
end  |