| author | wenzelm | 
| Sat, 29 Mar 2008 13:03:05 +0100 | |
| changeset 26475 | 3cc1e48d0ce1 | 
| parent 26342 | 0f65fa163304 | 
| child 27651 | 16a26996c30e | 
| permissions | -rw-r--r-- | 
| 23164 | 1 | (* Title: HOL/NatBin.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1999 University of Cambridge | |
| 5 | *) | |
| 6 | ||
| 7 | header {* Binary arithmetic for the natural numbers *}
 | |
| 8 | ||
| 9 | theory NatBin | |
| 10 | imports IntDiv | |
| 11 | begin | |
| 12 | ||
| 13 | text {*
 | |
| 14 | Arithmetic for naturals is reduced to that for the non-negative integers. | |
| 15 | *} | |
| 16 | ||
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 17 | instantiation nat :: number | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 18 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 19 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 20 | definition | 
| 25965 | 21 | nat_number_of_def [code inline]: "number_of v = nat (number_of v)" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 22 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 23 | instance .. | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 24 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25481diff
changeset | 25 | end | 
| 23164 | 26 | |
| 25965 | 27 | lemma [code post]: | 
| 28 | "nat (number_of v) = number_of v" | |
| 29 | unfolding nat_number_of_def .. | |
| 30 | ||
| 23164 | 31 | abbreviation (xsymbols) | 
| 32 |   square :: "'a::power => 'a"  ("(_\<twosuperior>)" [1000] 999) where
 | |
| 33 | "x\<twosuperior> == x^2" | |
| 34 | ||
| 35 | notation (latex output) | |
| 36 |   square  ("(_\<twosuperior>)" [1000] 999)
 | |
| 37 | ||
| 38 | notation (HTML output) | |
| 39 |   square  ("(_\<twosuperior>)" [1000] 999)
 | |
| 40 | ||
| 41 | ||
| 42 | subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
 | |
| 43 | ||
| 44 | declare nat_0 [simp] nat_1 [simp] | |
| 45 | ||
| 46 | lemma nat_number_of [simp]: "nat (number_of w) = number_of w" | |
| 47 | by (simp add: nat_number_of_def) | |
| 48 | ||
| 49 | lemma nat_numeral_0_eq_0 [simp]: "Numeral0 = (0::nat)" | |
| 50 | by (simp add: nat_number_of_def) | |
| 51 | ||
| 52 | lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)" | |
| 53 | by (simp add: nat_1 nat_number_of_def) | |
| 54 | ||
| 55 | lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0" | |
| 56 | by (simp add: nat_numeral_1_eq_1) | |
| 57 | ||
| 58 | lemma numeral_2_eq_2: "2 = Suc (Suc 0)" | |
| 59 | apply (unfold nat_number_of_def) | |
| 60 | apply (rule nat_2) | |
| 61 | done | |
| 62 | ||
| 63 | ||
| 64 | text{*Distributive laws for type @{text nat}.  The others are in theory
 | |
| 65 |    @{text IntArith}, but these require div and mod to be defined for type
 | |
| 66 | "int". They also need some of the lemmas proved above.*} | |
| 67 | ||
| 68 | lemma nat_div_distrib: "(0::int) <= z ==> nat (z div z') = nat z div nat z'" | |
| 69 | apply (case_tac "0 <= z'") | |
| 70 | apply (auto simp add: div_nonneg_neg_le0 DIVISION_BY_ZERO_DIV) | |
| 71 | apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO) | |
| 23365 | 72 | apply (auto elim!: nonneg_eq_int) | 
| 23164 | 73 | apply (rename_tac m m') | 
| 23365 | 74 | apply (subgoal_tac "0 <= int m div int m'") | 
| 23164 | 75 | prefer 2 apply (simp add: nat_numeral_0_eq_0 pos_imp_zdiv_nonneg_iff) | 
| 23307 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 76 | apply (rule of_nat_eq_iff [where 'a=int, THEN iffD1], simp) | 
| 23365 | 77 | apply (rule_tac r = "int (m mod m') " in quorem_div) | 
| 23164 | 78 | prefer 2 apply force | 
| 23365 | 79 | apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0 | 
| 23307 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 80 | of_nat_add [symmetric] of_nat_mult [symmetric] | 
| 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 81 | del: of_nat_add of_nat_mult) | 
| 23164 | 82 | done | 
| 83 | ||
| 84 | (*Fails if z'<0: the LHS collapses to (nat z) but the RHS doesn't*) | |
| 85 | lemma nat_mod_distrib: | |
| 86 | "[| (0::int) <= z; 0 <= z' |] ==> nat (z mod z') = nat z mod nat z'" | |
| 87 | apply (case_tac "z' = 0", simp add: DIVISION_BY_ZERO) | |
| 23365 | 88 | apply (auto elim!: nonneg_eq_int) | 
| 23164 | 89 | apply (rename_tac m m') | 
| 23365 | 90 | apply (subgoal_tac "0 <= int m mod int m'") | 
| 91 | prefer 2 apply (simp add: nat_less_iff nat_numeral_0_eq_0 pos_mod_sign) | |
