| author | obua | 
| Thu, 20 Sep 2007 12:09:09 +0200 | |
| changeset 24653 | 3d3ebc0c927c | 
| parent 24380 | c215e256beca | 
| child 24748 | ee0a0eb6b738 | 
| permissions | -rw-r--r-- | 
| 14770 | 1 | (* Title: HOL/OrderedGroup.thy | 
| 14738 | 2 | ID: $Id$ | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 3 | Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel, | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 14738 | 5 | *) | 
| 6 | ||
| 7 | header {* Ordered Groups *}
 | |
| 8 | ||
| 15131 | 9 | theory OrderedGroup | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 10 | imports Lattices | 
| 19798 | 11 | uses "~~/src/Provers/Arith/abel_cancel.ML" | 
| 15131 | 12 | begin | 
| 14738 | 13 | |
| 14 | text {*
 | |
| 15 | The theory of partially ordered groups is taken from the books: | |
| 16 |   \begin{itemize}
 | |
| 17 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 18 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 19 |   \end{itemize}
 | |
| 20 | Most of the used notions can also be looked up in | |
| 21 |   \begin{itemize}
 | |
| 14770 | 22 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 23 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 24 |   \end{itemize}
 | |
| 25 | *} | |
| 26 | ||
| 23085 | 27 | subsection {* Semigroups and Monoids *}
 | 
| 14738 | 28 | |
| 22390 | 29 | class semigroup_add = plus + | 
| 30 | assumes add_assoc: "(a \<^loc>+ b) \<^loc>+ c = a \<^loc>+ (b \<^loc>+ c)" | |
| 31 | ||
| 32 | class ab_semigroup_add = semigroup_add + | |
| 33 | assumes add_commute: "a \<^loc>+ b = b \<^loc>+ a" | |
| 14738 | 34 | |
| 35 | lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ab_semigroup_add))" | |
| 36 | by (rule mk_left_commute [of "op +", OF add_assoc add_commute]) | |
| 37 | ||
| 38 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 39 | ||
| 22390 | 40 | class semigroup_mult = times + | 
| 41 | assumes mult_assoc: "(a \<^loc>* b) \<^loc>* c = a \<^loc>* (b \<^loc>* c)" | |
| 14738 | 42 | |
| 22390 | 43 | class ab_semigroup_mult = semigroup_mult + | 
| 44 | assumes mult_commute: "a \<^loc>* b = b \<^loc>* a" | |
| 23181 | 45 | begin | 
| 14738 | 46 | |
| 23181 | 47 | lemma mult_left_commute: "a \<^loc>* (b \<^loc>* c) = b \<^loc>* (a \<^loc>* c)" | 
| 48 | by (rule mk_left_commute [of "op \<^loc>*", OF mult_assoc mult_commute]) | |
| 49 | ||
| 50 | end | |
| 14738 | 51 | |
| 52 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 53 | ||
| 23085 | 54 | class monoid_add = zero + semigroup_add + | 
| 55 | assumes add_0_left [simp]: "\<^loc>0 \<^loc>+ a = a" and add_0_right [simp]: "a \<^loc>+ \<^loc>0 = a" | |
| 56 | ||
| 22390 | 57 | class comm_monoid_add = zero + ab_semigroup_add + | 
| 23085 | 58 | assumes add_0: "\<^loc>0 \<^loc>+ a = a" | 
| 59 | ||
| 60 | instance comm_monoid_add < monoid_add | |
| 61 | by intro_classes (insert comm_monoid_add_class.zero_plus.add_0, simp_all add: add_commute, auto) | |
| 14738 | 62 | |
| 22390 | 63 | class monoid_mult = one + semigroup_mult + | 
| 64 | assumes mult_1_left [simp]: "\<^loc>1 \<^loc>* a = a" | |
| 65 | assumes mult_1_right [simp]: "a \<^loc>* \<^loc>1 = a" | |
| 14738 | 66 | |
| 22390 | 67 | class comm_monoid_mult = one + ab_semigroup_mult + | 
| 68 | assumes mult_1: "\<^loc>1 \<^loc>* a = a" | |
| 14738 | 69 | |
| 70 | instance comm_monoid_mult \<subseteq> monoid_mult | |
| 22390 | 71 | by intro_classes (insert mult_1, simp_all add: mult_commute, auto) | 
| 14738 | 72 | |
| 22390 | 73 | class cancel_semigroup_add = semigroup_add + | 
| 74 | assumes add_left_imp_eq: "a \<^loc>+ b = a \<^loc>+ c \<Longrightarrow> b = c" | |
| 75 | assumes add_right_imp_eq: "b \<^loc>+ a = c \<^loc>+ a \<Longrightarrow> b = c" | |
| 14738 | 76 | |
| 22390 | 77 | class cancel_ab_semigroup_add = ab_semigroup_add + | 
| 78 | assumes add_imp_eq: "a \<^loc>+ b = a \<^loc>+ c \<Longrightarrow> b = c" | |
| 14738 | 79 | |
| 80 | instance cancel_ab_semigroup_add \<subseteq> cancel_semigroup_add | |
| 22390 | 81 | proof intro_classes | 
| 82 | fix a b c :: 'a | |
| 83 | assume "a + b = a + c" | |
| 84 | then show "b = c" by (rule add_imp_eq) | |
| 85 | next | |
| 14738 | 86 | fix a b c :: 'a | 
| 87 | assume "b + a = c + a" | |
| 22390 | 88 | then have "a + b = a + c" by (simp only: add_commute) | 
| 89 | then show "b = c" by (rule add_imp_eq) | |
| 14738 | 90 | qed | 
| 91 | ||
| 23085 | 92 | lemma add_left_cancel [simp]: | 
| 93 | "a + b = a + c \<longleftrightarrow> b = (c \<Colon> 'a\<Colon>cancel_semigroup_add)" | |
| 94 | by (blast dest: add_left_imp_eq) | |
| 95 | ||
| 96 | lemma add_right_cancel [simp]: | |
| 97 | "b + a = c + a \<longleftrightarrow> b = (c \<Colon> 'a\<Colon>cancel_semigroup_add)" | |
| 98 | by (blast dest: add_right_imp_eq) | |
| 99 | ||
| 100 | subsection {* Groups *}
 | |
| 101 | ||
| 22390 | 102 | class ab_group_add = minus + comm_monoid_add + | 
| 23085 | 103 | assumes ab_left_minus: "uminus a \<^loc>+ a = \<^loc>0" | 
| 104 | assumes ab_diff_minus: "a \<^loc>- b = a \<^loc>+ (uminus b)" | |
| 105 | ||
| 106 | class group_add = minus + monoid_add + | |
| 22390 | 107 | assumes left_minus [simp]: "uminus a \<^loc>+ a = \<^loc>0" | 
| 108 | assumes diff_minus: "a \<^loc>- b = a \<^loc>+ (uminus b)" | |
| 14738 | 109 | |
| 23085 | 110 | instance ab_group_add < group_add | 
| 111 | by intro_classes (simp_all add: ab_left_minus ab_diff_minus) | |
| 112 | ||
| 14738 | 113 | instance ab_group_add \<subseteq> cancel_ab_semigroup_add | 
| 22390 | 114 | proof intro_classes | 
| 14738 | 115 | fix a b c :: 'a | 
| 116 | assume "a + b = a + c" | |
| 22390 | 117 | then have "uminus a + a + b = uminus a + a + c" unfolding add_assoc by simp | 
| 23085 | 118 | then show "b = c" by simp | 
| 14738 | 119 | qed | 
| 120 | ||
| 23085 | 121 | lemma minus_add_cancel: "-(a::'a::group_add) + (a+b) = b" | 
| 122 | by(simp add:add_assoc[symmetric]) | |
| 123 | ||
| 124 | lemma minus_zero[simp]: "-(0::'a::group_add) = 0" | |
| 14738 | 125 | proof - | 
| 23085 | 126 | have "-(0::'a::group_add) = - 0 + (0+0)" by(simp only: add_0_right) | 
| 127 | also have "\<dots> = 0" by(rule minus_add_cancel) | |
| 14738 | 128 | finally show ?thesis . | 
| 129 | qed | |
| 130 | ||
| 23085 | 131 | lemma minus_minus[simp]: "- (-(a::'a::group_add)) = a" | 
| 132 | proof - | |
| 133 | have "-(-a) = -(-a) + (-a + a)" by simp | |
| 134 | also have "\<dots> = a" by(rule minus_add_cancel) | |
| 135 | finally show ?thesis . | |
| 136 | qed | |
| 14738 | 137 | |
| 23085 | 138 | lemma right_minus[simp]: "a + - a = (0::'a::group_add)" | 
| 14738 | 139 | proof - | 
| 23085 | 140 | have "a + -a = -(-a) + -a" by simp | 
| 141 | also have "\<dots> = 0" thm group_add.left_minus by(rule left_minus) | |
| 14738 | 142 | finally show ?thesis . | 
| 143 | qed | |
| 144 | ||
| 23085 | 145 | lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::group_add))" | 
| 14738 | 146 | proof | 
| 23085 | 147 | assume "a - b = 0" | 
| 148 | have "a = (a - b) + b" by (simp add:diff_minus add_assoc) | |
| 149 | also have "\<dots> = b" using `a - b = 0` by simp | |
| 150 | finally show "a = b" . | |
| 14738 | 151 | next | 
| 23085 | 152 | assume "a = b" thus "a - b = 0" by (simp add: diff_minus) | 
| 14738 | 153 | qed | 
| 154 | ||
| 23085 | 155 | lemma equals_zero_I: assumes "a+b = 0" shows "-a = (b::'a::group_add)" | 
| 156 | proof - | |
| 157 | have "- a = -a + (a+b)" using assms by simp | |
| 158 | also have "\<dots> = b" by(simp add:add_assoc[symmetric]) | |
| 159 | finally show ?thesis . | |
| 160 | qed | |
| 14738 | 161 | |
| 23085 | 162 | lemma diff_self[simp]: "(a::'a::group_add) - a = 0" | 
| 163 | by(simp add: diff_minus) | |
| 14738 | 164 | |
| 23085 | 165 | lemma diff_0 [simp]: "(0::'a::group_add) - a = -a" | 
