| author | nipkow | 
| Mon, 16 Sep 2019 18:00:27 +0200 | |
| changeset 70708 | 3e11f35496b3 | 
| parent 70688 | 3d894e1cfc75 | 
| child 70724 | 65371451fde8 | 
| permissions | -rw-r--r-- | 
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 1 | (* Title: HOL/Power.thy | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 3 | Copyright 1997 University of Cambridge | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 4 | *) | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>Exponentiation\<close> | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 7 | |
| 15131 | 8 | theory Power | 
| 63654 | 9 | imports Num | 
| 15131 | 10 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 11 | |
| 60758 | 12 | subsection \<open>Powers for Arbitrary Monoids\<close> | 
| 30960 | 13 | |
| 30996 | 14 | class power = one + times | 
| 30960 | 15 | begin | 
| 24996 | 16 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 17 | primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) | 
| 63654 | 18 | where | 
| 19 | power_0: "a ^ 0 = 1" | |
| 20 | | power_Suc: "a ^ Suc n = a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 21 | |
| 30996 | 22 | notation (latex output) | 
| 23 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 24 | ||
| 60758 | 25 | text \<open>Special syntax for squares.\<close> | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 26 | abbreviation power2 :: "'a \<Rightarrow> 'a"  ("(_\<^sup>2)" [1000] 999)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 27 | where "x\<^sup>2 \<equiv> x ^ 2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 28 | |
| 30960 | 29 | end | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 30 | |
| 30996 | 31 | context monoid_mult | 
| 32 | begin | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 33 | |
| 39438 
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
 wenzelm parents: 
36409diff
changeset | 34 | subclass power . | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 35 | |
| 63654 | 36 | lemma power_one [simp]: "1 ^ n = 1" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 37 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 38 | |
| 63654 | 39 | lemma power_one_right [simp]: "a ^ 1 = a" | 
| 30996 | 40 | by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 41 | |
| 63654 | 42 | lemma power_Suc0_right [simp]: "a ^ Suc 0 = a" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 43 | by simp | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 44 | |
| 63654 | 45 | lemma power_commutes: "a ^ n * a = a * a ^ n" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 46 | by (induct n) (simp_all add: mult.assoc) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
17149diff
changeset | 47 | |
| 63654 | 48 | lemma power_Suc2: "a ^ Suc n = a ^ n * a" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 49 | by (simp add: power_commutes) | 
| 28131 
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
 huffman parents: 
25874diff
changeset | 50 | |
| 63654 | 51 | lemma power_add: "a ^ (m + n) = a ^ m * a ^ n" | 
| 30996 | 52 | by (induct m) (simp_all add: algebra_simps) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 53 | |
| 63654 | 54 | lemma power_mult: "a ^ (m * n) = (a ^ m) ^ n" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 55 | by (induct n) (simp_all add: power_add) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 56 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 57 | lemma power2_eq_square: "a\<^sup>2 = a * a" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 58 | by (simp add: numeral_2_eq_2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 59 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 60 | lemma power3_eq_cube: "a ^ 3 = a * a * a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 61 | by (simp add: numeral_3_eq_3 mult.assoc) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 62 | |
| 63654 | 63 | lemma power_even_eq: "a ^ (2 * n) = (a ^ n)\<^sup>2" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 64 | by (subst mult.commute) (simp add: power_mult) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 65 | |
| 63654 | 66 | lemma power_odd_eq: "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 67 | by (simp add: power_even_eq) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 68 | |
| 63654 | 69 | lemma power_numeral_even: "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" | 
| 70 | by (simp only: numeral_Bit0 power_add Let_def) | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 71 | |
| 63654 | 72 | lemma power_numeral_odd: "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" | 
| 73 | by (simp only: numeral_Bit1 One_nat_def add_Suc_right add_0_right | |
| 74 | power_Suc power_add Let_def mult.assoc) | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 75 | |
| 63654 | 76 | lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)" | 
| 49824 | 77 | proof (induct "f x" arbitrary: f) | 
| 63654 | 78 | case 0 | 
| 79 | then show ?case by (simp add: fun_eq_iff) | |
| 49824 | 80 | next | 
| 81 | case (Suc n) | |
| 63040 | 82 | define g where "g x = f x - 1" for x | 
| 49824 | 83 | with Suc have "n = g x" by simp | 
| 84 | with Suc have "times x ^^ g x = times (x ^ g x)" by simp | |
| 85 | moreover from Suc g_def have "f x = g x + 1" by simp | |
| 63654 | 86 | ultimately show ?case | 
| 87 | by (simp add: power_add funpow_add fun_eq_iff mult.assoc) | |
| 49824 | 88 | qed | 
| 89 | ||
| 58656 | 90 | lemma power_commuting_commutes: | 
| 91 | assumes "x * y = y * x" | |
| 92 | shows "x ^ n * y = y * x ^n" | |
| 93 | proof (induct n) | |
| 63654 | 94 | case 0 | 
| 95 | then show ?case by simp | |
| 96 | next | |
| 58656 | 97 | case (Suc n) | 
| 98 | have "x ^ Suc n * y = x ^ n * y * x" | |
| 99 | by (subst power_Suc2) (simp add: assms ac_simps) | |
| 100 | also have "\<dots> = y * x ^ Suc n" | |
| 63654 | 101 | by (simp only: Suc power_Suc2) (simp add: ac_simps) | 
| 58656 | 102 | finally show ?case . | 
| 63654 | 103 | qed | 
| 58656 | 104 | |
| 63654 | 105 | lemma power_minus_mult: "0 < n \<Longrightarrow> a ^ (n - 1) * a = a ^ n" | 
| 63648 | 106 | by (simp add: power_commutes split: nat_diff_split) | 
| 62347 | 107 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 108 | lemma left_right_inverse_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 109 | assumes "x * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 110 | shows "x ^ n * y ^ n = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 111 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 112 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 113 | moreover have "x ^ Suc n * y ^ Suc n = x^n * (x * y) * y^n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 114 | by (simp add: power_Suc2[symmetric] mult.assoc[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 115 | ultimately show ?case by (simp add: assms) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 116 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 117 | |
| 30996 | 118 | end | 
| 119 | ||
| 120 | context comm_monoid_mult | |
| 121 | begin | |
| 122 | ||
| 63654 | 123 | lemma power_mult_distrib [field_simps]: "(a * b) ^ n = (a ^ n) * (b ^ n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 124 | by (induct n) (simp_all add: ac_simps) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 125 | |
