| author | blanchet | 
| Sun, 12 Oct 2014 21:52:45 +0200 | |
| changeset 58654 | 3e1cad27fc2f | 
| parent 58306 | 117ba6cbe414 | 
| child 58881 | b9556a055632 | 
| permissions | -rw-r--r-- | 
| 43919 | 1 | (* Title: HOL/Library/Extended_Nat.thy | 
| 27110 | 2 | Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen | 
| 41853 | 3 | Contributions: David Trachtenherz, TU Muenchen | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 4 | *) | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 5 | |
| 43919 | 6 | header {* Extended natural numbers (i.e. with infinity) *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 7 | |
| 43919 | 8 | theory Extended_Nat | 
| 54415 | 9 | imports Main Countable | 
| 15131 | 10 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 11 | |
| 43921 | 12 | class infinity = | 
| 13 | fixes infinity :: "'a" | |
| 14 | ||
| 15 | notation (xsymbols) | |
| 16 |   infinity  ("\<infinity>")
 | |
| 17 | ||
| 18 | notation (HTML output) | |
| 19 |   infinity  ("\<infinity>")
 | |
| 20 | ||
| 27110 | 21 | subsection {* Type definition *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 22 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 23 | text {*
 | 
| 11355 | 24 | We extend the standard natural numbers by a special value indicating | 
| 27110 | 25 | infinity. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 26 | *} | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 27 | |
| 49834 | 28 | typedef enat = "UNIV :: nat option set" .. | 
| 54415 | 29 | |
| 54419 | 30 | text {* TODO: introduce enat as coinductive datatype, enat is just @{const of_nat} *}
 | 
| 54415 | 31 | |
| 43924 | 32 | definition enat :: "nat \<Rightarrow> enat" where | 
| 33 | "enat n = Abs_enat (Some n)" | |
| 43921 | 34 | |
| 35 | instantiation enat :: infinity | |
| 36 | begin | |
| 37 | definition "\<infinity> = Abs_enat None" | |
| 38 | instance proof qed | |
| 39 | end | |
| 54415 | 40 | |
| 41 | instance enat :: countable | |
| 42 | proof | |
| 43 | show "\<exists>to_nat::enat \<Rightarrow> nat. inj to_nat" | |
| 44 | by (rule exI[of _ "to_nat \<circ> Rep_enat"]) (simp add: inj_on_def Rep_enat_inject) | |
| 45 | qed | |
| 43921 | 46 | |
| 58306 
117ba6cbe414
renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
 blanchet parents: 
57514diff
changeset | 47 | old_rep_datatype enat "\<infinity> :: enat" | 
| 43921 | 48 | proof - | 
| 43924 | 49 | fix P i assume "\<And>j. P (enat j)" "P \<infinity>" | 
| 43921 | 50 | then show "P i" | 
| 51 | proof induct | |
| 52 | case (Abs_enat y) then show ?case | |
| 53 | by (cases y rule: option.exhaust) | |
| 43924 | 54 | (auto simp: enat_def infinity_enat_def) | 
| 43921 | 55 | qed | 
| 43924 | 56 | qed (auto simp add: enat_def infinity_enat_def Abs_enat_inject) | 
| 19736 | 57 | |
| 43924 | 58 | declare [[coercion "enat::nat\<Rightarrow>enat"]] | 
| 19736 | 59 | |
| 45934 | 60 | lemmas enat2_cases = enat.exhaust[case_product enat.exhaust] | 
| 61 | lemmas enat3_cases = enat.exhaust[case_product enat.exhaust enat.exhaust] | |
| 62 | ||
| 54416 | 63 | lemma not_infinity_eq [iff]: "(x \<noteq> \<infinity>) = (\<exists>i. x = enat i)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 64 | by (cases x) auto | 
| 31084 | 65 | |
| 54416 | 66 | lemma not_enat_eq [iff]: "(\<forall>y. x \<noteq> enat y) = (x = \<infinity>)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 67 | by (cases x) auto | 
| 31077 | 68 | |
| 43924 | 69 | primrec the_enat :: "enat \<Rightarrow> nat" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 70 | where "the_enat (enat n) = n" | 
| 41855 | 71 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 72 | |
| 27110 | 73 | subsection {* Constructors and numbers *}
 | 
| 74 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 75 | instantiation enat :: "{zero, one}"
 | 
| 25594 | 76 | begin | 
| 77 | ||
| 78 | definition | |
| 43924 | 79 | "0 = enat 0" | 
| 25594 | 80 | |
| 81 | definition | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 82 | "1 = enat 1" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 83 | |
| 25594 | 84 | instance .. | 
| 85 | ||
| 86 | end | |
| 87 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 88 | definition eSuc :: "enat \<Rightarrow> enat" where | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 89 | "eSuc i = (case i of enat n \<Rightarrow> enat (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 90 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 91 | lemma enat_0 [code_post]: "enat 0 = 0" | 
| 43919 | 92 | by (simp add: zero_enat_def) | 
