author | nipkow |
Sun, 22 Dec 2002 15:02:40 +0100 | |
changeset 13764 | 3e180bf68496 |
parent 13735 | 7de9342aca7a |
child 13850 | 6d1bb3059818 |
permissions | -rw-r--r-- |
8924 | 1 |
(* Title: HOL/SetInterval.thy |
2 |
ID: $Id$ |
|
13735 | 3 |
Author: Tobias Nipkow and Clemens Ballarin |
8957 | 4 |
Copyright 2000 TU Muenchen |
8924 | 5 |
|
13735 | 6 |
lessThan, greaterThan, atLeast, atMost and two-sided intervals |
8924 | 7 |
*) |
8 |
||
13735 | 9 |
theory SetInterval = NatArith: |
8924 | 10 |
|
11 |
constdefs |
|
11609
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
12 |
lessThan :: "('a::ord) => 'a set" ("(1{.._'(})") |
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
13 |
"{..u(} == {x. x<u}" |
8924 | 14 |
|
11609
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
15 |
atMost :: "('a::ord) => 'a set" ("(1{.._})") |
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
16 |
"{..u} == {x. x<=u}" |
8924 | 17 |
|
11609
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
18 |
greaterThan :: "('a::ord) => 'a set" ("(1{')_..})") |
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
19 |
"{)l..} == {x. l<x}" |
8924 | 20 |
|
11609
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
21 |
atLeast :: "('a::ord) => 'a set" ("(1{_..})") |
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
wenzelm
parents:
10214
diff
changeset
|
22 |
"{l..} == {x. l<=x}" |
8924 | 23 |
|
13735 | 24 |
greaterThanLessThan :: "['a::ord, 'a] => 'a set" ("(1{')_.._'(})") |
25 |
"{)l..u(} == {)l..} Int {..u(}" |
|
26 |
||
27 |
atLeastLessThan :: "['a::ord, 'a] => 'a set" ("(1{_.._'(})") |
|
28 |
"{l..u(} == {l..} Int {..u(}" |
|
29 |
||
30 |
greaterThanAtMost :: "['a::ord, 'a] => 'a set" ("(1{')_.._})") |
|
31 |
"{)l..u} == {)l..} Int {..u}" |
|
32 |
||
33 |
atLeastAtMost :: "['a::ord, 'a] => 'a set" ("(1{_.._})") |
|
34 |
"{l..u} == {l..} Int {..u}" |
|
35 |
||
36 |
(* Setup of transitivity reasoner *) |
|
37 |
||
38 |
ML {* |
|
39 |
||
40 |
structure Trans_Tac = Trans_Tac_Fun ( |
|
41 |
struct |
|
42 |
val less_reflE = thm "order_less_irrefl" RS thm "notE"; |
|
43 |
val le_refl = thm "order_refl"; |
|
44 |
val less_imp_le = thm "order_less_imp_le"; |
|
45 |
val not_lessI = thm "linorder_not_less" RS thm "iffD2"; |
|
46 |
val not_leI = thm "linorder_not_less" RS thm "iffD2"; |
|
47 |
val not_lessD = thm "linorder_not_less" RS thm "iffD1"; |
|
48 |
val not_leD = thm "linorder_not_le" RS thm "iffD1"; |
|
49 |
val eqI = thm "order_antisym"; |
|
50 |
val eqD1 = thm "order_eq_refl"; |
|
51 |
val eqD2 = thm "sym" RS thm "order_eq_refl"; |
|
52 |
val less_trans = thm "order_less_trans"; |
|
53 |
val less_le_trans = thm "order_less_le_trans"; |
|
54 |
val le_less_trans = thm "order_le_less_trans"; |
|
55 |
val le_trans = thm "order_trans"; |
|
56 |
fun decomp (Trueprop $ t) = |
|
57 |
let fun dec (Const ("Not", _) $ t) = ( |
|
58 |
case dec t of |
|
59 |
None => None |
|
60 |
| Some (t1, rel, t2) => Some (t1, "~" ^ rel, t2)) |
|
61 |
| dec (Const (rel, _) $ t1 $ t2) = |
|
62 |
Some (t1, implode (drop (3, explode rel)), t2) |
|
63 |
| dec _ = None |
|
64 |
in dec t end |
|
65 |
| decomp _ = None |
|
66 |
end); |
|
67 |