| 92 | apply (rule int_int_eq [THEN iffD1], simp) | |
| 93 | apply (rule_tac q = "int (m div m') " in quorem_mod) | |
| 23164 | 94 | prefer 2 apply force | 
| 23365 | 95 | apply (simp add: nat_less_iff [symmetric] quorem_def nat_numeral_0_eq_0 | 
| 23307 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 96 | of_nat_add [symmetric] of_nat_mult [symmetric] | 
| 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 97 | del: of_nat_add of_nat_mult) | 
| 23164 | 98 | done | 
| 99 | ||
| 100 | text{*Suggested by Matthias Daum*}
 | |
| 101 | lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)" | |
| 102 | apply (subgoal_tac "nat x div nat k < nat x") | |
| 103 | apply (simp (asm_lr) add: nat_div_distrib [symmetric]) | |
| 104 | apply (rule Divides.div_less_dividend, simp_all) | |
| 105 | done | |
| 106 | ||
| 107 | subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
 | |
| 108 | ||
| 109 | (*"neg" is used in rewrite rules for binary comparisons*) | |
| 110 | lemma int_nat_number_of [simp]: | |
| 23365 | 111 | "int (number_of v) = | 
| 23307 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 112 | (if neg (number_of v :: int) then 0 | 
| 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 113 | else (number_of v :: int))" | 
| 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 114 | by (simp del: nat_number_of | 
| 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 115 | add: neg_nat nat_number_of_def not_neg_nat add_assoc) | 
| 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 huffman parents: 
23294diff
changeset | 116 | |
| 23164 | 117 | |
| 118 | subsubsection{*Successor *}
 | |
| 119 | ||
| 120 | lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" | |
| 121 | apply (rule sym) | |
| 122 | apply (simp add: nat_eq_iff int_Suc) | |
| 123 | done | |
| 124 | ||
| 125 | lemma Suc_nat_number_of_add: | |
| 126 | "Suc (number_of v + n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 127 | (if neg (number_of v :: int) then 1+n else number_of (Int.succ v) + n)" | 
| 23164 | 128 | by (simp del: nat_number_of | 
| 129 | add: nat_number_of_def neg_nat | |
| 130 | Suc_nat_eq_nat_zadd1 number_of_succ) | |
| 131 | ||
| 132 | lemma Suc_nat_number_of [simp]: | |
| 133 | "Suc (number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 134 | (if neg (number_of v :: int) then 1 else number_of (Int.succ v))" | 
| 23164 | 135 | apply (cut_tac n = 0 in Suc_nat_number_of_add) | 
| 136 | apply (simp cong del: if_weak_cong) | |
| 137 | done | |
| 138 | ||
| 139 | ||
| 140 | subsubsection{*Addition *}
 | |
| 141 | ||
| 142 | (*"neg" is used in rewrite rules for binary comparisons*) | |
| 143 | lemma add_nat_number_of [simp]: | |
| 144 | "(number_of v :: nat) + number_of v' = | |
| 145 | (if neg (number_of v :: int) then number_of v' | |
| 146 | else if neg (number_of v' :: int) then number_of v | |
| 147 | else number_of (v + v'))" | |
| 148 | by (force dest!: neg_nat | |
| 149 | simp del: nat_number_of | |
| 150 | simp add: nat_number_of_def nat_add_distrib [symmetric]) | |
| 151 | ||
| 152 | ||
| 153 | subsubsection{*Subtraction *}
 | |
| 154 | ||
| 155 | lemma diff_nat_eq_if: | |
| 156 | "nat z - nat z' = | |
| 157 | (if neg z' then nat z | |
| 158 | else let d = z-z' in | |
| 159 | if neg d then 0 else nat d)" | |
| 160 | apply (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0) | |
| 161 | done | |
| 162 | ||
| 163 | lemma diff_nat_number_of [simp]: | |
| 164 | "(number_of v :: nat) - number_of v' = | |
| 165 | (if neg (number_of v' :: int) then number_of v | |
| 166 | else let d = number_of (v + uminus v') in | |
| 167 | if neg d then 0 else nat d)" | |
| 168 | by (simp del: nat_number_of add: diff_nat_eq_if nat_number_of_def) | |
| 169 | ||
| 170 | ||
| 171 | ||
| 172 | subsubsection{*Multiplication *}
 | |
| 173 | ||
| 174 | lemma mult_nat_number_of [simp]: | |
| 175 | "(number_of v :: nat) * number_of v' = | |
| 176 | (if neg (number_of v :: int) then 0 else number_of (v * v'))" | |
| 177 | by (force dest!: neg_nat | |
| 178 | simp del: nat_number_of | |
| 179 | simp add: nat_number_of_def nat_mult_distrib [symmetric]) | |
| 180 | ||
| 181 | ||
| 182 | ||
| 183 | subsubsection{*Quotient *}
 | |
| 184 | ||
| 185 | lemma div_nat_number_of [simp]: | |
| 186 | "(number_of v :: nat) div number_of v' = | |
| 187 | (if neg (number_of v :: int) then 0 | |
| 188 | else nat (number_of v div number_of v'))" | |