| 30996 | 126 | end | 
| 127 | ||
| 63654 | 128 | text \<open>Extract constant factors from powers.\<close> | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 129 | declare power_mult_distrib [where a = "numeral w" for w, simp] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 130 | declare power_mult_distrib [where b = "numeral w" for w, simp] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 131 | |
| 63654 | 132 | lemma power_add_numeral [simp]: "a^numeral m * a^numeral n = a^numeral (m + n)" | 
| 133 | for a :: "'a::monoid_mult" | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 134 | by (simp add: power_add [symmetric]) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 135 | |
| 63654 | 136 | lemma power_add_numeral2 [simp]: "a^numeral m * (a^numeral n * b) = a^numeral (m + n) * b" | 
| 137 | for a :: "'a::monoid_mult" | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 138 | by (simp add: mult.assoc [symmetric]) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 139 | |
| 63654 | 140 | lemma power_mult_numeral [simp]: "(a^numeral m)^numeral n = a^numeral (m * n)" | 
| 141 | for a :: "'a::monoid_mult" | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 142 | by (simp only: numeral_mult power_mult) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 143 | |
| 47191 | 144 | context semiring_numeral | 
| 145 | begin | |
| 146 | ||
| 147 | lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" | |
| 148 | by (simp only: sqr_conv_mult numeral_mult) | |
| 149 | ||
| 150 | lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" | |
| 63654 | 151 | by (induct l) | 
| 152 | (simp_all only: numeral_class.numeral.simps pow.simps | |
| 153 | numeral_sqr numeral_mult power_add power_one_right) | |
| 47191 | 154 | |
| 155 | lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" | |
| 156 | by (rule numeral_pow [symmetric]) | |
| 157 | ||
| 158 | end | |
| 159 | ||
| 30996 | 160 | context semiring_1 | 
| 161 | begin | |
| 162 | ||
| 63654 | 163 | lemma of_nat_power [simp]: "of_nat (m ^ n) = of_nat m ^ n" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63040diff
changeset | 164 | by (induct n) simp_all | 
| 30996 | 165 | |
| 63654 | 166 | lemma zero_power: "0 < n \<Longrightarrow> 0 ^ n = 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 167 | by (cases n) simp_all | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 168 | |
| 63654 | 169 | lemma power_zero_numeral [simp]: "0 ^ numeral k = 0" | 
| 47209 
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
 huffman parents: 
47192diff
changeset | 170 | by (simp add: numeral_eq_Suc) | 
| 47191 | 171 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 172 | lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 173 | by (rule power_zero_numeral) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 174 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 175 | lemma one_power2: "1\<^sup>2 = 1" (* delete? *) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 176 | by (rule power_one) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 177 | |
| 63654 | 178 | lemma power_0_Suc [simp]: "0 ^ Suc n = 0" | 
| 60867 | 179 | by simp | 
| 180 | ||
| 63654 | 181 | text \<open>It looks plausible as a simprule, but its effect can be strange.\<close> | 
| 182 | lemma power_0_left: "0 ^ n = (if n = 0 then 1 else 0)" | |
| 60867 | 183 | by (cases n) simp_all | 
| 184 | ||
| 30996 | 185 | end | 
| 186 | ||
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 187 | context semiring_char_0 begin | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 188 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 189 | lemma numeral_power_eq_of_nat_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 190 | "numeral x ^ n = of_nat y \<longleftrightarrow> numeral x ^ n = y" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 191 | using of_nat_eq_iff by fastforce | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 192 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 193 | lemma real_of_nat_eq_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 194 | "of_nat y = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 195 | using numeral_power_eq_of_nat_cancel_iff [of x n y] by (metis (mono_tags)) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 196 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 197 | lemma of_nat_eq_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w = of_nat x \<longleftrightarrow> b ^ w = x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 198 | by (metis of_nat_power of_nat_eq_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 199 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 200 | lemma of_nat_power_eq_of_nat_cancel_iff[simp]: "of_nat x = (of_nat b) ^ w \<longleftrightarrow> x = b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 201 | by (metis of_nat_eq_of_nat_power_cancel_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 202 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 203 | end | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 204 | |
| 30996 | 205 | context comm_semiring_1 | 
| 206 | begin | |
| 207 | ||
| 63654 | 208 | text \<open>The divides relation.\<close> | 
| 30996 | 209 | |
| 210 | lemma le_imp_power_dvd: | |
| 63654 | 211 | assumes "m \<le> n" | 
| 212 | shows "a ^ m dvd a ^ n" | |
| 30996 | 213 | proof | 
| 63654 | 214 | from assms have "a ^ n = a ^ (m + (n - m))" by simp | 
| 215 | also have "\<dots> = a ^ m * a ^ (n - m)" by (rule power_add) | |
| 30996 | 216 | finally show "a ^ n = a ^ m * a ^ (n - m)" . | 
| 217 | qed | |
| 218 | ||
| 63654 | 219 | lemma power_le_dvd: "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" | 
| 30996 | 220 | by (rule dvd_trans [OF le_imp_power_dvd]) | 
| 221 | ||
| 63654 | 222 | lemma dvd_power_same: "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" | 
| 30996 | 223 | by (induct n) (auto simp add: mult_dvd_mono) | 
| 224 | ||
| 63654 | 225 | lemma dvd_power_le: "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" | 
| 30996 | 226 | by (rule power_le_dvd [OF dvd_power_same]) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 227 | |
| 30996 | 228 | lemma dvd_power [simp]: | 
| 63654 | 229 | fixes n :: nat | 
| 230 | assumes "n > 0 \<or> x = 1" | |
| 30996 | 231 | shows "x dvd (x ^ n)" | 
| 63654 | 232 | using assms | 
| 233 | proof | |
| 30996 | 234 | assume "0 < n" | 
| 235 | then have "x ^ n = x ^ Suc (n - 1)" by simp | |
| 236 | then show "x dvd (x ^ n)" by simp | |
| 237 | next | |
| 238 | assume "x = 1" | |
| 239 | then show "x dvd (x ^ n)" by simp | |
| 240 | qed | |
| 241 | ||
| 242 | end | |
| 243 | ||
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62366diff
changeset | 244 | context semiring_1_no_zero_divisors | 
| 60867 | 245 | begin | 
| 246 | ||
| 247 | subclass power . | |
| 248 | ||
| 63654 | 249 | lemma power_eq_0_iff [simp]: "a ^ n = 0 \<longleftrightarrow> a = 0 \<and> n > 0" | 
| 60867 | 250 | by (induct n) auto | 
| 251 | ||
| 63654 | 252 | lemma power_not_zero: "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" | 
| 60867 | 253 | by (induct n) auto | 
| 254 | ||
| 63654 | 255 | lemma zero_eq_power2 [simp]: "a\<^sup>2 = 0 \<longleftrightarrow> a = 0" | 
| 60867 | 256 | unfolding power2_eq_square by simp | 
| 257 | ||
