| 10751 |      1 | (*  Title       : HSeries.thy
 | 
|  |      2 |     Author      : Jacques D. Fleuriot
 | 
|  |      3 |     Copyright   : 1998  University of Cambridge
 | 
|  |      4 |     Description : Finite summation and infinite series
 | 
|  |      5 |                   for hyperreals
 | 
|  |      6 | *) 
 | 
|  |      7 | 
 | 
|  |      8 | HSeries = Series +
 | 
|  |      9 | 
 | 
|  |     10 | consts 
 | 
|  |     11 |    sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal"
 | 
|  |     12 | 
 | 
|  |     13 | defs
 | 
|  |     14 |    sumhr_def
 | 
|  |     15 |    "sumhr p
 | 
|  |     16 |        == Abs_hypreal(UN X:Rep_hypnat(fst p). 
 | 
|  |     17 |               UN Y: Rep_hypnat(fst(snd p)).
 | 
| 10834 |     18 |               hyprel``{%n::nat. sumr (X n) (Y n) (snd(snd p))})"
 | 
| 10751 |     19 | 
 | 
|  |     20 | constdefs
 | 
|  |     21 |    NSsums  :: [nat=>real,real] => bool     (infixr 80)
 | 
|  |     22 |    "f NSsums s  == (%n. sumr 0 n f) ----NS> s"
 | 
|  |     23 | 
 | 
|  |     24 |    NSsummable :: (nat=>real) => bool
 | 
|  |     25 |    "NSsummable f == (EX s. f NSsums s)"
 | 
|  |     26 | 
 | 
|  |     27 |    NSsuminf   :: (nat=>real) => real
 | 
|  |     28 |    "NSsuminf f == (@s. f NSsums s)"
 | 
|  |     29 | 
 | 
|  |     30 | end
 |