| 189 | by (force dest!: neg_nat | |
| 190 | simp del: nat_number_of | |
| 191 | simp add: nat_number_of_def nat_div_distrib [symmetric]) | |
| 192 | ||
| 193 | lemma one_div_nat_number_of [simp]: | |
| 194 | "(Suc 0) div number_of v' = (nat (1 div number_of v'))" | |
| 195 | by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) | |
| 196 | ||
| 197 | ||
| 198 | subsubsection{*Remainder *}
 | |
| 199 | ||
| 200 | lemma mod_nat_number_of [simp]: | |
| 201 | "(number_of v :: nat) mod number_of v' = | |
| 202 | (if neg (number_of v :: int) then 0 | |
| 203 | else if neg (number_of v' :: int) then number_of v | |
| 204 | else nat (number_of v mod number_of v'))" | |
| 205 | by (force dest!: neg_nat | |
| 206 | simp del: nat_number_of | |
| 207 | simp add: nat_number_of_def nat_mod_distrib [symmetric]) | |
| 208 | ||
| 209 | lemma one_mod_nat_number_of [simp]: | |
| 210 | "(Suc 0) mod number_of v' = | |
| 211 | (if neg (number_of v' :: int) then Suc 0 | |
| 212 | else nat (1 mod number_of v'))" | |
| 213 | by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric]) | |
| 214 | ||
| 215 | ||
| 216 | subsubsection{* Divisibility *}
 | |
| 217 | ||
| 218 | lemmas dvd_eq_mod_eq_0_number_of = | |
| 219 | dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard] | |
| 220 | ||
| 221 | declare dvd_eq_mod_eq_0_number_of [simp] | |
| 222 | ||
| 223 | ML | |
| 224 | {*
 | |
| 225 | val nat_number_of_def = thm"nat_number_of_def"; | |
| 226 | ||
| 227 | val nat_number_of = thm"nat_number_of"; | |
| 228 | val nat_numeral_0_eq_0 = thm"nat_numeral_0_eq_0"; | |
| 229 | val nat_numeral_1_eq_1 = thm"nat_numeral_1_eq_1"; | |
| 230 | val numeral_1_eq_Suc_0 = thm"numeral_1_eq_Suc_0"; | |
| 231 | val numeral_2_eq_2 = thm"numeral_2_eq_2"; | |
| 232 | val nat_div_distrib = thm"nat_div_distrib"; | |
| 233 | val nat_mod_distrib = thm"nat_mod_distrib"; | |
| 234 | val int_nat_number_of = thm"int_nat_number_of"; | |
| 235 | val Suc_nat_eq_nat_zadd1 = thm"Suc_nat_eq_nat_zadd1"; | |
| 236 | val Suc_nat_number_of_add = thm"Suc_nat_number_of_add"; | |
| 237 | val Suc_nat_number_of = thm"Suc_nat_number_of"; | |
| 238 | val add_nat_number_of = thm"add_nat_number_of"; | |
| 239 | val diff_nat_eq_if = thm"diff_nat_eq_if"; | |
| 240 | val diff_nat_number_of = thm"diff_nat_number_of"; | |
| 241 | val mult_nat_number_of = thm"mult_nat_number_of"; | |
| 242 | val div_nat_number_of = thm"div_nat_number_of"; | |
| 243 | val mod_nat_number_of = thm"mod_nat_number_of"; | |
| 244 | *} | |
| 245 | ||
| 246 | ||
| 247 | subsection{*Comparisons*}
 | |
| 248 | ||
| 249 | subsubsection{*Equals (=) *}
 | |
| 250 | ||
| 251 | lemma eq_nat_nat_iff: | |
| 252 | "[| (0::int) <= z; 0 <= z' |] ==> (nat z = nat z') = (z=z')" | |
| 253 | by (auto elim!: nonneg_eq_int) | |
| 254 | ||
| 255 | (*"neg" is used in rewrite rules for binary comparisons*) | |
| 256 | lemma eq_nat_number_of [simp]: | |
| 257 | "((number_of v :: nat) = number_of v') = | |
| 258 | (if neg (number_of v :: int) then (iszero (number_of v' :: int) | neg (number_of v' :: int)) | |
| 259 | else if neg (number_of v' :: int) then iszero (number_of v :: int) | |
| 260 | else iszero (number_of (v + uminus v') :: int))" | |
| 261 | apply (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def | |
| 262 | eq_nat_nat_iff eq_number_of_eq nat_0 iszero_def | |
| 263 | split add: split_if cong add: imp_cong) | |
| 264 | apply (simp only: nat_eq_iff nat_eq_iff2) | |
| 265 | apply (simp add: not_neg_eq_ge_0 [symmetric]) | |
| 266 | done | |
| 267 | ||
| 268 | ||
| 269 | subsubsection{*Less-than (<) *}
 | |
| 270 | ||
| 271 | (*"neg" is used in rewrite rules for binary comparisons*) | |
| 272 | lemma less_nat_number_of [simp]: | |
| 273 | "((number_of v :: nat) < number_of v') = | |
| 274 | (if neg (number_of v :: int) then neg (number_of (uminus v') :: int) | |
| 275 | else neg (number_of (v + uminus v') :: int))" | |
| 276 | by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def | |
| 277 | nat_less_eq_zless less_number_of_eq_neg zless_nat_eq_int_zless | |
| 278 | cong add: imp_cong, simp add: Pls_def) | |
| 279 | ||
| 280 | ||
| 281 | (*Maps #n to n for n = 0, 1, 2*) | |
| 282 | lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2 | |
| 283 | ||
| 284 | ||
| 285 | subsection{*Powers with Numeric Exponents*}
 | |
| 286 | ||
| 287 | text{*We cannot refer to the number @{term 2} in @{text Ring_and_Field.thy}.