| 14738 | 166 | by (simp add: diff_minus) | 
| 167 | ||
| 23085 | 168 | lemma diff_0_right [simp]: "a - (0::'a::group_add) = a" | 
| 14738 | 169 | by (simp add: diff_minus) | 
| 170 | ||
| 23085 | 171 | lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::group_add)" | 
| 14738 | 172 | by (simp add: diff_minus) | 
| 173 | ||
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 174 | lemma uminus_add_conv_diff: "-a + b = b - (a::'a::ab_group_add)" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 175 | by(simp add:diff_minus add_commute) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 176 | |
| 23085 | 177 | lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::group_add))" | 
| 14738 | 178 | proof | 
| 179 | assume "- a = - b" | |
| 180 | hence "- (- a) = - (- b)" | |
| 181 | by simp | |
| 182 | thus "a=b" by simp | |
| 183 | next | |
| 184 | assume "a=b" | |
| 185 | thus "-a = -b" by simp | |
| 186 | qed | |
| 187 | ||
| 23085 | 188 | lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::group_add))" | 
| 14738 | 189 | by (subst neg_equal_iff_equal [symmetric], simp) | 
| 190 | ||
| 23085 | 191 | lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::group_add))" | 
| 14738 | 192 | by (subst neg_equal_iff_equal [symmetric], simp) | 
| 193 | ||
| 194 | text{*The next two equations can make the simplifier loop!*}
 | |
| 195 | ||
| 23085 | 196 | lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::group_add))" | 
| 14738 | 197 | proof - | 
| 198 | have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal) | |
| 199 | thus ?thesis by (simp add: eq_commute) | |
| 200 | qed | |
| 201 | ||
| 23085 | 202 | lemma minus_equation_iff: "(- a = b) = (- (b::'a::group_add) = a)" | 
| 14738 | 203 | proof - | 
| 204 | have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal) | |
| 205 | thus ?thesis by (simp add: eq_commute) | |
| 206 | qed | |
| 207 | ||
| 208 | lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ab_group_add)" | |
| 209 | apply (rule equals_zero_I) | |
| 23085 | 210 | apply (simp add: add_ac) | 
| 14738 | 211 | done | 
| 212 | ||
| 213 | lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ab_group_add)" | |
| 214 | by (simp add: diff_minus add_commute) | |
| 215 | ||
| 216 | subsection {* (Partially) Ordered Groups *} 
 | |
| 217 | ||
| 22390 | 218 | class pordered_ab_semigroup_add = order + ab_semigroup_add + | 
| 219 | assumes add_left_mono: "a \<sqsubseteq> b \<Longrightarrow> c \<^loc>+ a \<sqsubseteq> c \<^loc>+ b" | |
| 14738 | 220 | |
| 22390 | 221 | class pordered_cancel_ab_semigroup_add = | 
| 222 | pordered_ab_semigroup_add + cancel_ab_semigroup_add | |
| 14738 | 223 | |
| 22390 | 224 | class pordered_ab_semigroup_add_imp_le = pordered_cancel_ab_semigroup_add + | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 225 | assumes add_le_imp_le_left: "c \<^loc>+ a \<sqsubseteq> c \<^loc>+ b \<Longrightarrow> a \<sqsubseteq> b" | 
| 14738 | 226 | |
| 22390 | 227 | class pordered_ab_group_add = ab_group_add + pordered_ab_semigroup_add | 
| 14738 | 228 | |
| 229 | instance pordered_ab_group_add \<subseteq> pordered_ab_semigroup_add_imp_le | |
| 230 | proof | |
| 231 | fix a b c :: 'a | |
| 232 | assume "c + a \<le> c + b" | |
| 233 | hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono) | |
| 234 | hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc) | |
| 235 | thus "a \<le> b" by simp | |
| 236 | qed | |
| 237 | ||
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 238 | class ordered_ab_semigroup_add = | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 239 | linorder + pordered_ab_semigroup_add | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 240 | |
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 241 | class ordered_cancel_ab_semigroup_add = | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 242 | linorder + pordered_cancel_ab_semigroup_add | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 243 | |
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 244 | instance ordered_cancel_ab_semigroup_add \<subseteq> ordered_ab_semigroup_add .. | 
| 14738 | 245 | |
| 246 | instance ordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add_imp_le | |
| 247 | proof | |
| 248 | fix a b c :: 'a | |
| 249 | assume le: "c + a <= c + b" | |
| 250 | show "a <= b" | |
| 251 | proof (rule ccontr) | |
| 252 | assume w: "~ a \<le> b" | |
| 253 | hence "b <= a" by (simp add: linorder_not_le) | |
| 254 | hence le2: "c+b <= c+a" by (rule add_left_mono) | |
| 255 | have "a = b" | |
| 256 | apply (insert le) | |
| 257 | apply (insert le2) | |
| 258 | apply (drule order_antisym, simp_all) | |
| 259 | done | |
| 260 | with w show False | |
| 261 | by (simp add: linorder_not_le [symmetric]) | |
| 262 | qed | |
| 263 | qed | |
| 264 | ||
| 265 | lemma add_right_mono: "a \<le> (b::'a::pordered_ab_semigroup_add) ==> a + c \<le> b + c" | |
| 22390 | 266 | by (simp add: add_commute [of _ c] add_left_mono) | 
| 14738 | 267 | |
| 268 | text {* non-strict, in both arguments *}
 | |
| 269 | lemma add_mono: | |
| 270 | "[|a \<le> b; c \<le> d|] ==> a + c \<le> b + (d::'a::pordered_ab_semigroup_add)" | |
| 271 | apply (erule add_right_mono [THEN order_trans]) | |
| 272 | apply (simp add: add_commute add_left_mono) | |
| 273 | done | |
| 274 | ||
| 275 | lemma add_strict_left_mono: | |
| 276 | "a < b ==> c + a < c + (b::'a::pordered_cancel_ab_semigroup_add)" | |
| 277 | by (simp add: order_less_le add_left_mono) | |
| 278 | ||
| 279 | lemma add_strict_right_mono: | |
| 280 | "a < b ==> a + c < b + (c::'a::pordered_cancel_ab_semigroup_add)" | |
| 281 | by (simp add: add_commute [of _ c] add_strict_left_mono) | |
| 282 | ||
| 283 | text{*Strict monotonicity in both arguments*}
 | |
| 284 | lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)" | |
| 285 | apply (erule add_strict_right_mono [THEN order_less_trans]) | |
| 286 | apply (erule add_strict_left_mono) | |
| 287 | done | |
| 288 | ||
| 289 | lemma add_less_le_mono: | |
| 290 | "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)" | |
| 291 | apply (erule add_strict_right_mono [THEN order_less_le_trans]) | |
| 292 | apply (erule add_left_mono) | |
| 293 | done | |
| 294 | ||
| 295 | lemma add_le_less_mono: | |
| 296 | "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)" | |
| 297 | apply (erule add_right_mono [THEN order_le_less_trans]) | |
| 298 | apply (erule add_strict_left_mono) | |
| 299 | done | |
| 300 | ||
| 301 | lemma add_less_imp_less_left: | |
| 302 | assumes less: "c + a < c + b" shows "a < (b::'a::pordered_ab_semigroup_add_imp_le)" | |
| 303 | proof - | |
| 304 | from less have le: "c + a <= c + b" by (simp add: order_le_less) | |
| 305 | have "a <= b" | |
| 306 | apply (insert le) | |
| 307 | apply (drule add_le_imp_le_left) | |
| 308 | by (insert le, drule add_le_imp_le_left, assumption) | |
| 309 | moreover have "a \<noteq> b" | |
| 310 | proof (rule ccontr) | |
| 311 | assume "~(a \<noteq> b)" | |
| 312 | then have "a = b" by simp | |
| 313 | then have "c + a = c + b" by simp | |
| 314 | with less show "False"by simp | |
| 315 | qed | |
| 316 | ultimately show "a < b" by (simp add: order_le_less) | |
| 317 | qed | |
| 318 | ||
| 319 | lemma add_less_imp_less_right: | |
| 320 | "a + c < b + c ==> a < (b::'a::pordered_ab_semigroup_add_imp_le)" | |
| 321 | apply (rule add_less_imp_less_left [of c]) | |
| 322 | apply (simp add: add_commute) | |
| 323 | done | |
| 324 | ||
| 325 | lemma add_less_cancel_left [simp]: | |
| 326 | "(c+a < c+b) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 327 | by (blast intro: add_less_imp_less_left add_strict_left_mono) | |
| 328 | ||
| 329 | lemma add_less_cancel_right [simp]: | |