| 27110 | 93 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 94 | lemma enat_1 [code_post]: "enat 1 = 1" | 
| 43919 | 95 | by (simp add: one_enat_def) | 
| 27110 | 96 | |
| 54416 | 97 | lemma enat_0_iff: "enat x = 0 \<longleftrightarrow> x = 0" "0 = enat x \<longleftrightarrow> x = 0" | 
| 98 | by (auto simp add: zero_enat_def) | |
| 99 | ||
| 100 | lemma enat_1_iff: "enat x = 1 \<longleftrightarrow> x = 1" "1 = enat x \<longleftrightarrow> x = 1" | |
| 101 | by (auto simp add: one_enat_def) | |
| 102 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 103 | lemma one_eSuc: "1 = eSuc 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 104 | by (simp add: zero_enat_def one_enat_def eSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 105 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 106 | lemma infinity_ne_i0 [simp]: "(\<infinity>::enat) \<noteq> 0" | 
| 43919 | 107 | by (simp add: zero_enat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 108 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 109 | lemma i0_ne_infinity [simp]: "0 \<noteq> (\<infinity>::enat)" | 
| 43919 | 110 | by (simp add: zero_enat_def) | 
| 27110 | 111 | |
| 43919 | 112 | lemma zero_one_enat_neq [simp]: | 
| 113 | "\<not> 0 = (1\<Colon>enat)" | |
| 114 | "\<not> 1 = (0\<Colon>enat)" | |
| 115 | unfolding zero_enat_def one_enat_def by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 116 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 117 | lemma infinity_ne_i1 [simp]: "(\<infinity>::enat) \<noteq> 1" | 
| 43919 | 118 | by (simp add: one_enat_def) | 
| 27110 | 119 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 120 | lemma i1_ne_infinity [simp]: "1 \<noteq> (\<infinity>::enat)" | 
| 43919 | 121 | by (simp add: one_enat_def) | 
| 27110 | 122 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 123 | lemma eSuc_enat: "eSuc (enat n) = enat (Suc n)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 124 | by (simp add: eSuc_def) | 
| 27110 | 125 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 126 | lemma eSuc_infinity [simp]: "eSuc \<infinity> = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 127 | by (simp add: eSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 128 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 129 | lemma eSuc_ne_0 [simp]: "eSuc n \<noteq> 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 130 | by (simp add: eSuc_def zero_enat_def split: enat.splits) | 
| 27110 | 131 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 132 | lemma zero_ne_eSuc [simp]: "0 \<noteq> eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 133 | by (rule eSuc_ne_0 [symmetric]) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 134 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 135 | lemma eSuc_inject [simp]: "eSuc m = eSuc n \<longleftrightarrow> m = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 136 | by (simp add: eSuc_def split: enat.splits) | 
| 27110 | 137 | |
| 138 | subsection {* Addition *}
 | |
| 139 | ||
| 43919 | 140 | instantiation enat :: comm_monoid_add | 
| 27110 | 141 | begin | 
| 142 | ||
| 38167 | 143 | definition [nitpick_simp]: | 
| 43924 | 144 | "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | enat m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | enat n \<Rightarrow> enat (m + n)))" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 145 | |
| 43919 | 146 | lemma plus_enat_simps [simp, code]: | 
| 43921 | 147 | fixes q :: enat | 
| 43924 | 148 | shows "enat m + enat n = enat (m + n)" | 
| 43921 | 149 | and "\<infinity> + q = \<infinity>" | 
| 150 | and "q + \<infinity> = \<infinity>" | |
| 43919 | 151 | by (simp_all add: plus_enat_def split: enat.splits) | 
| 27110 | 152 | |
| 153 | instance proof | |
| 43919 | 154 | fix n m q :: enat | 
| 27110 | 155 | show "n + m + q = n + (m + q)" | 
| 45934 | 156 | by (cases n m q rule: enat3_cases) auto | 
| 27110 | 157 | show "n + m = m + n" | 
| 45934 | 158 | by (cases n m rule: enat2_cases) auto | 
| 27110 | 159 | show "0 + n = n" | 
| 43919 | 160 | by (cases n) (simp_all add: zero_enat_def) | 
| 26089 | 161 | qed | 
| 162 | ||
| 27110 | 163 | end | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 164 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 165 | lemma eSuc_plus_1: | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 166 | "eSuc n = n + 1" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 167 | by (cases n) (simp_all add: eSuc_enat one_enat_def) | 