||
68 |
val trans_tac = Trans_Tac.trans_tac; |
|
69 |
||
70 |
*} |
|
71 |
||
72 |
method_setup trans = |
|
73 |
{* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trans_tac)) *} |
|
74 |
{* simple transitivity reasoner *} |
|
75 |
||
76 |
(*** lessThan ***) |
|
77 |
||
78 |
lemma lessThan_iff: "(i: lessThan k) = (i<k)" |
|
79 |
||
80 |
apply (unfold lessThan_def) |
|
81 |
apply blast |
|
82 |
done |
|
83 |
declare lessThan_iff [iff] |
|
84 |
||
85 |
lemma lessThan_0: "lessThan (0::nat) = {}" |
|
86 |
apply (unfold lessThan_def) |
|
87 |
apply (simp (no_asm)) |
|
88 |
done |
|
89 |
declare lessThan_0 [simp] |
|
90 |
||
91 |
lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" |
|
92 |
apply (unfold lessThan_def) |
|
93 |
apply (simp (no_asm) add: less_Suc_eq) |
|
94 |
apply blast |
|
95 |
done |
|
96 |
||
97 |
lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" |
|
98 |
apply (unfold lessThan_def atMost_def) |
|
99 |
apply (simp (no_asm) add: less_Suc_eq_le) |
|
100 |
done |
|
101 |
||
102 |
lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" |
|
103 |
apply blast |
|
104 |
done |
|
105 |
||
106 |
lemma Compl_lessThan: |
|
107 |
"!!k:: 'a::linorder. -lessThan k = atLeast k" |
|
108 |
apply (unfold lessThan_def atLeast_def) |
|
109 |
apply auto |
|
110 |
apply (blast intro: linorder_not_less [THEN iffD1]) |
|
111 |
apply (blast dest: order_le_less_trans) |
|
112 |
done |
|
113 |
||
114 |
lemma single_Diff_lessThan: "!!k:: 'a::order. {k} - lessThan k = {k}" |
|
115 |
apply auto |
|
116 |
done |
|
117 |
declare single_Diff_lessThan [simp] |
|
118 |
||
119 |
(*** greaterThan ***) |
|
120 |
||
121 |
lemma greaterThan_iff: "(i: greaterThan k) = (k<i)" |
|
122 |
||
123 |
apply (unfold greaterThan_def) |
|
124 |
apply blast |
|
125 |
done |
|
126 |
declare greaterThan_iff [iff] |
|
127 |
||
128 |
lemma greaterThan_0: "greaterThan 0 = range Suc" |
|
129 |
apply (unfold greaterThan_def) |
|
130 |
apply (blast dest: gr0_conv_Suc [THEN iffD1]) |
|
131 |
done |
|
132 |
declare greaterThan_0 [simp] |
|
133 |
||
134 |
lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}" |
|
135 |
apply (unfold greaterThan_def) |
|
136 |
apply (auto elim: linorder_neqE) |
|
137 |
done |
|
138 |
||
139 |
lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}" |
|
140 |
apply blast |
|
141 |
done |
|
142 |
||
143 |
lemma Compl_greaterThan: |
|
144 |
"!!k:: 'a::linorder. -greaterThan k = atMost k" |
|
145 |
apply (unfold greaterThan_def atMost_def le_def) |
|
146 |
apply auto |
|
147 |
apply (blast intro: linorder_not_less [THEN iffD1]) |
|
148 |
apply (blast dest: order_le_less_trans) |
|
149 |
done |
|
150 |
||
151 |
lemma Compl_atMost: "!!k:: 'a::linorder. -atMost k = greaterThan k" |
|
152 |
apply (simp (no_asm) add: Compl_greaterThan [symmetric]) |
|
153 |
done |
|
154 |
||
155 |
declare Compl_greaterThan [simp] Compl_atMost [simp] |
|
156 |
||
157 |
(*** atLeast ***) |
|
158 |
||
159 |
lemma atLeast_iff: "(i: atLeast k) = (k<=i)" |
|
160 |
||
161 |
apply (unfold atLeast_def) |
|
162 |
apply blast |
|
163 |
done |
|
164 |
declare atLeast_iff [iff] |
|
165 |
||
166 |
lemma atLeast_0: "atLeast (0::nat) = UNIV" |
|