| 330 | "(a+c < b+c) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 331 | by (blast intro: add_less_imp_less_right add_strict_right_mono) | |
| 332 | ||
| 333 | lemma add_le_cancel_left [simp]: | |
| 334 | "(c+a \<le> c+b) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 335 | by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) | |
| 336 | ||
| 337 | lemma add_le_cancel_right [simp]: | |
| 338 | "(a+c \<le> b+c) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 339 | by (simp add: add_commute[of a c] add_commute[of b c]) | |
| 340 | ||
| 341 | lemma add_le_imp_le_right: | |
| 342 | "a + c \<le> b + c ==> a \<le> (b::'a::pordered_ab_semigroup_add_imp_le)" | |
| 343 | by simp | |
| 344 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 345 | lemma add_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 346 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 347 | shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c" | 
| 14738 | 348 | by (insert add_mono [of 0 a b c], simp) | 
| 349 | ||
| 15539 | 350 | lemma add_increasing2: | 
| 351 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | |
| 352 | shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c" | |
| 353 | by (simp add:add_increasing add_commute[of a]) | |
| 354 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 355 | lemma add_strict_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 356 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 357 | shows "[|0<a; b\<le>c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 358 | by (insert add_less_le_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 359 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 360 | lemma add_strict_increasing2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 361 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 362 | shows "[|0\<le>a; b<c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 363 | by (insert add_le_less_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 364 | |
| 19527 | 365 | lemma max_add_distrib_left: | 
| 366 | fixes z :: "'a::pordered_ab_semigroup_add_imp_le" | |
| 367 | shows "(max x y) + z = max (x+z) (y+z)" | |
| 368 | by (rule max_of_mono [THEN sym], rule add_le_cancel_right) | |
| 369 | ||
| 370 | lemma min_add_distrib_left: | |
| 371 | fixes z :: "'a::pordered_ab_semigroup_add_imp_le" | |
| 372 | shows "(min x y) + z = min (x+z) (y+z)" | |
| 373 | by (rule min_of_mono [THEN sym], rule add_le_cancel_right) | |
| 374 | ||
| 375 | lemma max_diff_distrib_left: | |
| 376 | fixes z :: "'a::pordered_ab_group_add" | |
| 377 | shows "(max x y) - z = max (x-z) (y-z)" | |
| 378 | by (simp add: diff_minus, rule max_add_distrib_left) | |
| 379 | ||
| 380 | lemma min_diff_distrib_left: | |
| 381 | fixes z :: "'a::pordered_ab_group_add" | |
| 382 | shows "(min x y) - z = min (x-z) (y-z)" | |
| 383 | by (simp add: diff_minus, rule min_add_distrib_left) | |
| 384 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 385 | |
| 14738 | 386 | subsection {* Ordering Rules for Unary Minus *}
 | 
| 387 | ||
| 388 | lemma le_imp_neg_le: | |
| 23389 | 389 |   assumes "a \<le> (b::'a::{pordered_ab_semigroup_add_imp_le, ab_group_add})" shows "-b \<le> -a"
 | 
| 14738 | 390 | proof - | 
| 391 | have "-a+a \<le> -a+b" | |
| 23389 | 392 | using `a \<le> b` by (rule add_left_mono) | 
| 14738 | 393 | hence "0 \<le> -a+b" | 
| 394 | by simp | |
| 395 | hence "0 + (-b) \<le> (-a + b) + (-b)" | |
| 396 | by (rule add_right_mono) | |
| 397 | thus ?thesis | |
| 398 | by (simp add: add_assoc) | |
| 399 | qed | |
| 400 | ||
| 401 | lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::pordered_ab_group_add))" | |
| 402 | proof | |
| 403 | assume "- b \<le> - a" | |
| 404 | hence "- (- a) \<le> - (- b)" | |
| 405 | by (rule le_imp_neg_le) | |
| 406 | thus "a\<le>b" by simp | |
| 407 | next | |
| 408 | assume "a\<le>b" | |
| 409 | thus "-b \<le> -a" by (rule le_imp_neg_le) | |
| 410 | qed | |
| 411 | ||
| 412 | lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::pordered_ab_group_add))" | |
| 413 | by (subst neg_le_iff_le [symmetric], simp) | |
| 414 | ||
| 415 | lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::pordered_ab_group_add))" | |
| 416 | by (subst neg_le_iff_le [symmetric], simp) | |
| 417 | ||
| 418 | lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::pordered_ab_group_add))" | |
| 419 | by (force simp add: order_less_le) | |
| 420 | ||
| 421 | lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::pordered_ab_group_add))" | |
| 422 | by (subst neg_less_iff_less [symmetric], simp) | |
| 423 | ||
| 424 | lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::pordered_ab_group_add))" | |
| 425 | by (subst neg_less_iff_less [symmetric], simp) | |
| 426 | ||
| 427 | text{*The next several equations can make the simplifier loop!*}
 | |
| 428 | ||
| 429 | lemma less_minus_iff: "(a < - b) = (b < - (a::'a::pordered_ab_group_add))" | |
| 430 | proof - | |
| 431 | have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less) | |
| 432 | thus ?thesis by simp | |
| 433 | qed | |
| 434 | ||
| 435 | lemma minus_less_iff: "(- a < b) = (- b < (a::'a::pordered_ab_group_add))" | |
| 436 | proof - | |
| 437 | have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less) | |
| 438 | thus ?thesis by simp | |
| 439 | qed | |
| 440 | ||
| 441 | lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::pordered_ab_group_add))" | |
| 442 | proof - | |
| 443 | have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff) | |
| 444 | have "(- (- a) <= -b) = (b <= - a)" | |
| 445 | apply (auto simp only: order_le_less) | |
| 446 | apply (drule mm) | |
| 447 | apply (simp_all) | |
| 448 | apply (drule mm[simplified], assumption) | |
| 449 | done | |
| 450 | then show ?thesis by simp | |
| 451 | qed | |
| 452 | ||
| 453 | lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::pordered_ab_group_add))" | |
| 454 | by (auto simp add: order_le_less minus_less_iff) | |
| 455 | ||
| 456 | lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ab_group_add)" | |
| 457 | by (simp add: diff_minus add_ac) | |
| 458 | ||
| 459 | lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ab_group_add)" | |
| 460 | by (simp add: diff_minus add_ac) | |
| 461 | ||
| 462 | lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ab_group_add))" | |
| 463 | by (auto simp add: diff_minus add_assoc) | |
| 464 | ||
| 465 | lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ab_group_add) = c)" | |
| 466 | by (auto simp add: diff_minus add_assoc) | |
| 467 | ||
| 468 | lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ab_group_add))" | |
| 469 | by (simp add: diff_minus add_ac) | |
| 470 | ||
| 471 | lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ab_group_add)" | |
| 472 | by (simp add: diff_minus add_ac) | |
| 473 | ||
| 474 | lemma diff_add_cancel: "a - b + b = (a::'a::ab_group_add)" | |
| 475 | by (simp add: diff_minus add_ac) | |
| 476 | ||
| 477 | lemma add_diff_cancel: "a + b - b = (a::'a::ab_group_add)" | |
| 478 | by (simp add: diff_minus add_ac) | |
| 479 | ||
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 480 | text{*Further subtraction laws*}
 | 
| 14738 | 481 | |
| 482 | lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::pordered_ab_group_add))" | |
| 483 | proof - | |
| 484 | have "(a < b) = (a + (- b) < b + (-b))" | |
| 485 | by (simp only: add_less_cancel_right) | |
| 486 | also have "... = (a - b < 0)" by (simp add: diff_minus) | |
| 487 | finally show ?thesis . | |
| 488 | qed | |
| 489 | ||
| 490 | lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::pordered_ab_group_add))" | |
| 15481 | 491 | apply (subst less_iff_diff_less_0 [of a]) | 
| 14738 | 492 | apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst]) | 