| 27110 | 168 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 169 | lemma plus_1_eSuc: | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 170 | "1 + q = eSuc q" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 171 | "q + 1 = eSuc q" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 172 | by (simp_all add: eSuc_plus_1 ac_simps) | 
| 41853 | 173 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 174 | lemma iadd_Suc: "eSuc m + n = eSuc (m + n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 175 | by (simp_all add: eSuc_plus_1 ac_simps) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 176 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 177 | lemma iadd_Suc_right: "m + eSuc n = eSuc (m + n)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56777diff
changeset | 178 | by (simp only: add.commute[of m] iadd_Suc) | 
| 41853 | 179 | |
| 43919 | 180 | lemma iadd_is_0: "(m + n = (0::enat)) = (m = 0 \<and> n = 0)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 181 | by (cases m, cases n, simp_all add: zero_enat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 182 | |
| 29014 | 183 | subsection {* Multiplication *}
 | 
| 184 | ||
| 43919 | 185 | instantiation enat :: comm_semiring_1 | 
| 29014 | 186 | begin | 
| 187 | ||
| 43919 | 188 | definition times_enat_def [nitpick_simp]: | 
| 43924 | 189 | "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | enat m \<Rightarrow> | 
| 190 | (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | enat n \<Rightarrow> enat (m * n)))" | |
| 29014 | 191 | |
| 43919 | 192 | lemma times_enat_simps [simp, code]: | 
| 43924 | 193 | "enat m * enat n = enat (m * n)" | 
| 43921 | 194 | "\<infinity> * \<infinity> = (\<infinity>::enat)" | 
| 43924 | 195 | "\<infinity> * enat n = (if n = 0 then 0 else \<infinity>)" | 
| 196 | "enat m * \<infinity> = (if m = 0 then 0 else \<infinity>)" | |
| 43919 | 197 | unfolding times_enat_def zero_enat_def | 
| 198 | by (simp_all split: enat.split) | |
| 29014 | 199 | |
| 200 | instance proof | |
| 43919 | 201 | fix a b c :: enat | 
| 29014 | 202 | show "(a * b) * c = a * (b * c)" | 
| 43919 | 203 | unfolding times_enat_def zero_enat_def | 
| 204 | by (simp split: enat.split) | |
| 29014 | 205 | show "a * b = b * a" | 
| 43919 | 206 | unfolding times_enat_def zero_enat_def | 
| 207 | by (simp split: enat.split) | |
| 29014 | 208 | show "1 * a = a" | 
| 43919 | 209 | unfolding times_enat_def zero_enat_def one_enat_def | 
| 210 | by (simp split: enat.split) | |
| 29014 | 211 | show "(a + b) * c = a * c + b * c" | 
| 43919 | 212 | unfolding times_enat_def zero_enat_def | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49834diff
changeset | 213 | by (simp split: enat.split add: distrib_right) | 
| 29014 | 214 | show "0 * a = 0" | 
| 43919 | 215 | unfolding times_enat_def zero_enat_def | 
| 216 | by (simp split: enat.split) | |
| 29014 | 217 | show "a * 0 = 0" | 
| 43919 | 218 | unfolding times_enat_def zero_enat_def | 
| 219 | by (simp split: enat.split) | |
| 220 | show "(0::enat) \<noteq> 1" | |
| 221 | unfolding zero_enat_def one_enat_def | |
| 29014 | 222 | by simp | 
| 223 | qed | |
| 224 | ||
| 225 | end | |
| 226 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 227 | lemma mult_eSuc: "eSuc m * n = n + m * n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 228 | unfolding eSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 229 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 230 | lemma mult_eSuc_right: "m * eSuc n = m + m * n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 231 | unfolding eSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 232 | |
| 43924 | 233 | lemma of_nat_eq_enat: "of_nat n = enat n" | 
| 29023 | 234 | apply (induct n) | 
| 43924 | 235 | apply (simp add: enat_0) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 236 | apply (simp add: plus_1_eSuc eSuc_enat) | 
| 29023 | 237 | done | 
| 238 | ||
| 43919 | 239 | instance enat :: semiring_char_0 proof | 
| 43924 | 240 | have "inj enat" by (rule injI) simp | 
| 241 | then show "inj (\<lambda>n. of_nat n :: enat)" by (simp add: of_nat_eq_enat) | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 242 | qed | 
| 29023 | 243 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 244 | lemma imult_is_0 [simp]: "((m::enat) * n = 0) = (m = 0 \<or> n = 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 245 | by (auto simp add: times_enat_def zero_enat_def split: enat.split) | 