 | |
| 288 | We cannot prove general results about the numeral @{term "-1"}, so we have to
 | |
| 289 | use @{term "- 1"} instead.*}
 | |
| 290 | ||
| 23277 | 291 | lemma power2_eq_square: "(a::'a::recpower)\<twosuperior> = a * a" | 
| 23164 | 292 | by (simp add: numeral_2_eq_2 Power.power_Suc) | 
| 293 | ||
| 23277 | 294 | lemma zero_power2 [simp]: "(0::'a::{semiring_1,recpower})\<twosuperior> = 0"
 | 
| 23164 | 295 | by (simp add: power2_eq_square) | 
| 296 | ||
| 23277 | 297 | lemma one_power2 [simp]: "(1::'a::{semiring_1,recpower})\<twosuperior> = 1"
 | 
| 23164 | 298 | by (simp add: power2_eq_square) | 
| 299 | ||
| 300 | lemma power3_eq_cube: "(x::'a::recpower) ^ 3 = x * x * x" | |
| 301 | apply (subgoal_tac "3 = Suc (Suc (Suc 0))") | |
| 302 | apply (erule ssubst) | |
| 303 | apply (simp add: power_Suc mult_ac) | |
| 304 | apply (unfold nat_number_of_def) | |
| 305 | apply (subst nat_eq_iff) | |
| 306 | apply simp | |
| 307 | done | |
| 308 | ||
| 309 | text{*Squares of literal numerals will be evaluated.*}
 | |
| 310 | lemmas power2_eq_square_number_of = | |
| 311 | power2_eq_square [of "number_of w", standard] | |
| 312 | declare power2_eq_square_number_of [simp] | |
| 313 | ||
| 314 | ||
| 315 | lemma zero_le_power2[simp]: "0 \<le> (a\<twosuperior>::'a::{ordered_idom,recpower})"
 | |
| 316 | by (simp add: power2_eq_square) | |
| 317 | ||
| 318 | lemma zero_less_power2[simp]: | |
| 319 |      "(0 < a\<twosuperior>) = (a \<noteq> (0::'a::{ordered_idom,recpower}))"
 | |
| 320 | by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) | |
| 321 | ||
| 322 | lemma power2_less_0[simp]: | |
| 323 |   fixes a :: "'a::{ordered_idom,recpower}"
 | |
| 324 | shows "~ (a\<twosuperior> < 0)" | |
| 325 | by (force simp add: power2_eq_square mult_less_0_iff) | |
| 326 | ||
| 327 | lemma zero_eq_power2[simp]: | |
| 328 |      "(a\<twosuperior> = 0) = (a = (0::'a::{ordered_idom,recpower}))"
 | |
| 329 | by (force simp add: power2_eq_square mult_eq_0_iff) | |
| 330 | ||
| 331 | lemma abs_power2[simp]: | |
| 332 |      "abs(a\<twosuperior>) = (a\<twosuperior>::'a::{ordered_idom,recpower})"
 | |
| 333 | by (simp add: power2_eq_square abs_mult abs_mult_self) | |
| 334 | ||
| 335 | lemma power2_abs[simp]: | |
| 336 |      "(abs a)\<twosuperior> = (a\<twosuperior>::'a::{ordered_idom,recpower})"
 | |
| 337 | by (simp add: power2_eq_square abs_mult_self) | |
| 338 | ||
| 339 | lemma power2_minus[simp]: | |
| 340 |      "(- a)\<twosuperior> = (a\<twosuperior>::'a::{comm_ring_1,recpower})"
 | |
| 341 | by (simp add: power2_eq_square) | |
| 342 | ||
| 343 | lemma power2_le_imp_le: | |
| 344 |   fixes x y :: "'a::{ordered_semidom,recpower}"
 | |
| 345 | shows "\<lbrakk>x\<twosuperior> \<le> y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x \<le> y" | |
| 346 | unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) | |
| 347 | ||
| 348 | lemma power2_less_imp_less: | |
| 349 |   fixes x y :: "'a::{ordered_semidom,recpower}"
 | |
| 350 | shows "\<lbrakk>x\<twosuperior> < y\<twosuperior>; 0 \<le> y\<rbrakk> \<Longrightarrow> x < y" | |
| 351 | by (rule power_less_imp_less_base) | |
| 352 | ||
| 353 | lemma power2_eq_imp_eq: | |
| 354 |   fixes x y :: "'a::{ordered_semidom,recpower}"
 | |
| 355 | shows "\<lbrakk>x\<twosuperior> = y\<twosuperior>; 0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> x = y" | |
| 356 | unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base, simp) | |
| 357 | ||
| 358 | lemma power_minus1_even[simp]: "(- 1) ^ (2*n) = (1::'a::{comm_ring_1,recpower})"
 | |
| 359 | apply (induct "n") | |
| 360 | apply (auto simp add: power_Suc power_add) | |
| 361 | done | |
| 362 | ||
| 363 | lemma power_even_eq: "(a::'a::recpower) ^ (2*n) = (a^n)^2" | |
| 364 | by (subst mult_commute) (simp add: power_mult) | |
| 365 | ||
| 366 | lemma power_odd_eq: "(a::int) ^ Suc(2*n) = a * (a^n)^2" | |
| 367 | by (simp add: power_even_eq) | |
| 368 | ||
| 369 | lemma power_minus_even [simp]: | |
| 370 |      "(-a) ^ (2*n) = (a::'a::{comm_ring_1,recpower}) ^ (2*n)"
 | |
| 371 | by (simp add: power_minus1_even power_minus [of a]) | |
| 372 | ||
| 373 | lemma zero_le_even_power'[simp]: | |
| 374 |      "0 \<le> (a::'a::{ordered_idom,recpower}) ^ (2*n)"
 | |
| 375 | proof (induct "n") | |
| 376 | case 0 | |
| 377 | show ?case by (simp add: zero_le_one) | |
| 378 | next | |
| 379 | case (Suc n) | |
| 380 | have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" | |
| 381 | by (simp add: mult_ac power_add power2_eq_square) | |
| 382 | thus ?case | |
| 383 | by (simp add: prems zero_le_mult_iff) | |
| 384 | qed | |
| 385 | ||
| 386 | lemma odd_power_less_zero: | |
| 387 |      "(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0"
 | |
| 388 | proof (induct "n") | |
| 389 | case 0 | |