| 493 | apply (simp add: diff_minus add_ac) | |
| 494 | done | |
| 495 | ||
| 496 | lemma less_diff_eq: "(a < c-b) = (a + (b::'a::pordered_ab_group_add) < c)" | |
| 15481 | 497 | apply (subst less_iff_diff_less_0 [of "a+b"]) | 
| 498 | apply (subst less_iff_diff_less_0 [of a]) | |
| 14738 | 499 | apply (simp add: diff_minus add_ac) | 
| 500 | done | |
| 501 | ||
| 502 | lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::pordered_ab_group_add))" | |
| 503 | by (auto simp add: order_le_less diff_less_eq diff_add_cancel add_diff_cancel) | |
| 504 | ||
| 505 | lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::pordered_ab_group_add) \<le> c)" | |
| 506 | by (auto simp add: order_le_less less_diff_eq diff_add_cancel add_diff_cancel) | |
| 507 | ||
| 508 | text{*This list of rewrites simplifies (in)equalities by bringing subtractions
 | |
| 509 | to the top and then moving negative terms to the other side. | |
| 510 |   Use with @{text add_ac}*}
 | |
| 511 | lemmas compare_rls = | |
| 512 | diff_minus [symmetric] | |
| 513 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 514 | diff_less_eq less_diff_eq diff_le_eq le_diff_eq | |
| 515 | diff_eq_eq eq_diff_eq | |
| 516 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 517 | subsection {* Support for reasoning about signs *}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 518 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 519 | lemma add_pos_pos: "0 < | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 520 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 521 | ==> 0 < y ==> 0 < x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 522 | apply (subgoal_tac "0 + 0 < x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 523 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 524 | apply (erule add_less_le_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 525 | apply (erule order_less_imp_le) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 526 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 527 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 528 | lemma add_pos_nonneg: "0 < | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 529 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 530 | ==> 0 <= y ==> 0 < x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 531 | apply (subgoal_tac "0 + 0 < x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 532 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 533 | apply (erule add_less_le_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 534 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 535 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 536 | lemma add_nonneg_pos: "0 <= | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 537 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 538 | ==> 0 < y ==> 0 < x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 539 | apply (subgoal_tac "0 + 0 < x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 540 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 541 | apply (erule add_le_less_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 542 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 543 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 544 | lemma add_nonneg_nonneg: "0 <= | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 545 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 546 | ==> 0 <= y ==> 0 <= x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 547 | apply (subgoal_tac "0 + 0 <= x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 548 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 549 | apply (erule add_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 550 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 551 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 552 | lemma add_neg_neg: "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add})
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 553 | < 0 ==> y < 0 ==> x + y < 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 554 | apply (subgoal_tac "x + y < 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 555 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 556 | apply (erule add_less_le_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 557 | apply (erule order_less_imp_le) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 558 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 559 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 560 | lemma add_neg_nonpos: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 561 |     "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) < 0 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 562 | ==> y <= 0 ==> x + y < 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 563 | apply (subgoal_tac "x + y < 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 564 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 565 | apply (erule add_less_le_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 566 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 567 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 568 | lemma add_nonpos_neg: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 569 |     "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 570 | ==> y < 0 ==> x + y < 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 571 | apply (subgoal_tac "x + y < 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 572 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 573 | apply (erule add_le_less_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 574 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 575 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 576 | lemma add_nonpos_nonpos: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 577 |     "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 578 | ==> y <= 0 ==> x + y <= 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 579 | apply (subgoal_tac "x + y <= 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 580 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 581 | apply (erule add_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 582 | done | 
| 14738 | 583 | |
| 584 | subsection{*Lemmas for the @{text cancel_numerals} simproc*}
 | |
| 585 | ||
| 586 | lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ab_group_add))" | |
| 587 | by (simp add: compare_rls) | |
| 588 | ||
| 589 | lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::pordered_ab_group_add))" | |
| 590 | by (simp add: compare_rls) | |
| 591 | ||
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 592 | |
| 14738 | 593 | subsection {* Lattice Ordered (Abelian) Groups *}
 | 
| 594 | ||
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 595 | class lordered_ab_group_meet = pordered_ab_group_add + lower_semilattice | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 596 | |
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 597 | class lordered_ab_group_join = pordered_ab_group_add + upper_semilattice | 
| 14738 | 598 | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 599 | class lordered_ab_group = pordered_ab_group_add + lattice | 
| 14738 | 600 | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 601 | instance lordered_ab_group \<subseteq> lordered_ab_group_meet by default | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 602 | instance lordered_ab_group \<subseteq> lordered_ab_group_join by default | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 603 | |
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 604 | lemma add_inf_distrib_left: "a + inf b c = inf (a + b) (a + (c::'a::{pordered_ab_group_add, lower_semilattice}))"
 | 
| 14738 | 605 | apply (rule order_antisym) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 606 | apply (simp_all add: le_infI) | 