| 258 | end | |
| 259 | ||
| 30996 | 260 | context ring_1 | 
| 261 | begin | |
| 262 | ||
| 63654 | 263 | lemma power_minus: "(- a) ^ n = (- 1) ^ n * a ^ n" | 
| 30996 | 264 | proof (induct n) | 
| 63654 | 265 | case 0 | 
| 266 | show ?case by simp | |
| 30996 | 267 | next | 
| 63654 | 268 | case (Suc n) | 
| 269 | then show ?case | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 270 | by (simp del: power_Suc add: power_Suc2 mult.assoc) | 
| 30996 | 271 | qed | 
| 272 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 273 | lemma power_minus': "NO_MATCH 1 x \<Longrightarrow> (-x) ^ n = (-1)^n * x ^ n" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 274 | by (rule power_minus) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 275 | |
| 63654 | 276 | lemma power_minus_Bit0: "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" | 
| 47191 | 277 | by (induct k, simp_all only: numeral_class.numeral.simps power_add | 
| 278 | power_one_right mult_minus_left mult_minus_right minus_minus) | |
| 279 | ||
| 63654 | 280 | lemma power_minus_Bit1: "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" | 
| 47220 
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
 huffman parents: 
47209diff
changeset | 281 | by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) | 
| 47191 | 282 | |
| 63654 | 283 | lemma power2_minus [simp]: "(- a)\<^sup>2 = a\<^sup>2" | 
| 60867 | 284 | by (fact power_minus_Bit0) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 285 | |
| 63654 | 286 | lemma power_minus1_even [simp]: "(- 1) ^ (2*n) = 1" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 287 | proof (induct n) | 
| 63654 | 288 | case 0 | 
| 289 | show ?case by simp | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 290 | next | 
| 63654 | 291 | case (Suc n) | 
| 292 | then show ?case by (simp add: power_add power2_eq_square) | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 293 | qed | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 294 | |
| 63654 | 295 | lemma power_minus1_odd: "(- 1) ^ Suc (2*n) = -1" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 296 | by simp | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 297 | |
| 63654 | 298 | lemma power_minus_even [simp]: "(-a) ^ (2*n) = a ^ (2*n)" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 299 | by (simp add: power_minus [of a]) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 300 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 301 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 302 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 303 | context ring_1_no_zero_divisors | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 304 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 305 | |
| 63654 | 306 | lemma power2_eq_1_iff: "a\<^sup>2 = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" | 
| 60867 | 307 | using square_eq_1_iff [of a] by (simp add: power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 308 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 309 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 310 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 311 | context idom | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 312 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 313 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 314 | lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \<longleftrightarrow> x = y \<or> x = - y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 315 | unfolding power2_eq_square by (rule square_eq_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 316 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 317 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 318 | |
| 66936 | 319 | context semidom_divide | 
| 320 | begin | |
| 321 | ||
| 322 | lemma power_diff: | |
| 323 | "a ^ (m - n) = (a ^ m) div (a ^ n)" if "a \<noteq> 0" and "n \<le> m" | |
| 324 | proof - | |
| 325 | define q where "q = m - n" | |
| 326 | with \<open>n \<le> m\<close> have "m = q + n" by simp | |
| 327 | with \<open>a \<noteq> 0\<close> q_def show ?thesis | |
| 328 | by (simp add: power_add) | |
| 329 | qed | |
| 330 | ||
| 331 | end | |
| 332 | ||
| 60867 | 333 | context algebraic_semidom | 
| 334 | begin | |
| 335 | ||
| 63654 | 336 | lemma div_power: "b dvd a \<Longrightarrow> (a div b) ^ n = a ^ n div b ^ n" | 
| 337 | by (induct n) (simp_all add: div_mult_div_if_dvd dvd_power_same) | |
| 60867 | 338 | |
| 63654 | 339 | lemma is_unit_power_iff: "is_unit (a ^ n) \<longleftrightarrow> is_unit a \<or> n = 0" | 
| 62366 | 340 | by (induct n) (auto simp add: is_unit_mult_iff) | 
| 341 | ||
| 63924 | 342 | lemma dvd_power_iff: | 
| 343 | assumes "x \<noteq> 0" | |
| 344 | shows "x ^ m dvd x ^ n \<longleftrightarrow> is_unit x \<or> m \<le> n" | |
| 345 | proof | |
| 346 | assume *: "x ^ m dvd x ^ n" | |
| 347 |   {
 | |
| 348 | assume "m > n" | |
| 349 | note * | |
| 350 | also have "x ^ n = x ^ n * 1" by simp | |
| 351 | also from \<open>m > n\<close> have "m = n + (m - n)" by simp | |
| 352 | also have "x ^ \<dots> = x ^ n * x ^ (m - n)" by (rule power_add) | |
| 353 | finally have "x ^ (m - n) dvd 1" | |
| 354 | by (subst (asm) dvd_times_left_cancel_iff) (insert assms, simp_all) | |
| 355 | with \<open>m > n\<close> have "is_unit x" by (simp add: is_unit_power_iff) | |
| 356 | } | |
| 357 | thus "is_unit x \<or> m \<le> n" by force | |
| 358 | qed (auto intro: unit_imp_dvd simp: is_unit_power_iff le_imp_power_dvd) | |
| 359 | ||
| 360 | ||
| 60867 | 361 | end | 
| 362 | ||
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 363 | context normalization_semidom | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 364 | begin | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 365 | |
| 63654 | 366 | lemma normalize_power: "normalize (a ^ n) = normalize a ^ n" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 367 | by (induct n) (simp_all add: normalize_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 368 | |
| 63654 | 369 | lemma unit_factor_power: "unit_factor (a ^ n) = unit_factor a ^ n" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 370 | by (induct n) (simp_all add: unit_factor_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 371 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 372 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 373 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 374 | context division_ring | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 375 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 376 | |
| 63654 | 377 | text \<open>Perhaps these should be simprules.\<close> | 
| 378 | lemma power_inverse [field_simps, divide_simps]: "inverse a ^ n = inverse (a ^ n)" | |
| 60867 | 379 | proof (cases "a = 0") | 
| 63654 | 380 | case True | 
| 381 | then show ?thesis by (simp add: power_0_left) | |
| 60867 | 382 | next | 
| 63654 | 383 | case False | 
| 384 | then have "inverse (a ^ n) = inverse a ^ n" | |
| 60867 | 385 | by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes) | 
| 386 | then show ?thesis by simp | |
| 387 | qed | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 388 | |
| 63654 | 389 | lemma power_one_over [field_simps, divide_simps]: "(1 / a) ^ n = 1 / a ^ n" | 
| 60867 | 390 | using power_inverse [of a] by (simp add: divide_inverse) | 