| 23389 | 390 | then show ?case by (simp add: Power.power_Suc) | 
| 23164 | 391 | next | 
| 392 | case (Suc n) | |
| 23389 | 393 | have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" | 
| 394 | by (simp add: mult_ac power_add power2_eq_square Power.power_Suc) | |
| 395 | thus ?case | |
| 396 | by (simp add: prems mult_less_0_iff mult_neg_neg) | |
| 23164 | 397 | qed | 
| 398 | ||
| 399 | lemma odd_0_le_power_imp_0_le: | |
| 400 |      "0 \<le> a  ^ Suc(2*n) ==> 0 \<le> (a::'a::{ordered_idom,recpower})"
 | |
| 401 | apply (insert odd_power_less_zero [of a n]) | |
| 402 | apply (force simp add: linorder_not_less [symmetric]) | |
| 403 | done | |
| 404 | ||
| 405 | text{*Simprules for comparisons where common factors can be cancelled.*}
 | |
| 406 | lemmas zero_compare_simps = | |
| 407 | add_strict_increasing add_strict_increasing2 add_increasing | |
| 408 | zero_le_mult_iff zero_le_divide_iff | |
| 409 | zero_less_mult_iff zero_less_divide_iff | |
| 410 | mult_le_0_iff divide_le_0_iff | |
| 411 | mult_less_0_iff divide_less_0_iff | |
| 412 | zero_le_power2 power2_less_0 | |
| 413 | ||
| 414 | subsubsection{*Nat *}
 | |
| 415 | ||
| 416 | lemma Suc_pred': "0 < n ==> n = Suc(n - 1)" | |
| 417 | by (simp add: numerals) | |
| 418 | ||
| 419 | (*Expresses a natural number constant as the Suc of another one. | |
| 420 | NOT suitable for rewriting because n recurs in the condition.*) | |
| 421 | lemmas expand_Suc = Suc_pred' [of "number_of v", standard] | |
| 422 | ||
| 423 | subsubsection{*Arith *}
 | |
| 424 | ||
| 425 | lemma Suc_eq_add_numeral_1: "Suc n = n + 1" | |
| 426 | by (simp add: numerals) | |
| 427 | ||
| 428 | lemma Suc_eq_add_numeral_1_left: "Suc n = 1 + n" | |
| 429 | by (simp add: numerals) | |
| 430 | ||
| 431 | (* These two can be useful when m = number_of... *) | |
| 432 | ||
| 433 | lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))" | |
| 434 | apply (case_tac "m") | |
| 435 | apply (simp_all add: numerals) | |
| 436 | done | |
| 437 | ||
| 438 | lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))" | |
| 439 | apply (case_tac "m") | |
| 440 | apply (simp_all add: numerals) | |
| 441 | done | |
| 442 | ||
| 443 | lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))" | |
| 444 | apply (case_tac "m") | |
| 445 | apply (simp_all add: numerals) | |
| 446 | done | |
| 447 | ||
| 448 | ||
| 449 | subsection{*Comparisons involving (0::nat) *}
 | |
| 450 | ||
| 451 | text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*}
 | |
| 452 | ||
| 453 | lemma eq_number_of_0 [simp]: | |
| 454 | "(number_of v = (0::nat)) = | |
| 455 | (if neg (number_of v :: int) then True else iszero (number_of v :: int))" | |
| 456 | by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0) | |
| 457 | ||
| 458 | lemma eq_0_number_of [simp]: | |
| 459 | "((0::nat) = number_of v) = | |
| 460 | (if neg (number_of v :: int) then True else iszero (number_of v :: int))" | |
| 461 | by (rule trans [OF eq_sym_conv eq_number_of_0]) | |
| 462 | ||
| 463 | lemma less_0_number_of [simp]: | |
| 464 | "((0::nat) < number_of v) = neg (number_of (uminus v) :: int)" | |
| 465 | by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] Pls_def) | |
| 466 | ||
| 467 | ||
| 468 | lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)" | |
| 469 | by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric] iszero_0) | |
| 470 | ||
| 471 | ||
| 472 | ||
| 473 | subsection{*Comparisons involving  @{term Suc} *}
 | |
| 474 | ||
| 475 | lemma eq_number_of_Suc [simp]: | |
| 476 | "(number_of v = Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 477 | (let pv = number_of (Int.pred v) in | 
| 23164 | 478 | if neg pv then False else nat pv = n)" | 
| 479 | apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less | |
| 480 | number_of_pred nat_number_of_def | |
| 481 | split add: split_if) | |
| 482 | apply (rule_tac x = "number_of v" in spec) | |
| 483 | apply (auto simp add: nat_eq_iff) | |
| 484 | done | |
| 485 | ||
| 486 | lemma Suc_eq_number_of [simp]: | |
| 487 | "(Suc n = number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 488 | (let pv = number_of (Int.pred v) in | 
| 23164 | 489 | if neg pv then False else nat pv = n)" | 
| 490 | by (rule trans [OF eq_sym_conv eq_number_of_Suc]) | |
| 491 | ||
| 492 | lemma less_number_of_Suc [simp]: | |
| 493 | "(number_of v < Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 494 | (let pv = number_of (Int.pred v) in | 
| 23164 | 495 | if neg pv then True else nat pv < n)" | 
| 496 | apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less | |
| 497 | number_of_pred nat_number_of_def | |
| 498 | split add: split_if) | |
| 499 | apply (rule_tac x = "number_of v" in spec) | |
| 500 | apply (auto simp add: nat_less_iff) | |
| 501 | done | |
| 502 | ||