| 14738 | 607 | apply (rule add_le_imp_le_left [of "-a"]) | 
| 608 | apply (simp only: add_assoc[symmetric], simp) | |
| 21312 | 609 | apply rule | 
| 610 | apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+ | |
| 14738 | 611 | done | 
| 612 | ||
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 613 | lemma add_sup_distrib_left: "a + sup b c = sup (a + b) (a+ (c::'a::{pordered_ab_group_add, upper_semilattice}))" 
 | 
| 14738 | 614 | apply (rule order_antisym) | 
| 615 | apply (rule add_le_imp_le_left [of "-a"]) | |
| 616 | apply (simp only: add_assoc[symmetric], simp) | |
| 21312 | 617 | apply rule | 
| 618 | apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+ | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 619 | apply (rule le_supI) | 
| 21312 | 620 | apply (simp_all) | 
| 14738 | 621 | done | 
| 622 | ||
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 623 | lemma add_inf_distrib_right: "inf a b + (c::'a::lordered_ab_group) = inf (a+c) (b+c)" | 
| 14738 | 624 | proof - | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 625 | have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left) | 
| 14738 | 626 | thus ?thesis by (simp add: add_commute) | 
| 627 | qed | |
| 628 | ||
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 629 | lemma add_sup_distrib_right: "sup a b + (c::'a::lordered_ab_group) = sup (a+c) (b+c)" | 
| 14738 | 630 | proof - | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 631 | have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left) | 
| 14738 | 632 | thus ?thesis by (simp add: add_commute) | 
| 633 | qed | |
| 634 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 635 | lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left | 
| 14738 | 636 | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 637 | lemma inf_eq_neg_sup: "inf a (b\<Colon>'a\<Colon>lordered_ab_group) = - sup (-a) (-b)" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 638 | proof (rule inf_unique) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 639 | fix a b :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 640 | show "- sup (-a) (-b) \<le> a" by (rule add_le_imp_le_right [of _ "sup (-a) (-b)"]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 641 | (simp, simp add: add_sup_distrib_left) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 642 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 643 | fix a b :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 644 | show "- sup (-a) (-b) \<le> b" by (rule add_le_imp_le_right [of _ "sup (-a) (-b)"]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 645 | (simp, simp add: add_sup_distrib_left) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 646 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 647 | fix a b c :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 648 | assume "a \<le> b" "a \<le> c" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 649 | then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 650 | (simp add: le_supI) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 651 | qed | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 652 | |
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 653 | lemma sup_eq_neg_inf: "sup a (b\<Colon>'a\<Colon>lordered_ab_group) = - inf (-a) (-b)" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 654 | proof (rule sup_unique) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 655 | fix a b :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 656 | show "a \<le> - inf (-a) (-b)" by (rule add_le_imp_le_right [of _ "inf (-a) (-b)"]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 657 | (simp, simp add: add_inf_distrib_left) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 658 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 659 | fix a b :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 660 | show "b \<le> - inf (-a) (-b)" by (rule add_le_imp_le_right [of _ "inf (-a) (-b)"]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 661 | (simp, simp add: add_inf_distrib_left) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 662 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 663 | fix a b c :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 664 | assume "a \<le> c" "b \<le> c" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 665 | then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 666 | (simp add: le_infI) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 667 | qed | 
| 14738 | 668 | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 669 | lemma add_eq_inf_sup: "a + b = sup a b + inf a (b\<Colon>'a\<Colon>lordered_ab_group)" | 
| 14738 | 670 | proof - | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 671 | have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 672 | hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 673 | hence "0 = (-a + sup a b) + (inf a b + (-b))" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 674 | apply (simp add: add_sup_distrib_left add_inf_distrib_right) | 
| 14738 | 675 | by (simp add: diff_minus add_commute) | 
| 676 | thus ?thesis | |
| 677 | apply (simp add: compare_rls) | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 678 | apply (subst add_left_cancel[symmetric, of "a+b" "sup a b + inf a b" "-a"]) | 
| 14738 | 679 | apply (simp only: add_assoc, simp add: add_assoc[symmetric]) | 
| 680 | done | |
| 681 | qed | |
| 682 | ||
| 683 | subsection {* Positive Part, Negative Part, Absolute Value *}
 | |
| 684 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 685 | definition | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 686 |   nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)" where
 | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 687 | "nprt x = inf x 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 688 | |
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 689 | definition | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 690 |   pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)" where
 | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 691 | "pprt x = sup x 0" | 
| 14738 | 692 | |
| 693 | lemma prts: "a = pprt a + nprt a" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 694 | by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric]) | 
| 14738 | 695 | |
| 696 | lemma zero_le_pprt[simp]: "0 \<le> pprt a" | |
| 21312 | 697 | by (simp add: pprt_def) | 
| 14738 | 698 | |
| 699 | lemma nprt_le_zero[simp]: "nprt a \<le> 0" | |
| 21312 | 700 | by (simp add: nprt_def) | 
| 14738 | 701 | |
| 702 | lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r") | |
| 703 | proof - | |
| 704 | have a: "?l \<longrightarrow> ?r" | |
| 705 | apply (auto) | |
| 706 | apply (rule add_le_imp_le_right[of _ "-b" _]) | |
| 707 | apply (simp add: add_assoc) | |
| 708 | done | |
| 709 | have b: "?r \<longrightarrow> ?l" | |
| 710 | apply (auto) | |
| 711 | apply (rule add_le_imp_le_right[of _ "b" _]) | |
| 712 | apply (simp) | |
| 713 | done | |
| 714 | from a b show ?thesis by blast | |
| 715 | qed | |
| 716 | ||
| 15580 | 717 | lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def) | 
| 718 | lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def) | |
| 719 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 720 | lemma pprt_eq_id[simp,noatp]: "0 <= x \<Longrightarrow> pprt x = x" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 721 | by (simp add: pprt_def le_iff_sup sup_aci) | 
| 15580 | 722 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 723 | lemma nprt_eq_id[simp,noatp]: "x <= 0 \<Longrightarrow> nprt x = x" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 724 | by (simp add: nprt_def le_iff_inf inf_aci) | 