| 41853 | 246 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 247 | lemma imult_is_infinity: "((a::enat) * b = \<infinity>) = (a = \<infinity> \<and> b \<noteq> 0 \<or> b = \<infinity> \<and> a \<noteq> 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 248 | by (auto simp add: times_enat_def zero_enat_def split: enat.split) | 
| 41853 | 249 | |
| 250 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 251 | subsection {* Numerals *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 252 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 253 | lemma numeral_eq_enat: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 254 | "numeral k = enat (numeral k)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 255 | using of_nat_eq_enat [of "numeral k"] by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 256 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 257 | lemma enat_numeral [code_abbrev]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 258 | "enat (numeral k) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 259 | using numeral_eq_enat .. | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 260 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 261 | lemma infinity_ne_numeral [simp]: "(\<infinity>::enat) \<noteq> numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 262 | by (simp add: numeral_eq_enat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 263 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 264 | lemma numeral_ne_infinity [simp]: "numeral k \<noteq> (\<infinity>::enat)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 265 | by (simp add: numeral_eq_enat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 266 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 267 | lemma eSuc_numeral [simp]: "eSuc (numeral k) = numeral (k + Num.One)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 268 | by (simp only: eSuc_plus_1 numeral_plus_one) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 269 | |
| 41853 | 270 | subsection {* Subtraction *}
 | 
| 271 | ||
| 43919 | 272 | instantiation enat :: minus | 
| 41853 | 273 | begin | 
| 274 | ||
| 43919 | 275 | definition diff_enat_def: | 
| 43924 | 276 | "a - b = (case a of (enat x) \<Rightarrow> (case b of (enat y) \<Rightarrow> enat (x - y) | \<infinity> \<Rightarrow> 0) | 
| 41853 | 277 | | \<infinity> \<Rightarrow> \<infinity>)" | 
| 278 | ||
| 279 | instance .. | |
| 280 | ||
| 281 | end | |
| 282 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 283 | lemma idiff_enat_enat [simp, code]: "enat a - enat b = enat (a - b)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 284 | by (simp add: diff_enat_def) | 
| 41853 | 285 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 286 | lemma idiff_infinity [simp, code]: "\<infinity> - n = (\<infinity>::enat)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 287 | by (simp add: diff_enat_def) | 
| 41853 | 288 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 289 | lemma idiff_infinity_right [simp, code]: "enat a - \<infinity> = 0" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 290 | by (simp add: diff_enat_def) | 
| 41853 | 291 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 292 | lemma idiff_0 [simp]: "(0::enat) - n = 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 293 | by (cases n, simp_all add: zero_enat_def) | 
| 41853 | 294 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 295 | lemmas idiff_enat_0 [simp] = idiff_0 [unfolded zero_enat_def] | 
| 41853 | 296 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 297 | lemma idiff_0_right [simp]: "(n::enat) - 0 = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 298 | by (cases n) (simp_all add: zero_enat_def) | 
| 41853 | 299 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 300 | lemmas idiff_enat_0_right [simp] = idiff_0_right [unfolded zero_enat_def] | 
| 41853 | 301 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 302 | lemma idiff_self [simp]: "n \<noteq> \<infinity> \<Longrightarrow> (n::enat) - n = 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 303 | by (auto simp: zero_enat_def) | 
| 41853 | 304 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 305 | lemma eSuc_minus_eSuc [simp]: "eSuc n - eSuc m = n - m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 306 | by (simp add: eSuc_def split: enat.split) | 
| 41855 | 307 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 308 | lemma eSuc_minus_1 [simp]: "eSuc n - 1 = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 309 | by (simp add: one_enat_def eSuc_enat[symmetric] zero_enat_def[symmetric]) | 
| 41855 | 310 | |
| 43924 | 311 | (*lemmas idiff_self_eq_0_enat = idiff_self_eq_0[unfolded zero_enat_def]*) | 