| 391 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 392 | end | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 393 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 394 | context field | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 395 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 396 | |
| 63654 | 397 | lemma power_divide [field_simps, divide_simps]: "(a / b) ^ n = a ^ n / b ^ n" | 
| 60867 | 398 | by (induct n) simp_all | 
| 399 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 400 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 401 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 402 | |
| 60758 | 403 | subsection \<open>Exponentiation on ordered types\<close> | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 404 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 405 | context linordered_semidom | 
| 30996 | 406 | begin | 
| 407 | ||
| 63654 | 408 | lemma zero_less_power [simp]: "0 < a \<Longrightarrow> 0 < a ^ n" | 
| 56544 | 409 | by (induct n) simp_all | 
| 30996 | 410 | |
| 63654 | 411 | lemma zero_le_power [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" | 
| 56536 | 412 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 413 | |
| 63654 | 414 | lemma power_mono: "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" | 
| 47241 | 415 | by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) | 
| 416 | ||
| 417 | lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" | |
| 418 | using power_mono [of 1 a n] by simp | |
| 419 | ||
| 63654 | 420 | lemma power_le_one: "0 \<le> a \<Longrightarrow> a \<le> 1 \<Longrightarrow> a ^ n \<le> 1" | 
| 47241 | 421 | using power_mono [of a 1 n] by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 422 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 423 | lemma power_gt1_lemma: | 
| 30996 | 424 | assumes gt1: "1 < a" | 
| 425 | shows "1 < a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 426 | proof - | 
| 30996 | 427 | from gt1 have "0 \<le> a" | 
| 428 | by (fact order_trans [OF zero_le_one less_imp_le]) | |
| 63654 | 429 | from gt1 have "1 * 1 < a * 1" by simp | 
| 430 | also from gt1 have "\<dots> \<le> a * a ^ n" | |
| 431 | by (simp only: mult_mono \<open>0 \<le> a\<close> one_le_power order_less_imp_le zero_le_one order_refl) | |
| 14577 | 432 | finally show ?thesis by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 433 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 434 | |
| 63654 | 435 | lemma power_gt1: "1 < a \<Longrightarrow> 1 < a ^ Suc n" | 
| 30996 | 436 | by (simp add: power_gt1_lemma) | 
| 24376 | 437 | |
| 63654 | 438 | lemma one_less_power [simp]: "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" | 
| 30996 | 439 | by (cases n) (simp_all add: power_gt1_lemma) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 440 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 441 | lemma power_le_imp_le_exp: | 
| 30996 | 442 | assumes gt1: "1 < a" | 
| 443 | shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" | |
| 444 | proof (induct m arbitrary: n) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 445 | case 0 | 
| 14577 | 446 | show ?case by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 447 | next | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 448 | case (Suc m) | 
| 14577 | 449 | show ?case | 
| 450 | proof (cases n) | |
| 451 | case 0 | |
| 63654 | 452 | with Suc have "a * a ^ m \<le> 1" by simp | 
| 14577 | 453 | with gt1 show ?thesis | 
| 63654 | 454 | by (force simp only: power_gt1_lemma not_less [symmetric]) | 
| 14577 | 455 | next | 
| 456 | case (Suc n) | |
| 30996 | 457 | with Suc.prems Suc.hyps show ?thesis | 
| 63654 | 458 | by (force dest: mult_left_le_imp_le simp add: less_trans [OF zero_less_one gt1]) | 
| 14577 | 459 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 460 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 461 | |
| 63654 | 462 | lemma of_nat_zero_less_power_iff [simp]: "of_nat x ^ n > 0 \<longleftrightarrow> x > 0 \<or> n = 0" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 463 | by (induct n) auto | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 464 | |
| 63654 | 465 | text \<open>Surely we can strengthen this? It holds for \<open>0<a<1\<close> too.\<close> | 
| 466 | lemma power_inject_exp [simp]: "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" | |
| 14577 | 467 | by (force simp add: order_antisym power_le_imp_le_exp) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 468 | |
| 63654 | 469 | text \<open> | 
| 69593 | 470 | Can relax the first premise to \<^term>\<open>0<a\<close> in the case of the | 
| 63654 | 471 | natural numbers. | 
| 472 | \<close> | |
| 473 | lemma power_less_imp_less_exp: "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" | |
| 474 | by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] power_le_imp_le_exp) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 475 | |
| 63654 | 476 | lemma power_strict_mono [rule_format]: "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" | 
| 477 | by (induct n) (auto simp: mult_strict_mono le_less_trans [of 0 a b]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 478 | |
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70331diff
changeset | 479 | lemma power_mono_iff [simp]: | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70331diff
changeset | 480 | shows "\<lbrakk>a \<ge> 0; b \<ge> 0; n>0\<rbrakk> \<Longrightarrow> a ^ n \<le> b ^ n \<longleftrightarrow> a \<le> b" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70331diff
changeset | 481 | using power_mono [of a b] power_strict_mono [of b a] not_le by auto | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70331diff
changeset | 482 | |
| 61799 | 483 | text\<open>Lemma for \<open>power_strict_decreasing\<close>\<close> | 
| 63654 | 484 | lemma power_Suc_less: "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" | 
| 485 | by (induct n) (auto simp: mult_strict_left_mono) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 486 | |
| 63654 | 487 | lemma power_strict_decreasing [rule_format]: "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" | 
| 30996 | 488 | proof (induct N) | 
| 63654 | 489 | case 0 | 
| 490 | then show ?case by simp | |
| 30996 | 491 | next | 
| 63654 | 492 | case (Suc N) | 
| 493 | then show ?case | |
| 494 | apply (auto simp add: power_Suc_less less_Suc_eq) | |
| 495 | apply (subgoal_tac "a * a^N < 1 * a^n") | |
| 496 | apply simp | |
| 497 | apply (rule mult_strict_mono) | |
| 498 | apply auto | |
| 499 | done | |
| 30996 | 500 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 501 | |
| 63654 | 502 | text \<open>Proof resembles that of \<open>power_strict_decreasing\<close>.\<close> | 
| 503 | lemma power_decreasing: "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<Longrightarrow> a ^ N \<le> a ^ n" | |
| 30996 | 504 | proof (induct N) | 
| 63654 | 505 | case 0 | 
| 506 | then show ?case by simp | |
| 30996 | 507 | next | 
| 63654 | 508 | case (Suc N) | 
| 509 | then show ?case | |
| 510 | apply (auto simp add: le_Suc_eq) | |
| 511 | apply (subgoal_tac "a * a^N \<le> 1 * a^n") | |
| 512 | apply simp | |
| 513 | apply (rule mult_mono) | |
| 514 | apply auto | |
| 515 | done | |
| 30996 | 516 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 517 | |