| 15580 | 725 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 726 | lemma pprt_eq_0[simp,noatp]: "x <= 0 \<Longrightarrow> pprt x = 0" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 727 | by (simp add: pprt_def le_iff_sup sup_aci) | 
| 15580 | 728 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 729 | lemma nprt_eq_0[simp,noatp]: "0 <= x \<Longrightarrow> nprt x = 0" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 730 | by (simp add: nprt_def le_iff_inf inf_aci) | 
| 15580 | 731 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 732 | lemma sup_0_imp_0: "sup a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)" | 
| 14738 | 733 | proof - | 
| 734 |   {
 | |
| 735 | fix a::'a | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 736 | assume hyp: "sup a (-a) = 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 737 | hence "sup a (-a) + a = a" by (simp) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 738 | hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 739 | hence "sup (a+a) 0 <= a" by (simp) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 740 | hence "0 <= a" by (blast intro: order_trans inf_sup_ord) | 
| 14738 | 741 | } | 
| 742 | note p = this | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 743 | assume hyp:"sup a (-a) = 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 744 | hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute) | 
| 14738 | 745 | from p[OF hyp] p[OF hyp2] show "a = 0" by simp | 
| 746 | qed | |
| 747 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 748 | lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 749 | apply (simp add: inf_eq_neg_sup) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 750 | apply (simp add: sup_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 751 | apply (erule sup_0_imp_0) | 
| 15481 | 752 | done | 
| 14738 | 753 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 754 | lemma inf_0_eq_0[simp,noatp]: "(inf a (-a) = 0) = (a = (0::'a::lordered_ab_group))" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 755 | by (auto, erule inf_0_imp_0) | 
| 14738 | 756 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 757 | lemma sup_0_eq_0[simp,noatp]: "(sup a (-a) = 0) = (a = (0::'a::lordered_ab_group))" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 758 | by (auto, erule sup_0_imp_0) | 
| 14738 | 759 | |
| 760 | lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))" | |
| 761 | proof | |
| 762 | assume "0 <= a + a" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 763 | hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 764 | have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_") by (simp add: add_sup_inf_distribs inf_aci) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 765 | hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 766 | hence "inf a 0 = 0" by (simp only: add_right_cancel) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 767 | then show "0 <= a" by (simp add: le_iff_inf inf_commute) | 
| 14738 | 768 | next | 
| 769 | assume a: "0 <= a" | |
| 770 | show "0 <= a + a" by (simp add: add_mono[OF a a, simplified]) | |
| 771 | qed | |
| 772 | ||
| 773 | lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)" | |
| 774 | proof - | |
| 775 | have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp) | |
| 776 | moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add) | |
| 777 | ultimately show ?thesis by blast | |
| 778 | qed | |
| 779 | ||
| 780 | lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
 | |
| 781 | proof cases | |
| 782 | assume a: "a < 0" | |
| 783 | thus ?s by (simp add: add_strict_mono[OF a a, simplified]) | |
| 784 | next | |
| 785 | assume "~(a < 0)" | |
| 786 | hence a:"0 <= a" by (simp) | |
| 787 | hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified]) | |
| 788 | hence "~(a+a < 0)" by simp | |
| 789 | with a show ?thesis by simp | |
| 790 | qed | |
| 791 | ||
| 23879 | 792 | class lordered_ab_group_abs = lordered_ab_group + abs + | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 793 | assumes abs_lattice: "abs x = sup x (uminus x)" | 
| 14738 | 794 | |
| 795 | lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)" | |
| 796 | by (simp add: abs_lattice) | |
| 797 | ||
| 798 | lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))" | |
| 799 | by (simp add: abs_lattice) | |
| 800 | ||
| 801 | lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))" | |
| 802 | proof - | |
| 803 | have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac) | |
| 804 | thus ?thesis by simp | |
| 805 | qed | |
| 806 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 807 | declare abs_0_eq [noatp] (*essentially the same as the other one*) | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 808 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 809 | lemma neg_inf_eq_sup[simp]: "- inf a (b::_::lordered_ab_group) = sup (-a) (-b)" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 810 | by (simp add: inf_eq_neg_sup) | 
| 14738 | 811 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 812 | lemma neg_sup_eq_inf[simp]: "- sup a (b::_::lordered_ab_group) = inf (-a) (-b)" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 813 | by (simp del: neg_inf_eq_sup add: sup_eq_neg_inf) | 
| 14738 | 814 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 815 | lemma sup_eq_if: "sup a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
 | 
| 14738 | 816 | proof - | 
| 817 | note b = add_le_cancel_right[of a a "-a",symmetric,simplified] | |
| 818 | have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 819 | show ?thesis by (auto simp add: max_def b linorder_not_less sup_max) | 
| 14738 | 820 | qed | 
| 821 | ||
| 822 | lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
 | |
| 823 | proof - | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 824 | show ?thesis by (simp add: abs_lattice sup_eq_if) | 
| 14738 | 825 | qed | 
| 826 | ||
| 827 | lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)" | |
| 828 | proof - | |
| 21312 | 829 | have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice) | 
| 14738 | 830 | show ?thesis by (rule add_mono[OF a b, simplified]) | 
| 831 | qed | |
| 832 | ||
| 833 | lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)" | |
| 834 | proof | |
| 835 | assume "abs a <= 0" | |
| 836 | hence "abs a = 0" by (auto dest: order_antisym) | |
| 837 | thus "a = 0" by simp | |
| 838 | next | |
| 839 | assume "a = 0" | |
| 840 | thus "abs a <= 0" by simp | |
| 841 | qed | |
| 842 | ||
| 843 | lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))" | |
| 844 | by (simp add: order_less_le) | |
| 845 | ||
| 846 | lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)" | |
| 847 | proof - | |
| 848 | have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto | |
| 849 | show ?thesis by (simp add: a) | |
| 850 | qed | |
| 851 | ||
| 852 | lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)" | |
| 21312 | 853 | by (simp add: abs_lattice) | 
| 14738 | 854 | |
| 855 | lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)" | |
| 21312 | 856 | by (simp add: abs_lattice) | 
| 14738 | 857 | |
| 858 | lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a" | |
| 859 | apply (simp add: pprt_def nprt_def diff_minus) | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 860 | apply (simp add: add_sup_inf_distribs sup_aci abs_lattice[symmetric]) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 861 | apply (subst sup_absorb2, auto) | 
| 14738 | 862 | done | 
| 863 | ||
| 864 | lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 865 | by (simp add: abs_lattice sup_commute) | 
| 14738 | 866 | |
| 867 | lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)" | |