167 |
apply (unfold atLeast_def UNIV_def) |
|
168 |
apply (simp (no_asm)) |
|
169 |
done |
|
170 |
declare atLeast_0 [simp] |
|
171 |
||
172 |
lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}" |
|
173 |
apply (unfold atLeast_def) |
|
174 |
apply (simp (no_asm) add: Suc_le_eq) |
|
175 |
apply (simp (no_asm) add: order_le_less) |
|
176 |
apply blast |
|
177 |
done |
|
178 |
||
179 |
lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" |
|
180 |
apply blast |
|
181 |
done |
|
182 |
||
183 |
lemma Compl_atLeast: |
|
184 |
"!!k:: 'a::linorder. -atLeast k = lessThan k" |
|
185 |
apply (unfold lessThan_def atLeast_def le_def) |
|
186 |
apply auto |
|
187 |
apply (blast intro: linorder_not_less [THEN iffD1]) |
|
188 |
apply (blast dest: order_le_less_trans) |
|
189 |
done |
|
190 |
||
191 |
declare Compl_lessThan [simp] Compl_atLeast [simp] |
|
192 |
||
193 |
(*** atMost ***) |
|
194 |
||
195 |
lemma atMost_iff: "(i: atMost k) = (i<=k)" |
|
196 |
||
197 |
apply (unfold atMost_def) |
|
198 |
apply blast |
|
199 |
done |
|
200 |
declare atMost_iff [iff] |
|
201 |
||
202 |
lemma atMost_0: "atMost (0::nat) = {0}" |
|
203 |
apply (unfold atMost_def) |
|
204 |
apply (simp (no_asm)) |
|
205 |
done |
|
206 |
declare atMost_0 [simp] |
|
207 |
||
208 |
lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" |
|
209 |
apply (unfold atMost_def) |
|
210 |
apply (simp (no_asm) add: less_Suc_eq order_le_less) |
|
211 |
apply blast |
|
212 |
done |
|
213 |
||
214 |
lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" |
|
215 |
apply blast |
|
216 |
done |
|
217 |
||
218 |
||
219 |
(*** Combined properties ***) |
|
220 |
||
221 |
lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}" |
|
222 |
apply (blast intro: order_antisym) |
|
223 |
done |
|
224 |
||
225 |
(*** Two-sided intervals ***) |
|
226 |
||
227 |
(* greaterThanLessThan *) |
|
228 |
||
229 |
lemma greaterThanLessThan_iff [simp]: |
|
230 |
"(i : {)l..u(}) = (l < i & i < u)" |
|
231 |
by (simp add: greaterThanLessThan_def) |
|
232 |
||
233 |
(* atLeastLessThan *) |
|
234 |
||
235 |
lemma atLeastLessThan_iff [simp]: |
|
236 |
"(i : {l..u(}) = (l <= i & i < u)" |
|
237 |
by (simp add: atLeastLessThan_def) |
|
238 |
||
239 |
(* greaterThanAtMost *) |
|
240 |
||
241 |
lemma greaterThanAtMost_iff [simp]: |
|
242 |
"(i : {)l..u}) = (l < i & i <= u)" |
|
243 |
by (simp add: greaterThanAtMost_def) |
|
244 |
||
245 |
(* atLeastAtMost *) |
|
246 |
||
247 |
lemma atLeastAtMost_iff [simp]: |
|
248 |
"(i : {l..u}) = (l <= i & i <= u)" |
|
249 |
by (simp add: atLeastAtMost_def) |
|
250 |
||
251 |
(* The above four lemmas could be declared as iffs. |
|
252 |
If we do so, a call to blast in Hyperreal/Star.ML, lemma STAR_Int |
|
253 |
seems to take forever (more than one hour). *) |
|
254 |
||
255 |
(*** The following lemmas are useful with the summation operator setsum ***) |
|
256 |
(* For examples, see Algebra/poly/UnivPoly.thy *) |
|
257 |
||
258 |
(** Disjoint Unions **) |
|
259 |
||
260 |
(* Singletons and open intervals *) |
|
261 |
||
262 |
lemma ivl_disj_un_singleton: |
|
263 |
"{l::'a::linorder} Un {)l..} = {l..}" |
|
264 |
"{..u(} Un {u::'a::linorder} = {..u}" |