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 518 | lemma power_decreasing_iff [simp]: "\<lbrakk>0 < b; b < 1\<rbrakk> \<Longrightarrow> b ^ m \<le> b ^ n \<longleftrightarrow> n \<le> m" | 
| 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 519 | using power_strict_decreasing [of m n b] | 
| 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 520 | by (auto intro: power_decreasing ccontr) | 
| 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 521 | |
| 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 522 | lemma power_strict_decreasing_iff [simp]: "\<lbrakk>0 < b; b < 1\<rbrakk> \<Longrightarrow> b ^ m < b ^ n \<longleftrightarrow> n < m" | 
| 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 523 | using power_decreasing_iff [of b m n] unfolding le_less | 
| 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 524 | by (auto dest: power_strict_decreasing le_neq_implies_less) | 
| 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 525 | |
| 63654 | 526 | lemma power_Suc_less_one: "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" | 
| 30996 | 527 | using power_strict_decreasing [of 0 "Suc n" a] by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 528 | |
| 63654 | 529 | text \<open>Proof again resembles that of \<open>power_strict_decreasing\<close>.\<close> | 
| 530 | lemma power_increasing: "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" | |
| 30996 | 531 | proof (induct N) | 
| 63654 | 532 | case 0 | 
| 533 | then show ?case by simp | |
| 30996 | 534 | next | 
| 63654 | 535 | case (Suc N) | 
| 536 | then show ?case | |
| 537 | apply (auto simp add: le_Suc_eq) | |
| 538 | apply (subgoal_tac "1 * a^n \<le> a * a^N") | |
| 539 | apply simp | |
| 540 | apply (rule mult_mono) | |
| 541 | apply (auto simp add: order_trans [OF zero_le_one]) | |
| 542 | done | |
| 30996 | 543 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 544 | |
| 63654 | 545 | text \<open>Lemma for \<open>power_strict_increasing\<close>.\<close> | 
| 546 | lemma power_less_power_Suc: "1 < a \<Longrightarrow> a ^ n < a * a ^ n" | |
| 547 | by (induct n) (auto simp: mult_strict_left_mono less_trans [OF zero_less_one]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 548 | |
| 63654 | 549 | lemma power_strict_increasing: "n < N \<Longrightarrow> 1 < a \<Longrightarrow> a ^ n < a ^ N" | 
| 30996 | 550 | proof (induct N) | 
| 63654 | 551 | case 0 | 
| 552 | then show ?case by simp | |
| 30996 | 553 | next | 
| 63654 | 554 | case (Suc N) | 
| 555 | then show ?case | |
| 556 | apply (auto simp add: power_less_power_Suc less_Suc_eq) | |
| 557 | apply (subgoal_tac "1 * a^n < a * a^N") | |
| 558 | apply simp | |
| 559 | apply (rule mult_strict_mono) | |
| 560 | apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) | |
| 561 | done | |
| 30996 | 562 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 563 | |
| 63654 | 564 | lemma power_increasing_iff [simp]: "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" | 
| 30996 | 565 | by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) | 
| 15066 | 566 | |
| 63654 | 567 | lemma power_strict_increasing_iff [simp]: "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" | 
| 568 | by (blast intro: power_less_imp_less_exp power_strict_increasing) | |
| 15066 | 569 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 570 | lemma power_le_imp_le_base: | 
| 30996 | 571 | assumes le: "a ^ Suc n \<le> b ^ Suc n" | 
| 63654 | 572 | and "0 \<le> b" | 
| 30996 | 573 | shows "a \<le> b" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 574 | proof (rule ccontr) | 
| 63654 | 575 | assume "\<not> ?thesis" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 576 | then have "b < a" by (simp only: linorder_not_le) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 577 | then have "b ^ Suc n < a ^ Suc n" | 
| 63654 | 578 | by (simp only: assms(2) power_strict_mono) | 
| 579 | with le show False | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 580 | by (simp add: linorder_not_less [symmetric]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 581 | qed | 
| 14577 | 582 | |
| 22853 | 583 | lemma power_less_imp_less_base: | 
| 584 | assumes less: "a ^ n < b ^ n" | |
| 585 | assumes nonneg: "0 \<le> b" | |
| 586 | shows "a < b" | |
| 587 | proof (rule contrapos_pp [OF less]) | |
| 63654 | 588 | assume "\<not> ?thesis" | 
| 589 | then have "b \<le> a" by (simp only: linorder_not_less) | |
| 590 | from this nonneg have "b ^ n \<le> a ^ n" by (rule power_mono) | |
| 591 | then show "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) | |
| 22853 | 592 | qed | 
| 593 | ||
| 63654 | 594 | lemma power_inject_base: "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" | 
| 595 | by (blast intro: power_le_imp_le_base antisym eq_refl sym) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 596 | |
| 63654 | 597 | lemma power_eq_imp_eq_base: "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" | 
| 30996 | 598 | by (cases n) (simp_all del: power_Suc, rule power_inject_base) | 
| 22955 | 599 | |
| 63654 | 600 | lemma power_eq_iff_eq_base: "0 < n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a ^ n = b ^ n \<longleftrightarrow> a = b" | 
| 62347 | 601 | using power_eq_imp_eq_base [of a n b] by auto | 
| 602 | ||
| 63654 | 603 | lemma power2_le_imp_le: "x\<^sup>2 \<le> y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 604 | unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 605 | |
| 63654 | 606 | lemma power2_less_imp_less: "x\<^sup>2 < y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 607 | by (rule power_less_imp_less_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 608 | |
| 63654 | 609 | lemma power2_eq_imp_eq: "x\<^sup>2 = y\<^sup>2 \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 610 | unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 611 | |
| 63654 | 612 | lemma power_Suc_le_self: "0 \<le> a \<Longrightarrow> a \<le> 1 \<Longrightarrow> a ^ Suc n \<le> a" | 
| 62347 | 613 | using power_decreasing [of 1 "Suc n" a] by simp | 
| 614 | ||
| 65057 
799bbbb3a395
Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
 paulson <lp15@cam.ac.uk> parents: 
64964diff
changeset | 615 | lemma power2_eq_iff_nonneg [simp]: | 
| 
799bbbb3a395
Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
 paulson <lp15@cam.ac.uk> parents: 
64964diff
changeset | 616 | assumes "0 \<le> x" "0 \<le> y" | 
| 
799bbbb3a395
Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
 paulson <lp15@cam.ac.uk> parents: 
64964diff
changeset | 617 | shows "(x ^ 2 = y ^ 2) \<longleftrightarrow> x = y" | 
| 
799bbbb3a395
Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
 paulson <lp15@cam.ac.uk> parents: 
64964diff
changeset | 618 | using assms power2_eq_imp_eq by blast | 
| 
799bbbb3a395
Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
 paulson <lp15@cam.ac.uk> parents: 
64964diff
changeset | 619 | |