| 868 | apply (simp add: abs_lattice[of "abs a"]) | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 869 | apply (subst sup_absorb1) | 
| 14738 | 870 | apply (rule order_trans[of _ 0]) | 
| 871 | by auto | |
| 872 | ||
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 873 | lemma abs_minus_commute: | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 874 | fixes a :: "'a::lordered_ab_group_abs" | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 875 | shows "abs (a-b) = abs(b-a)" | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 876 | proof - | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 877 | have "abs (a-b) = abs (- (a-b))" by (simp only: abs_minus_cancel) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 878 | also have "... = abs(b-a)" by simp | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 879 | finally show ?thesis . | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 880 | qed | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 881 | |
| 14738 | 882 | lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 883 | by (simp add: le_iff_inf nprt_def inf_commute) | 
| 14738 | 884 | |
| 885 | lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 886 | by (simp add: le_iff_sup pprt_def sup_commute) | 
| 14738 | 887 | |
| 888 | lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 889 | by (simp add: le_iff_sup pprt_def sup_commute) | 
| 14738 | 890 | |
| 891 | lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 892 | by (simp add: le_iff_inf nprt_def inf_commute) | 
| 14738 | 893 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 894 | lemma pprt_mono[simp,noatp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> pprt a <= pprt b" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 895 | by (simp add: le_iff_sup pprt_def sup_aci) | 
| 15580 | 896 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24137diff
changeset | 897 | lemma nprt_mono[simp,noatp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> nprt a <= nprt b" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 898 | by (simp add: le_iff_inf nprt_def inf_aci) | 
| 15580 | 899 | |
| 19404 | 900 | lemma pprt_neg: "pprt (-x) = - nprt x" | 
| 901 | by (simp add: pprt_def nprt_def) | |
| 902 | ||
| 903 | lemma nprt_neg: "nprt (-x) = - pprt x" | |
| 904 | by (simp add: pprt_def nprt_def) | |
| 905 | ||
| 14738 | 906 | lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)" | 
| 907 | by (simp) | |
| 908 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 909 | lemma abs_of_nonneg [simp]: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)" | 
| 14738 | 910 | by (simp add: iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_pprt_id] abs_prts) | 
| 911 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 912 | lemma abs_of_pos: "0 < (x::'a::lordered_ab_group_abs) ==> abs x = x"; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 913 | by (rule abs_of_nonneg, rule order_less_imp_le); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 914 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 915 | lemma abs_of_nonpos [simp]: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)" | 
| 14738 | 916 | by (simp add: iff2imp[OF le_zero_iff_zero_pprt] iff2imp[OF zero_le_iff_nprt_id] abs_prts) | 
| 917 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 918 | lemma abs_of_neg: "(x::'a::lordered_ab_group_abs) < 0 ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 919 | abs x = - x" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 920 | by (rule abs_of_nonpos, rule order_less_imp_le) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 921 | |
| 14738 | 922 | lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 923 | by (simp add: abs_lattice le_supI) | 
| 14738 | 924 | |
| 925 | lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))" | |
| 926 | proof - | |
| 927 | from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)" | |
| 928 | by (simp add: add_assoc[symmetric]) | |
| 929 | thus ?thesis by simp | |
| 930 | qed | |
| 931 | ||
| 932 | lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))" | |
| 933 | proof - | |
| 934 | from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)" | |
| 935 | by (simp add: add_assoc[symmetric]) | |
| 936 | thus ?thesis by simp | |
| 937 | qed | |
| 938 | ||
| 939 | lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)" | |
| 940 | by (insert abs_ge_self, blast intro: order_trans) | |
| 941 | ||
| 942 | lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)" | |
| 943 | by (insert abs_le_D1 [of "-a"], simp) | |
| 944 | ||
| 945 | lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))" | |
| 946 | by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2) | |
| 947 | ||
| 15539 | 948 | lemma abs_triangle_ineq: "abs(a+b) \<le> abs a + abs(b::'a::lordered_ab_group_abs)" | 
| 14738 | 949 | proof - | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 950 | have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n") | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 951 | by (simp add: abs_lattice add_sup_inf_distribs sup_aci diff_minus) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 952 | have a:"a+b <= sup ?m ?n" by (simp) | 
| 21312 | 953 | have b:"-a-b <= ?n" by (simp) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 954 | have c:"?n <= sup ?m ?n" by (simp) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 955 | from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans) | 
| 14738 | 956 | have e:"-a-b = -(a+b)" by (simp add: diff_minus) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 957 | from a d e have "abs(a+b) <= sup ?m ?n" | 
| 14738 | 958 | by (drule_tac abs_leI, auto) | 
| 959 | with g[symmetric] show ?thesis by simp | |
| 960 | qed | |
| 961 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 962 | lemma abs_triangle_ineq2: "abs (a::'a::lordered_ab_group_abs) - | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 963 | abs b <= abs (a - b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 964 | apply (simp add: compare_rls) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 965 | apply (subgoal_tac "abs a = abs (a - b + b)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 966 | apply (erule ssubst) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 967 | apply (rule abs_triangle_ineq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 968 | apply (rule arg_cong);back; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 969 | apply (simp add: compare_rls) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 970 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 971 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 972 | lemma abs_triangle_ineq3: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 973 | "abs(abs (a::'a::lordered_ab_group_abs) - abs b) <= abs (a - b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 974 | apply (subst abs_le_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 975 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 976 | apply (rule abs_triangle_ineq2) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 977 | apply (subst abs_minus_commute) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 978 | apply (rule abs_triangle_ineq2) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 979 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 980 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 981 | lemma abs_triangle_ineq4: "abs ((a::'a::lordered_ab_group_abs) - b) <= | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 982 | abs a + abs b" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 983 | proof -; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 984 | have "abs(a - b) = abs(a + - b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 985 | by (subst diff_minus, rule refl) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 986 | also have "... <= abs a + abs (- b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 987 | by (rule abs_triangle_ineq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 988 | finally show ?thesis | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 989 | by simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 990 | qed | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 991 | |