| 503 | lemma less_Suc_number_of [simp]: | |
| 504 | "(Suc n < number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 505 | (let pv = number_of (Int.pred v) in | 
| 23164 | 506 | if neg pv then False else n < nat pv)" | 
| 507 | apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less | |
| 508 | number_of_pred nat_number_of_def | |
| 509 | split add: split_if) | |
| 510 | apply (rule_tac x = "number_of v" in spec) | |
| 511 | apply (auto simp add: zless_nat_eq_int_zless) | |
| 512 | done | |
| 513 | ||
| 514 | lemma le_number_of_Suc [simp]: | |
| 515 | "(number_of v <= Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 516 | (let pv = number_of (Int.pred v) in | 
| 23164 | 517 | if neg pv then True else nat pv <= n)" | 
| 518 | by (simp add: Let_def less_Suc_number_of linorder_not_less [symmetric]) | |
| 519 | ||
| 520 | lemma le_Suc_number_of [simp]: | |
| 521 | "(Suc n <= number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 522 | (let pv = number_of (Int.pred v) in | 
| 23164 | 523 | if neg pv then False else n <= nat pv)" | 
| 524 | by (simp add: Let_def less_number_of_Suc linorder_not_less [symmetric]) | |
| 525 | ||
| 526 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 527 | lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Int.Min" | 
| 23164 | 528 | by auto | 
| 529 | ||
| 530 | ||
| 531 | ||
| 532 | subsection{*Max and Min Combined with @{term Suc} *}
 | |
| 533 | ||
| 534 | lemma max_number_of_Suc [simp]: | |
| 535 | "max (Suc n) (number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 536 | (let pv = number_of (Int.pred v) in | 
| 23164 | 537 | if neg pv then Suc n else Suc(max n (nat pv)))" | 
| 538 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 539 | split add: split_if nat.split) | |
| 540 | apply (rule_tac x = "number_of v" in spec) | |
| 541 | apply auto | |
| 542 | done | |
| 543 | ||
| 544 | lemma max_Suc_number_of [simp]: | |
| 545 | "max (number_of v) (Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 546 | (let pv = number_of (Int.pred v) in | 
| 23164 | 547 | if neg pv then Suc n else Suc(max (nat pv) n))" | 
| 548 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 549 | split add: split_if nat.split) | |
| 550 | apply (rule_tac x = "number_of v" in spec) | |
| 551 | apply auto | |
| 552 | done | |
| 553 | ||
| 554 | lemma min_number_of_Suc [simp]: | |
| 555 | "min (Suc n) (number_of v) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 556 | (let pv = number_of (Int.pred v) in | 
| 23164 | 557 | if neg pv then 0 else Suc(min n (nat pv)))" | 
| 558 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 559 | split add: split_if nat.split) | |
| 560 | apply (rule_tac x = "number_of v" in spec) | |
| 561 | apply auto | |
| 562 | done | |
| 563 | ||
| 564 | lemma min_Suc_number_of [simp]: | |
| 565 | "min (number_of v) (Suc n) = | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 566 | (let pv = number_of (Int.pred v) in | 
| 23164 | 567 | if neg pv then 0 else Suc(min (nat pv) n))" | 
| 568 | apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def | |
| 569 | split add: split_if nat.split) | |
| 570 | apply (rule_tac x = "number_of v" in spec) | |
| 571 | apply auto | |
| 572 | done | |
| 573 | ||
| 574 | subsection{*Literal arithmetic involving powers*}
 | |
| 575 | ||
| 576 | lemma nat_power_eq: "(0::int) <= z ==> nat (z^n) = nat z ^ n" | |
| 577 | apply (induct "n") | |
| 578 | apply (simp_all (no_asm_simp) add: nat_mult_distrib) | |
| 579 | done | |
| 580 | ||
| 581 | lemma power_nat_number_of: | |
| 582 | "(number_of v :: nat) ^ n = | |
| 583 | (if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))" | |
| 584 | by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq | |
| 585 | split add: split_if cong: imp_cong) | |
| 586 | ||
| 587 | ||
| 588 | lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard] | |
| 589 | declare power_nat_number_of_number_of [simp] | |
| 590 | ||
| 591 | ||
| 592 | ||
| 23294 | 593 | text{*For arbitrary rings*}
 | 
| 23164 | 594 | |
| 23294 | 595 | lemma power_number_of_even: | 
| 596 |   fixes z :: "'a::{number_ring,recpower}"
 | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 597 | shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 598 | unfolding Let_def nat_number_of_def number_of_Bit0 | 
| 23164 | 599 | apply (rule_tac x = "number_of w" in spec, clarify) | 
| 600 | apply (case_tac " (0::int) <= x") | |
| 601 | apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square) | |
| 602 | done | |
| 603 | ||
| 23294 | 604 | lemma power_number_of_odd: | 
| 605 |   fixes z :: "'a::{number_ring,recpower}"
 | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 606 | shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w | 