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 620 | lemma of_nat_less_numeral_power_cancel_iff[simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 621 | "of_nat x < numeral i ^ n \<longleftrightarrow> x < numeral i ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 622 | using of_nat_less_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] . | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 623 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 624 | lemma of_nat_le_numeral_power_cancel_iff[simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 625 | "of_nat x \<le> numeral i ^ n \<longleftrightarrow> x \<le> numeral i ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 626 | using of_nat_le_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] . | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 627 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 628 | lemma numeral_power_less_of_nat_cancel_iff[simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 629 | "numeral i ^ n < of_nat x \<longleftrightarrow> numeral i ^ n < x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 630 | using of_nat_less_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] . | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 631 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 632 | lemma numeral_power_le_of_nat_cancel_iff[simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 633 | "numeral i ^ n \<le> of_nat x \<longleftrightarrow> numeral i ^ n \<le> x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 634 | using of_nat_le_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] . | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 635 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 636 | lemma of_nat_le_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w \<le> of_nat x \<longleftrightarrow> b ^ w \<le> x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 637 | by (metis of_nat_le_iff of_nat_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 638 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 639 | lemma of_nat_power_le_of_nat_cancel_iff[simp]: "of_nat x \<le> (of_nat b) ^ w \<longleftrightarrow> x \<le> b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 640 | by (metis of_nat_le_iff of_nat_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 641 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 642 | lemma of_nat_less_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w < of_nat x \<longleftrightarrow> b ^ w < x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 643 | by (metis of_nat_less_iff of_nat_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 644 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 645 | lemma of_nat_power_less_of_nat_cancel_iff[simp]: "of_nat x < (of_nat b) ^ w \<longleftrightarrow> x < b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 646 | by (metis of_nat_less_iff of_nat_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
65057diff
changeset | 647 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 648 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 649 | |
| 70331 | 650 | |
| 651 | text \<open>Some @{typ nat}-specific lemmas:\<close>
 | |
| 652 | ||
| 653 | lemma mono_ge2_power_minus_self: | |
| 654 | assumes "k \<ge> 2" shows "mono (\<lambda>m. k ^ m - m)" | |
| 655 | unfolding mono_iff_le_Suc | |
| 656 | proof | |
| 657 | fix n | |
| 658 | have "k ^ n < k ^ Suc n" using power_strict_increasing_iff[of k "n" "Suc n"] assms by linarith | |
| 659 | thus "k ^ n - n \<le> k ^ Suc n - Suc n" by linarith | |
| 660 | qed | |
| 661 | ||
| 662 | lemma self_le_ge2_pow[simp]: | |
| 663 | assumes "k \<ge> 2" shows "m \<le> k ^ m" | |
| 664 | proof (induction m) | |
| 665 | case 0 show ?case by simp | |
| 666 | next | |
| 667 | case (Suc m) | |
| 668 | hence "Suc m \<le> Suc (k ^ m)" by simp | |
| 669 | also have "... \<le> k^m + k^m" using one_le_power[of k m] assms by linarith | |
| 670 | also have "... \<le> k * k^m" by (metis mult_2 mult_le_mono1[OF assms]) | |
| 671 | finally show ?case by simp | |
| 672 | qed | |
| 673 | ||
| 674 | lemma diff_le_diff_pow[simp]: | |
| 675 | assumes "k \<ge> 2" shows "m - n \<le> k ^ m - k ^ n" | |
| 676 | proof (cases "n \<le> m") | |
| 677 | case True | |
| 678 | thus ?thesis | |
| 679 | using monoD[OF mono_ge2_power_minus_self[OF assms] True] self_le_ge2_pow[OF assms, of m] | |
| 680 | by (simp add: le_diff_conv le_diff_conv2) | |
| 681 | qed auto | |
| 682 | ||
| 683 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 684 | context linordered_ring_strict | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 685 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 686 | |
| 63654 | 687 | lemma sum_squares_eq_zero_iff: "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 688 | by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 689 | |
| 63654 | 690 | lemma sum_squares_le_zero_iff: "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 691 | by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 692 | |
| 63654 | 693 | lemma sum_squares_gt_zero_iff: "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 694 | by (simp add: not_le [symmetric] sum_squares_le_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 695 | |
| 30996 | 696 | end | 
| 697 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 698 | context linordered_idom | 
| 30996 | 699 | begin | 
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 700 | |
| 64715 | 701 | lemma zero_le_power2 [simp]: "0 \<le> a\<^sup>2" | 
| 702 | by (simp add: power2_eq_square) | |
| 703 | ||
| 704 | lemma zero_less_power2 [simp]: "0 < a\<^sup>2 \<longleftrightarrow> a \<noteq> 0" | |
| 705 | by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) | |
| 30996 | 706 | |
| 64715 | 707 | lemma power2_less_0 [simp]: "\<not> a\<^sup>2 < 0" | 
| 708 | by (force simp add: power2_eq_square mult_less_0_iff) | |
| 709 | ||
| 67226 | 710 | lemma power_abs: "\<bar>a ^ n\<bar> = \<bar>a\<bar> ^ n" \<comment> \<open>FIXME simp?\<close> | 
| 64715 | 711 | by (induct n) (simp_all add: abs_mult) | 
| 712 | ||
| 713 | lemma power_sgn [simp]: "sgn (a ^ n) = sgn a ^ n" | |
| 714 | by (induct n) (simp_all add: sgn_mult) | |
| 64964 | 715 | |
| 64715 | 716 | lemma abs_power_minus [simp]: "\<bar>(- a) ^ n\<bar> = \<bar>a ^ n\<bar>" | 
| 35216 | 717 | by (simp add: power_abs) | 
| 30996 | 718 | |
| 61944 | 719 | lemma zero_less_power_abs_iff [simp]: "0 < \<bar>a\<bar> ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" | 
| 30996 | 720 | proof (induct n) | 
| 63654 | 721 | case 0 | 
| 722 | show ?case by simp | |
| 30996 | 723 | next | 
| 63654 | 724 | case Suc | 
| 725 | then show ?case by (auto simp: zero_less_mult_iff) | |
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 726 | qed | 
| 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 727 | |
| 61944 | 728 | lemma zero_le_power_abs [simp]: "0 \<le> \<bar>a\<bar> ^ n" | 
| 30996 | 729 | by (rule zero_le_power [OF abs_ge_zero]) | 
| 730 | ||
| 63654 | 731 | lemma power2_less_eq_zero_iff [simp]: "a\<^sup>2 \<le> 0 \<longleftrightarrow> a = 0" | 
| 58787 | 732 | by (simp add: le_less) | 
| 733 | ||
| 61944 | 734 | lemma abs_power2 [simp]: "\<bar>a\<^sup>2\<bar> = a\<^sup>2" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63040diff
changeset | 735 | by (simp add: power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 736 | |
| 61944 | 737 | lemma power2_abs [simp]: "\<bar>a\<bar>\<^sup>2 = a\<^sup>2" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63040diff
changeset | 738 | by (simp add: power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 739 | |