| 14738 | 992 | lemma abs_diff_triangle_ineq: | 
| 993 | "\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" | |
| 994 | proof - | |
| 995 | have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac) | |
| 996 | also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq) | |
| 997 | finally show ?thesis . | |
| 998 | qed | |
| 999 | ||
| 15539 | 1000 | lemma abs_add_abs[simp]: | 
| 1001 | fixes a:: "'a::{lordered_ab_group_abs}"
 | |
| 1002 | shows "abs(abs a + abs b) = abs a + abs b" (is "?L = ?R") | |
| 1003 | proof (rule order_antisym) | |
| 1004 | show "?L \<ge> ?R" by(rule abs_ge_self) | |
| 1005 | next | |
| 1006 | have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq) | |
| 1007 | also have "\<dots> = ?R" by simp | |
| 1008 | finally show "?L \<le> ?R" . | |
| 1009 | qed | |
| 1010 | ||
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1011 | text {* Needed for abelian cancellation simprocs: *}
 | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1012 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1013 | lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1014 | apply (subst add_left_commute) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1015 | apply (subst add_left_cancel) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1016 | apply simp | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1017 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1018 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1019 | lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1020 | apply (subst add_cancel_21[of _ _ _ 0, simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1021 | apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1022 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1023 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1024 | lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1025 | by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1026 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1027 | lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1028 | apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1029 | apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1030 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1031 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1032 | lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1033 | by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1034 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1035 | lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1036 | by (simp add: diff_minus) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1037 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1038 | lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1039 | by (simp add: add_assoc[symmetric]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1040 | |
| 15178 | 1041 | lemma le_add_right_mono: | 
| 1042 | assumes | |
| 1043 | "a <= b + (c::'a::pordered_ab_group_add)" | |
| 1044 | "c <= d" | |
| 1045 | shows "a <= b + d" | |
| 1046 | apply (rule_tac order_trans[where y = "b+c"]) | |
| 1047 | apply (simp_all add: prems) | |
| 1048 | done | |
| 1049 | ||
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1050 | lemmas group_simps = | 
| 15178 | 1051 | mult_ac | 
| 1052 | add_ac | |
| 1053 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1054 | diff_eq_eq eq_diff_eq diff_minus[symmetric] uminus_add_conv_diff | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1055 | diff_less_eq less_diff_eq diff_le_eq le_diff_eq | 
| 15178 | 1056 | |
| 1057 | lemma estimate_by_abs: | |
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1058 | "a + b <= (c::'a::lordered_ab_group_abs) \<Longrightarrow> a <= c + abs b" | 
| 15178 | 1059 | proof - | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1060 | assume "a+b <= c" | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1061 | hence 2: "a <= c+(-b)" by (simp add: group_simps) | 
| 15178 | 1062 | have 3: "(-b) <= abs b" by (rule abs_ge_minus_self) | 
| 1063 | show ?thesis by (rule le_add_right_mono[OF 2 3]) | |
| 1064 | qed | |
| 1065 | ||
| 22482 | 1066 | |
| 1067 | subsection {* Tools setup *}
 | |
| 1068 | ||
| 17085 | 1069 | text{*Simplification of @{term "x-y < 0"}, etc.*}
 | 
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1070 | lemmas diff_less_0_iff_less [simp] = less_iff_diff_less_0 [symmetric] | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1071 | lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric] | 
| 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1072 | lemmas diff_le_0_iff_le [simp] = le_iff_diff_le_0 [symmetric] | 
| 17085 | 1073 | |
| 22482 | 1074 | ML {*
 | 
| 1075 | structure ab_group_add_cancel = Abel_Cancel( | |
| 1076 | struct | |
| 1077 | ||
| 1078 | (* term order for abelian groups *) | |
| 1079 | ||
| 1080 | fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a') | |
| 22997 | 1081 |       [@{const_name HOL.zero}, @{const_name HOL.plus},
 | 
| 1082 |         @{const_name HOL.uminus}, @{const_name HOL.minus}]
 | |
| 22482 | 1083 | | agrp_ord _ = ~1; | 
| 1084 | ||
| 1085 | fun termless_agrp (a, b) = (Term.term_lpo agrp_ord (a, b) = LESS); | |
| 1086 | ||
| 1087 | local | |
| 1088 |   val ac1 = mk_meta_eq @{thm add_assoc};
 | |
| 1089 |   val ac2 = mk_meta_eq @{thm add_commute};
 | |
| 1090 |   val ac3 = mk_meta_eq @{thm add_left_commute};
 | |
| 22997 | 1091 |   fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
 | 
| 22482 | 1092 | SOME ac1 | 
| 22997 | 1093 |     | solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
 | 
| 22482 | 1094 | if termless_agrp (y, x) then SOME ac3 else NONE | 
| 1095 | | solve_add_ac thy _ (_ $ x $ y) = | |
| 1096 | if termless_agrp (y, x) then SOME ac2 else NONE | |
| 1097 | | solve_add_ac thy _ _ = NONE | |
| 1098 | in | |
| 1099 |   val add_ac_proc = Simplifier.simproc @{theory}
 | |
| 1100 | "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac; | |
| 1101 | end; | |
| 1102 | ||
| 1103 | val cancel_ss = HOL_basic_ss settermless termless_agrp | |
| 1104 | addsimprocs [add_ac_proc] addsimps | |
| 23085 | 1105 |   [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
 | 
| 22482 | 1106 |    @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
 | 
| 1107 |    @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
 | |
| 1108 |    @{thm minus_add_cancel}];
 | |
| 1109 | ||
| 22548 | 1110 | val eq_reflection = @{thm eq_reflection};
 | 
| 22482 | 1111 | |
| 24137 
8d7896398147
replaced Theory.self_ref by Theory.check_thy, which now produces a checked ref;
 wenzelm parents: 
23879diff
changeset | 1112 | val thy_ref = Theory.check_thy @{theory};
 | 
| 22482 | 1113 | |
| 22548 | 1114 | val T = TFree("'a", ["OrderedGroup.ab_group_add"]);
 | 
| 22482 | 1115 | |
| 22548 | 1116 | val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
 | 
| 22482 | 1117 | |
| 1118 | val dest_eqI = | |
| 1119 | fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of; | |
| 1120 | ||
| 1121 | end); | |
| 1122 | *} | |
| 1123 | ||
| 1124 | ML_setup {*
 | |
| 1125 | Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]; | |
| 1126 | *} | |
| 17085 | 1127 | |
| 14738 | 1128 | end |