| 23164 | 607 | then (let w = z ^ (number_of w) in z * w * w) else 1)" | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 608 | unfolding Let_def nat_number_of_def number_of_Bit1 | 
| 23164 | 609 | apply (rule_tac x = "number_of w" in spec, auto) | 
| 610 | apply (simp only: nat_add_distrib nat_mult_distrib) | |
| 611 | apply simp | |
| 23294 | 612 | apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc) | 
| 23164 | 613 | done | 
| 614 | ||
| 23294 | 615 | lemmas zpower_number_of_even = power_number_of_even [where 'a=int] | 
| 616 | lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int] | |
| 23164 | 617 | |
| 23294 | 618 | lemmas power_number_of_even_number_of [simp] = | 
| 619 | power_number_of_even [of "number_of v", standard] | |
| 23164 | 620 | |
| 23294 | 621 | lemmas power_number_of_odd_number_of [simp] = | 
| 622 | power_number_of_odd [of "number_of v", standard] | |
| 23164 | 623 | |
| 624 | ||
| 625 | ||
| 626 | ML | |
| 627 | {*
 | |
| 26342 | 628 | val numeral_ss = @{simpset} addsimps @{thms numerals};
 | 
| 23164 | 629 | |
| 630 | val nat_bin_arith_setup = | |
| 24093 | 631 | LinArith.map_data | 
| 23164 | 632 |    (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
 | 
| 633 |      {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
 | |
| 634 | inj_thms = inj_thms, | |
| 635 | lessD = lessD, neqE = neqE, | |
| 636 | simpset = simpset addsimps [Suc_nat_number_of, int_nat_number_of, | |
| 25481 | 637 |         @{thm not_neg_number_of_Pls}, @{thm neg_number_of_Min},
 | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 638 |         @{thm neg_number_of_Bit0}, @{thm neg_number_of_Bit1}]})
 | 
| 23164 | 639 | *} | 
| 640 | ||
| 24075 | 641 | declaration {* K nat_bin_arith_setup *}
 | 
| 23164 | 642 | |
| 643 | (* Enable arith to deal with div/mod k where k is a numeral: *) | |
| 644 | declare split_div[of _ _ "number_of k", standard, arith_split] | |
| 645 | declare split_mod[of _ _ "number_of k", standard, arith_split] | |
| 646 | ||
| 647 | lemma nat_number_of_Pls: "Numeral0 = (0::nat)" | |
| 648 | by (simp add: number_of_Pls nat_number_of_def) | |
| 649 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25571diff
changeset | 650 | lemma nat_number_of_Min: "number_of Int.Min = (0::nat)" | 
| 23164 | 651 | apply (simp only: number_of_Min nat_number_of_def nat_zminus_int) | 
| 652 | done | |
| 653 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 654 | lemma nat_number_of_Bit0: | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 655 | "number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 656 | apply (simp only: nat_number_of_def Let_def) | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 657 | apply (cases "neg (number_of w :: int)") | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 658 | apply (simp add: neg_nat neg_number_of_Bit0) | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 659 | apply (rule int_int_eq [THEN iffD1]) | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 660 | apply (simp only: not_neg_nat neg_number_of_Bit0 int_Suc zadd_int [symmetric] simp_thms) | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 661 | apply (simp only: number_of_Bit0 zadd_assoc) | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 662 | apply simp | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 663 | done | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 664 | |
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 665 | lemma nat_number_of_Bit1: | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 666 | "number_of (Int.Bit1 w) = | 
| 23164 | 667 | (if neg (number_of w :: int) then 0 | 
| 668 | else let n = number_of w in Suc (n + n))" | |
| 669 | apply (simp only: nat_number_of_def Let_def split: split_if) | |
| 670 | apply (intro conjI impI) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 671 | apply (simp add: neg_nat neg_number_of_Bit1) | 
| 23164 | 672 | apply (rule int_int_eq [THEN iffD1]) | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 673 | apply (simp only: not_neg_nat neg_number_of_Bit1 int_Suc zadd_int [symmetric] simp_thms) | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 674 | apply (simp only: number_of_Bit1 zadd_assoc) | 
| 23164 | 675 | done | 
| 676 | ||
| 677 | lemmas nat_number = | |
| 678 | nat_number_of_Pls nat_number_of_Min | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25965diff
changeset | 679 | nat_number_of_Bit0 nat_number_of_Bit1 | 
| 23164 | 680 | |
| 681 | lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)" | |
| 682 | by (simp add: Let_def) | |
| 683 | ||
| 684 | lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring,recpower})"
 | |
| 23294 | 685 | by (simp add: power_mult power_Suc); | 
| 23164 | 686 | |
| 687 | lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring,recpower})"
 | |
| 688 | by (simp add: power_mult power_Suc); | |