| 64715 | 740 | lemma odd_power_less_zero: "a < 0 \<Longrightarrow> a ^ Suc (2 * n) < 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 741 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 742 | case 0 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 743 | then show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 744 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 745 | case (Suc n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 746 | have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 747 | by (simp add: ac_simps power_add power2_eq_square) | 
| 63654 | 748 | then show ?case | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 749 | by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 750 | qed | 
| 30996 | 751 | |
| 64715 | 752 | lemma odd_0_le_power_imp_0_le: "0 \<le> a ^ Suc (2 * n) \<Longrightarrow> 0 \<le> a" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 753 | using odd_power_less_zero [of a n] | 
| 63654 | 754 | by (force simp add: linorder_not_less [symmetric]) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 755 | |
| 64715 | 756 | lemma zero_le_even_power'[simp]: "0 \<le> a ^ (2 * n)" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 757 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 758 | case 0 | 
| 63654 | 759 | show ?case by simp | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 760 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 761 | case (Suc n) | 
| 63654 | 762 | have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" | 
| 763 | by (simp add: ac_simps power_add power2_eq_square) | |
| 764 | then show ?case | |
| 765 | by (simp add: Suc zero_le_mult_iff) | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 766 | qed | 
| 30996 | 767 | |
| 63654 | 768 | lemma sum_power2_ge_zero: "0 \<le> x\<^sup>2 + y\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 769 | by (intro add_nonneg_nonneg zero_le_power2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 770 | |
| 63654 | 771 | lemma not_sum_power2_lt_zero: "\<not> x\<^sup>2 + y\<^sup>2 < 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 772 | unfolding not_less by (rule sum_power2_ge_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 773 | |
| 63654 | 774 | lemma sum_power2_eq_zero_iff: "x\<^sup>2 + y\<^sup>2 = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 775 | unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 776 | |
| 63654 | 777 | lemma sum_power2_le_zero_iff: "x\<^sup>2 + y\<^sup>2 \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 778 | by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 779 | |
| 63654 | 780 | lemma sum_power2_gt_zero_iff: "0 < x\<^sup>2 + y\<^sup>2 \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 781 | unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) | 
| 30996 | 782 | |
| 63654 | 783 | lemma abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> x\<^sup>2 \<le> y\<^sup>2" | 
| 784 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 785 | proof | 
| 63654 | 786 | assume ?lhs | 
| 787 | then have "\<bar>x\<bar>\<^sup>2 \<le> \<bar>y\<bar>\<^sup>2" by (rule power_mono) simp | |
| 788 | then show ?rhs by simp | |
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 789 | next | 
| 63654 | 790 | assume ?rhs | 
| 791 | then show ?lhs | |
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 792 | by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero]) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 793 | qed | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 794 | |
| 61944 | 795 | lemma abs_square_le_1:"x\<^sup>2 \<le> 1 \<longleftrightarrow> \<bar>x\<bar> \<le> 1" | 
| 63654 | 796 | using abs_le_square_iff [of x 1] by simp | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 797 | |
| 61944 | 798 | lemma abs_square_eq_1: "x\<^sup>2 = 1 \<longleftrightarrow> \<bar>x\<bar> = 1" | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 799 | by (auto simp add: abs_if power2_eq_1_iff) | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 800 | |
| 61944 | 801 | lemma abs_square_less_1: "x\<^sup>2 < 1 \<longleftrightarrow> \<bar>x\<bar> < 1" | 
| 63654 | 802 | using abs_square_eq_1 [of x] abs_square_le_1 [of x] by (auto simp add: le_less) | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 803 | |
| 68611 | 804 | lemma square_le_1: | 
| 805 | assumes "- 1 \<le> x" "x \<le> 1" | |
| 806 | shows "x\<^sup>2 \<le> 1" | |
| 807 | using assms | |
| 808 | by (metis add.inverse_inverse linear mult_le_one neg_equal_0_iff_equal neg_le_iff_le power2_eq_square power_minus_Bit0) | |
| 809 | ||
| 30996 | 810 | end | 
| 811 | ||
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 812 | |
| 60758 | 813 | subsection \<open>Miscellaneous rules\<close> | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 814 | |
| 63654 | 815 | lemma (in linordered_semidom) self_le_power: "1 \<le> a \<Longrightarrow> 0 < n \<Longrightarrow> a \<le> a ^ n" | 
| 60867 | 816 | using power_increasing [of 1 n a] power_one_right [of a] by auto | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55096diff
changeset | 817 | |
| 63654 | 818 | lemma (in power) power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 819 | unfolding One_nat_def by (cases m) simp_all | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 820 | |
| 63654 | 821 | lemma (in comm_semiring_1) power2_sum: "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 822 | by (simp add: algebra_simps power2_eq_square mult_2_right) | 
| 30996 | 823 | |
| 63654 | 824 | context comm_ring_1 | 
| 825 | begin | |
| 826 | ||
| 827 | lemma power2_diff: "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" | |
| 58787 | 828 | by (simp add: algebra_simps power2_eq_square mult_2_right) | 
| 30996 | 829 | |
| 63654 | 830 | lemma power2_commute: "(x - y)\<^sup>2 = (y - x)\<^sup>2" | 
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60867diff
changeset | 831 | by (simp add: algebra_simps power2_eq_square) | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60867diff
changeset | 832 | |
| 63654 | 833 | lemma minus_power_mult_self: "(- a) ^ n * (- a) ^ n = a ^ (2 * n)" | 
| 834 | by (simp add: power_mult_distrib [symmetric]) | |
| 835 | (simp add: power2_eq_square [symmetric] power_mult [symmetric]) | |
| 836 | ||
| 837 | lemma minus_one_mult_self [simp]: "(- 1) ^ n * (- 1) ^ n = 1" | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63040diff
changeset | 838 | using minus_power_mult_self [of 1 n] by simp | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63040diff
changeset | 839 | |
| 63654 | 840 | lemma left_minus_one_mult_self [simp]: "(- 1) ^ n * ((- 1) ^ n * a) = a" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63040diff
changeset | 841 | by (simp add: mult.assoc [symmetric]) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63040diff
changeset | 842 | |
| 63654 | 843 | end | 
| 844 | ||
| 60758 | 845 | text \<open>Simprules for comparisons where common factors can be cancelled.\<close> | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 846 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 847 | lemmas zero_compare_simps = | 
| 63654 | 848 | add_strict_increasing add_strict_increasing2 add_increasing | 
| 849 | zero_le_mult_iff zero_le_divide_iff | |
| 850 | zero_less_mult_iff zero_less_divide_iff | |
| 851 | mult_le_0_iff divide_le_0_iff | |
