| author | blanchet | 
| Fri, 23 May 2014 14:12:20 +0200 | |
| changeset 57076 | 3d4b172d2209 | 
| parent 56993 | e5366291d6aa | 
| child 57418 | 6ab1c7cb0b8d | 
| permissions | -rw-r--r-- | 
| 37665 | 1 | (* Title: HOL/Library/Indicator_Function.thy | 
| 2 | Author: Johannes Hoelzl (TU Muenchen) | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Indicator Function *}
 | |
| 6 | ||
| 7 | theory Indicator_Function | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 8 | imports Complex_Main | 
| 37665 | 9 | begin | 
| 10 | ||
| 11 | definition "indicator S x = (if x \<in> S then 1 else 0)" | |
| 12 | ||
| 13 | lemma indicator_simps[simp]: | |
| 14 | "x \<in> S \<Longrightarrow> indicator S x = 1" | |
| 15 | "x \<notin> S \<Longrightarrow> indicator S x = 0" | |
| 16 | unfolding indicator_def by auto | |
| 17 | ||
| 45425 | 18 | lemma indicator_pos_le[intro, simp]: "(0::'a::linordered_semidom) \<le> indicator S x" | 
| 37665 | 19 | and indicator_le_1[intro, simp]: "indicator S x \<le> (1::'a::linordered_semidom)" | 
| 45425 | 20 | unfolding indicator_def by auto | 
| 21 | ||
| 22 | lemma indicator_abs_le_1: "\<bar>indicator S x\<bar> \<le> (1::'a::linordered_idom)" | |
| 37665 | 23 | unfolding indicator_def by auto | 
| 24 | ||
| 54408 | 25 | lemma indicator_eq_0_iff: "indicator A x = (0::_::zero_neq_one) \<longleftrightarrow> x \<notin> A" | 
| 26 | by (auto simp: indicator_def) | |
| 27 | ||
| 28 | lemma indicator_eq_1_iff: "indicator A x = (1::_::zero_neq_one) \<longleftrightarrow> x \<in> A" | |
| 29 | by (auto simp: indicator_def) | |
| 30 | ||
| 37665 | 31 | lemma split_indicator: | 
| 32 | "P (indicator S x) \<longleftrightarrow> ((x \<in> S \<longrightarrow> P 1) \<and> (x \<notin> S \<longrightarrow> P 0))" | |
| 33 | unfolding indicator_def by auto | |
| 34 | ||
| 45425 | 35 | lemma indicator_inter_arith: "indicator (A \<inter> B) x = indicator A x * (indicator B x::'a::semiring_1)" | 
| 36 | unfolding indicator_def by (auto simp: min_def max_def) | |
| 37 | ||
| 38 | lemma indicator_union_arith: "indicator (A \<union> B) x = indicator A x + indicator B x - indicator A x * (indicator B x::'a::ring_1)" | |
| 39 | unfolding indicator_def by (auto simp: min_def max_def) | |
| 40 | ||
| 41 | lemma indicator_inter_min: "indicator (A \<inter> B) x = min (indicator A x) (indicator B x::'a::linordered_semidom)" | |
| 37665 | 42 | and indicator_union_max: "indicator (A \<union> B) x = max (indicator A x) (indicator B x::'a::linordered_semidom)" | 
| 45425 | 43 | unfolding indicator_def by (auto simp: min_def max_def) | 
| 44 | ||
| 45 | lemma indicator_compl: "indicator (- A) x = 1 - (indicator A x::'a::ring_1)" | |
| 37665 | 46 | and indicator_diff: "indicator (A - B) x = indicator A x * (1 - indicator B x::'a::ring_1)" | 
| 47 | unfolding indicator_def by (auto simp: min_def max_def) | |
| 48 | ||
| 45425 | 49 | lemma indicator_times: "indicator (A \<times> B) x = indicator A (fst x) * (indicator B (snd x)::'a::semiring_1)" | 
| 37665 | 50 | unfolding indicator_def by (cases x) auto | 
| 51 | ||
| 45425 | 52 | lemma indicator_sum: "indicator (A <+> B) x = (case x of Inl x \<Rightarrow> indicator A x | Inr x \<Rightarrow> indicator B x)" | 
| 37665 | 53 | unfolding indicator_def by (cases x) auto | 
| 54 | ||
| 55 | lemma | |
| 56 | fixes f :: "'a \<Rightarrow> 'b::semiring_1" assumes "finite A" | |
| 57 | shows setsum_mult_indicator[simp]: "(\<Sum>x \<in> A. f x * indicator B x) = (\<Sum>x \<in> A \<inter> B. f x)" | |
| 58 | and setsum_indicator_mult[simp]: "(\<Sum>x \<in> A. indicator B x * f x) = (\<Sum>x \<in> A \<inter> B. f x)" | |
| 59 | unfolding indicator_def | |
| 60 | using assms by (auto intro!: setsum_mono_zero_cong_right split: split_if_asm) | |
| 61 | ||
| 62 | lemma setsum_indicator_eq_card: | |
| 63 | assumes "finite A" | |
| 64 | shows "(SUM x : A. indicator B x) = card (A Int B)" | |
| 65 | using setsum_mult_indicator[OF assms, of "%x. 1::nat"] | |
| 66 | unfolding card_eq_setsum by simp | |
| 67 | ||
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 68 | lemma setsum_indicator_scaleR[simp]: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 69 | "finite A \<Longrightarrow> | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 70 |     (\<Sum>x \<in> A. indicator (B x) (g x) *\<^sub>R f x) = (\<Sum>x \<in> {x\<in>A. g x \<in> B x}. f x::'a::real_vector)"
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 71 | using assms by (auto intro!: setsum_mono_zero_cong_right split: split_if_asm simp: indicator_def) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
54408diff
changeset | 72 | |
| 37665 | 73 | end |