| 689 | ||
| 690 | ||
| 691 | subsection{*Literal arithmetic and @{term of_nat}*}
 | |
| 692 | ||
| 693 | lemma of_nat_double: | |
| 694 | "0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)" | |
| 695 | by (simp only: mult_2 nat_add_distrib of_nat_add) | |
| 696 | ||
| 697 | lemma nat_numeral_m1_eq_0: "-1 = (0::nat)" | |
| 698 | by (simp only: nat_number_of_def) | |
| 699 | ||
| 700 | lemma of_nat_number_of_lemma: | |
| 701 | "of_nat (number_of v :: nat) = | |
| 702 | (if 0 \<le> (number_of v :: int) | |
| 703 | then (number_of v :: 'a :: number_ring) | |
| 704 | else 0)" | |
| 705 | by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat); | |
| 706 | ||
| 707 | lemma of_nat_number_of_eq [simp]: | |
| 708 | "of_nat (number_of v :: nat) = | |
| 709 | (if neg (number_of v :: int) then 0 | |
| 710 | else (number_of v :: 'a :: number_ring))" | |
| 711 | by (simp only: of_nat_number_of_lemma neg_def, simp) | |
| 712 | ||
| 713 | ||
| 714 | subsection {*Lemmas for the Combination and Cancellation Simprocs*}
 | |
| 715 | ||
| 716 | lemma nat_number_of_add_left: | |
| 717 | "number_of v + (number_of v' + (k::nat)) = | |
| 718 | (if neg (number_of v :: int) then number_of v' + k | |
| 719 | else if neg (number_of v' :: int) then number_of v + k | |
| 720 | else number_of (v + v') + k)" | |
| 721 | by simp | |
| 722 | ||
| 723 | lemma nat_number_of_mult_left: | |
| 724 | "number_of v * (number_of v' * (k::nat)) = | |
| 725 | (if neg (number_of v :: int) then 0 | |
| 726 | else number_of (v * v') * k)" | |
| 727 | by simp | |
| 728 | ||
| 729 | ||
| 730 | subsubsection{*For @{text combine_numerals}*}
 | |
| 731 | ||
| 732 | lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)" | |
| 733 | by (simp add: add_mult_distrib) | |
| 734 | ||
| 735 | ||
| 736 | subsubsection{*For @{text cancel_numerals}*}
 | |
| 737 | ||
| 738 | lemma nat_diff_add_eq1: | |
| 739 | "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)" | |
| 740 | by (simp split add: nat_diff_split add: add_mult_distrib) | |
| 741 | ||
| 742 | lemma nat_diff_add_eq2: | |
| 743 | "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))" | |
| 744 | by (simp split add: nat_diff_split add: add_mult_distrib) | |
| 745 | ||
| 746 | lemma nat_eq_add_iff1: | |
| 747 | "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)" | |
| 748 | by (auto split add: nat_diff_split simp add: add_mult_distrib) | |
| 749 | ||
| 750 | lemma nat_eq_add_iff2: | |
| 751 | "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)" | |
| 752 | by (auto split add: nat_diff_split simp add: add_mult_distrib) | |
| 753 | ||
| 754 | lemma nat_less_add_iff1: | |
| 755 | "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)" | |
| 756 | by (auto split add: nat_diff_split simp add: add_mult_distrib) | |
| 757 | ||
| 758 | lemma nat_less_add_iff2: | |
| 759 | "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)" | |
| 760 | by (auto split add: nat_diff_split simp add: add_mult_distrib) | |
| 761 | ||
| 762 | lemma nat_le_add_iff1: | |
| 763 | "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)" | |
| 764 | by (auto split add: nat_diff_split simp add: add_mult_distrib) | |
| 765 | ||
| 766 | lemma nat_le_add_iff2: | |
| 767 | "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)" | |
| 768 | by (auto split add: nat_diff_split simp add: add_mult_distrib) | |
| 769 | ||
| 770 | ||
| 771 | subsubsection{*For @{text cancel_numeral_factors} *}
 | |
| 772 | ||
| 773 | lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)" | |
| 774 | by auto | |
| 775 | ||
| 776 | lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)" | |
| 777 | by auto | |
| 778 | ||
| 779 | lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)" | |
| 780 | by auto | |
| 781 | ||
| 782 | lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)" | |
| 783 | by auto | |
| 784 | ||
| 23969 | 785 | lemma nat_mult_dvd_cancel_disj[simp]: | 
| 786 | "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))" | |
| 787 | by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric]) | |
| 788 | ||
| 789 | lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)" | |
| 790 | by(auto) | |
| 791 | ||
| 23164 | 792 | |
| 793 | subsubsection{*For @{text cancel_factor} *}
 | |
| 794 | ||
| 795 | lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)" | |
| 796 | by auto | |
| 797 | ||
| 798 | lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)" | |
| 799 | by auto | |
| 800 | ||
| 801 | lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)" | |
| 802 | by auto | |
| 803 | ||
| 23969 | 804 | lemma nat_mult_div_cancel_disj[simp]: | 
| 23164 | 805 | "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)" | 
| 806 | by (simp add: nat_mult_div_cancel1) | |
| 807 | ||
| 808 | end |