|
265 |
"(l::'a::linorder) < u ==> {l} Un {)l..u(} = {l..u(}" |
|
266 |
"(l::'a::linorder) < u ==> {)l..u(} Un {u} = {)l..u}" |
|
267 |
"(l::'a::linorder) <= u ==> {l} Un {)l..u} = {l..u}" |
|
268 |
"(l::'a::linorder) <= u ==> {l..u(} Un {u} = {l..u}" |
|
269 |
by auto (elim linorder_neqE | trans+)+ |
|
270 |
||
271 |
(* One- and two-sided intervals *) |
|
272 |
||
273 |
lemma ivl_disj_un_one: |
|
274 |
"(l::'a::linorder) < u ==> {..l} Un {)l..u(} = {..u(}" |
|
275 |
"(l::'a::linorder) <= u ==> {..l(} Un {l..u(} = {..u(}" |
|
276 |
"(l::'a::linorder) <= u ==> {..l} Un {)l..u} = {..u}" |
|
277 |
"(l::'a::linorder) <= u ==> {..l(} Un {l..u} = {..u}" |
|
278 |
"(l::'a::linorder) <= u ==> {)l..u} Un {)u..} = {)l..}" |
|
279 |
"(l::'a::linorder) < u ==> {)l..u(} Un {u..} = {)l..}" |
|
280 |
"(l::'a::linorder) <= u ==> {l..u} Un {)u..} = {l..}" |
|
281 |
"(l::'a::linorder) <= u ==> {l..u(} Un {u..} = {l..}" |
|
282 |
by auto trans+ |
|
283 |
||
284 |
(* Two- and two-sided intervals *) |
|
285 |
||
286 |
lemma ivl_disj_un_two: |
|
287 |
"[| (l::'a::linorder) < m; m <= u |] ==> {)l..m(} Un {m..u(} = {)l..u(}" |
|
288 |
"[| (l::'a::linorder) <= m; m < u |] ==> {)l..m} Un {)m..u(} = {)l..u(}" |
|
289 |
"[| (l::'a::linorder) <= m; m <= u |] ==> {l..m(} Un {m..u(} = {l..u(}" |
|
290 |
"[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {)m..u(} = {l..u(}" |
|
291 |
"[| (l::'a::linorder) < m; m <= u |] ==> {)l..m(} Un {m..u} = {)l..u}" |
|
292 |
"[| (l::'a::linorder) <= m; m <= u |] ==> {)l..m} Un {)m..u} = {)l..u}" |
|
293 |
"[| (l::'a::linorder) <= m; m <= u |] ==> {l..m(} Un {m..u} = {l..u}" |
|
294 |
"[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {)m..u} = {l..u}" |
|
295 |
by auto trans+ |
|
296 |
||
297 |
lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two |
|
298 |
||
299 |
(** Disjoint Intersections **) |
|
300 |
||
301 |
(* Singletons and open intervals *) |
|
302 |
||
303 |
lemma ivl_disj_int_singleton: |
|
304 |
"{l::'a::order} Int {)l..} = {}" |
|
305 |
"{..u(} Int {u} = {}" |
|
306 |
"{l} Int {)l..u(} = {}" |
|
307 |
"{)l..u(} Int {u} = {}" |
|
308 |
"{l} Int {)l..u} = {}" |
|
309 |
"{l..u(} Int {u} = {}" |
|
310 |
by simp+ |
|
311 |
||
312 |
(* One- and two-sided intervals *) |
|
313 |
||
314 |
lemma ivl_disj_int_one: |
|
315 |
"{..l::'a::order} Int {)l..u(} = {}" |
|
316 |
"{..l(} Int {l..u(} = {}" |
|
317 |
"{..l} Int {)l..u} = {}" |
|
318 |
"{..l(} Int {l..u} = {}" |
|
319 |
"{)l..u} Int {)u..} = {}" |
|
320 |
"{)l..u(} Int {u..} = {}" |
|
321 |
"{l..u} Int {)u..} = {}" |
|
322 |
"{l..u(} Int {u..} = {}" |
|
323 |
by auto trans+ |
|
324 |
||
325 |
(* Two- and two-sided intervals *) |
|
326 |
||
327 |
lemma ivl_disj_int_two: |
|
328 |
"{)l::'a::order..m(} Int {m..u(} = {}" |
|
329 |
"{)l..m} Int {)m..u(} = {}" |
|
330 |
"{l..m(} Int {m..u(} = {}" |
|
331 |
"{l..m} Int {)m..u(} = {}" |
|
332 |
"{)l..m(} Int {m..u} = {}" |
|
333 |
"{)l..m} Int {)m..u} = {}" |
|
334 |
"{l..m(} Int {m..u} = {}" |
|
335 |
"{l..m} Int {)m..u} = {}" |
|
336 |
by auto trans+ |
|
337 |
||
338 |
lemmas ivl_disj_int = ivl_disj_int_singleton ivl_disj_int_one ivl_disj_int_two |
|
339 |
||
8924 | 340 |
end |