| 852 | mult_less_0_iff divide_less_0_iff | |
| 853 | zero_le_power2 power2_less_0 | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 854 | |
| 30313 | 855 | |
| 60758 | 856 | subsection \<open>Exponentiation for the Natural Numbers\<close> | 
| 14577 | 857 | |
| 63654 | 858 | lemma nat_one_le_power [simp]: "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" | 
| 30996 | 859 | by (rule one_le_power [of i n, unfolded One_nat_def]) | 
| 23305 | 860 | |
| 63654 | 861 | lemma nat_zero_less_power_iff [simp]: "x ^ n > 0 \<longleftrightarrow> x > 0 \<or> n = 0" | 
| 862 | for x :: nat | |
| 30996 | 863 | by (induct n) auto | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 864 | |
| 63654 | 865 | lemma nat_power_eq_Suc_0_iff [simp]: "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" | 
| 30996 | 866 | by (induct m) auto | 
| 30056 | 867 | |
| 63654 | 868 | lemma power_Suc_0 [simp]: "Suc 0 ^ n = Suc 0" | 
| 30996 | 869 | by simp | 
| 30056 | 870 | |
| 63654 | 871 | text \<open> | 
| 872 | Valid for the naturals, but what if \<open>0 < i < 1\<close>? Premises cannot be | |
| 873 | weakened: consider the case where \<open>i = 0\<close>, \<open>m = 1\<close> and \<open>n = 0\<close>. | |
| 874 | \<close> | |
| 875 | ||
| 21413 | 876 | lemma nat_power_less_imp_less: | 
| 63654 | 877 | fixes i :: nat | 
| 878 | assumes nonneg: "0 < i" | |
| 30996 | 879 | assumes less: "i ^ m < i ^ n" | 
| 21413 | 880 | shows "m < n" | 
| 881 | proof (cases "i = 1") | |
| 63654 | 882 | case True | 
| 883 | with less power_one [where 'a = nat] show ?thesis by simp | |
| 21413 | 884 | next | 
| 63654 | 885 | case False | 
| 886 | with nonneg have "1 < i" by auto | |
| 21413 | 887 | from power_strict_increasing_iff [OF this] less show ?thesis .. | 
| 888 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 889 | |
| 63654 | 890 | lemma power_dvd_imp_le: "i ^ m dvd i ^ n \<Longrightarrow> 1 < i \<Longrightarrow> m \<le> n" | 
| 891 | for i m n :: nat | |
| 892 | apply (rule power_le_imp_le_exp) | |
| 893 | apply assumption | |
| 894 | apply (erule dvd_imp_le) | |
| 895 | apply simp | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 896 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 897 | |
| 70688 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 898 | lemma dvd_power_iff_le: | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 899 | fixes k::nat | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 900 | shows "2 \<le> k \<Longrightarrow> ((k ^ m) dvd (k ^ n) \<longleftrightarrow> m \<le> n)" | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 901 | using le_imp_power_dvd power_dvd_imp_le by force | 
| 
3d894e1cfc75
new material on Analysis, plus some rearrangements
 paulson <lp15@cam.ac.uk> parents: 
70365diff
changeset | 902 | |
| 63654 | 903 | lemma power2_nat_le_eq_le: "m\<^sup>2 \<le> n\<^sup>2 \<longleftrightarrow> m \<le> n" | 
| 904 | for m n :: nat | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 905 | by (auto intro: power2_le_imp_le power_mono) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 906 | |
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 907 | lemma power2_nat_le_imp_le: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 908 | fixes m n :: nat | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 909 | assumes "m\<^sup>2 \<le> n" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 910 | shows "m \<le> n" | 
| 54249 | 911 | proof (cases m) | 
| 63654 | 912 | case 0 | 
| 913 | then show ?thesis by simp | |
| 54249 | 914 | next | 
| 915 | case (Suc k) | |
| 916 | show ?thesis | |
| 917 | proof (rule ccontr) | |
| 63654 | 918 | assume "\<not> ?thesis" | 
| 54249 | 919 | then have "n < m" by simp | 
| 920 | with assms Suc show False | |
| 60867 | 921 | by (simp add: power2_eq_square) | 
| 54249 | 922 | qed | 
| 923 | qed | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 924 | |
| 64065 | 925 | lemma ex_power_ivl1: fixes b k :: nat assumes "b \<ge> 2" | 
| 926 | shows "k \<ge> 1 \<Longrightarrow> \<exists>n. b^n \<le> k \<and> k < b^(n+1)" (is "_ \<Longrightarrow> \<exists>n. ?P k n") | |
| 927 | proof(induction k) | |
| 928 | case 0 thus ?case by simp | |
| 929 | next | |
| 930 | case (Suc k) | |
| 931 | show ?case | |
| 932 | proof cases | |
| 933 | assume "k=0" | |
| 934 | hence "?P (Suc k) 0" using assms by simp | |
| 935 | thus ?case .. | |
| 936 | next | |
| 937 | assume "k\<noteq>0" | |
| 938 | with Suc obtain n where IH: "?P k n" by auto | |
| 939 | show ?case | |
| 940 | proof (cases "k = b^(n+1) - 1") | |
| 941 | case True | |
| 942 | hence "?P (Suc k) (n+1)" using assms | |
| 943 | by (simp add: power_less_power_Suc) | |
| 944 | thus ?thesis .. | |
| 945 | next | |
| 946 | case False | |
| 947 | hence "?P (Suc k) n" using IH by auto | |
| 948 | thus ?thesis .. | |
| 949 | qed | |
| 950 | qed | |
| 951 | qed | |
| 952 | ||
| 953 | lemma ex_power_ivl2: fixes b k :: nat assumes "b \<ge> 2" "k \<ge> 2" | |
| 954 | shows "\<exists>n. b^n < k \<and> k \<le> b^(n+1)" | |
| 955 | proof - | |
| 956 | have "1 \<le> k - 1" using assms(2) by arith | |
| 957 | from ex_power_ivl1[OF assms(1) this] | |
| 958 | obtain n where "b ^ n \<le> k - 1 \<and> k - 1 < b ^ (n + 1)" .. | |
| 959 | hence "b^n < k \<and> k \<le> b^(n+1)" using assms by auto | |
| 960 | thus ?thesis .. | |
| 961 | qed | |
| 962 | ||
| 63654 | 963 | |
| 60758 | 964 | subsubsection \<open>Cardinality of the Powerset\<close> | 
| 55096 | 965 | |
| 966 | lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2" | |
| 967 | unfolding UNIV_bool by simp | |
| 968 | ||
| 969 | lemma card_Pow: "finite A \<Longrightarrow> card (Pow A) = 2 ^ card A" | |
| 970 | proof (induct rule: finite_induct) | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 971 | case empty | 
| 64964 | 972 | show ?case by simp | 
| 55096 | 973 | next | 
| 974 | case (insert x A) | |
| 64964 | 975 |   from \<open>x \<notin> A\<close> have disjoint: "Pow A \<inter> insert x ` Pow A = {}" by blast
 | 
| 976 | from \<open>x \<notin> A\<close> have inj_on: "inj_on (insert x) (Pow A)" | |
| 977 | unfolding inj_on_def by auto | |
| 978 | ||
| 979 | have "card (Pow (insert x A)) = card (Pow A \<union> insert x ` Pow A)" | |
| 980 | by (simp only: Pow_insert) | |
| 981 | also have "\<dots> = card (Pow A) + card (insert x ` Pow A)" | |
| 982 | by (rule card_Un_disjoint) (use \<open>finite A\<close> disjoint in simp_all) | |
| 983 | also from inj_on have "card (insert x ` Pow A) = card (Pow A)" | |
| 984 | by (rule card_image) | |
| 985 | also have "\<dots> + \<dots> = 2 * \<dots>" by (simp add: mult_2) | |
| 986 | also from insert(3) have "\<dots> = 2 ^ Suc (card A)" by simp | |
| 987 | also from insert(1,2) have "Suc (card A) = card (insert x A)" | |
| 988 | by (rule card_insert_disjoint [symmetric]) | |
| 989 | finally show ?case . | |
| 55096 | 990 | qed | 
| 991 | ||
| 57418 | 992 | |
| 60758 | 993 | subsection \<open>Code generator tweak\<close> | 
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 994 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51263diff
changeset | 995 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51263diff
changeset | 996 | code_module Power \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 997 | |
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 998 | end |