| 41853 | 312 | |
| 27110 | 313 | subsection {* Ordering *}
 | 
| 314 | ||
| 43919 | 315 | instantiation enat :: linordered_ab_semigroup_add | 
| 27110 | 316 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 317 | |
| 38167 | 318 | definition [nitpick_simp]: | 
| 43924 | 319 | "m \<le> n = (case n of enat n1 \<Rightarrow> (case m of enat m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) | 
| 27110 | 320 | | \<infinity> \<Rightarrow> True)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 321 | |
| 38167 | 322 | definition [nitpick_simp]: | 
| 43924 | 323 | "m < n = (case m of enat m1 \<Rightarrow> (case n of enat n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) | 
| 27110 | 324 | | \<infinity> \<Rightarrow> False)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 325 | |
| 43919 | 326 | lemma enat_ord_simps [simp]: | 
| 43924 | 327 | "enat m \<le> enat n \<longleftrightarrow> m \<le> n" | 
| 328 | "enat m < enat n \<longleftrightarrow> m < n" | |
| 43921 | 329 | "q \<le> (\<infinity>::enat)" | 
| 330 | "q < (\<infinity>::enat) \<longleftrightarrow> q \<noteq> \<infinity>" | |
| 331 | "(\<infinity>::enat) \<le> q \<longleftrightarrow> q = \<infinity>" | |
| 332 | "(\<infinity>::enat) < q \<longleftrightarrow> False" | |
| 43919 | 333 | by (simp_all add: less_eq_enat_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 334 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 335 | lemma numeral_le_enat_iff[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 336 | shows "numeral m \<le> enat n \<longleftrightarrow> numeral m \<le> n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 337 | by (auto simp: numeral_eq_enat) | 
| 45934 | 338 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 339 | lemma numeral_less_enat_iff[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 340 | shows "numeral m < enat n \<longleftrightarrow> numeral m < n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 341 | by (auto simp: numeral_eq_enat) | 
| 45934 | 342 | |
| 43919 | 343 | lemma enat_ord_code [code]: | 
| 43924 | 344 | "enat m \<le> enat n \<longleftrightarrow> m \<le> n" | 
| 345 | "enat m < enat n \<longleftrightarrow> m < n" | |
| 43921 | 346 | "q \<le> (\<infinity>::enat) \<longleftrightarrow> True" | 
| 43924 | 347 | "enat m < \<infinity> \<longleftrightarrow> True" | 
| 348 | "\<infinity> \<le> enat n \<longleftrightarrow> False" | |
| 43921 | 349 | "(\<infinity>::enat) < q \<longleftrightarrow> False" | 
| 27110 | 350 | by simp_all | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 351 | |
| 27110 | 352 | instance by default | 
| 43919 | 353 | (auto simp add: less_eq_enat_def less_enat_def plus_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 354 | |
| 27110 | 355 | end | 
| 356 | ||
| 43919 | 357 | instance enat :: ordered_comm_semiring | 
| 29014 | 358 | proof | 
| 43919 | 359 | fix a b c :: enat | 
| 29014 | 360 | assume "a \<le> b" and "0 \<le> c" | 
| 361 | thus "c * a \<le> c * b" | |
| 43919 | 362 | unfolding times_enat_def less_eq_enat_def zero_enat_def | 
| 363 | by (simp split: enat.splits) | |
| 29014 | 364 | qed | 
| 365 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 366 | (* BH: These equations are already proven generally for any type in | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 367 | class linordered_semidom. However, enat is not in that class because | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 368 | it does not have the cancellation property. Would it be worthwhile to | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 369 | a generalize linordered_semidom to a new class that includes enat? *) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 370 | |
| 43919 | 371 | lemma enat_ord_number [simp]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 372 | "(numeral m \<Colon> enat) \<le> numeral n \<longleftrightarrow> (numeral m \<Colon> nat) \<le> numeral n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 373 | "(numeral m \<Colon> enat) < numeral n \<longleftrightarrow> (numeral m \<Colon> nat) < numeral n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 374 | by (simp_all add: numeral_eq_enat) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 375 | |
| 43919 | 376 | lemma i0_lb [simp]: "(0\<Colon>enat) \<le> n" | 
| 377 | by (simp add: zero_enat_def less_eq_enat_def split: enat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 378 | |
| 43919 | 379 | lemma ile0_eq [simp]: "n \<le> (0\<Colon>enat) \<longleftrightarrow> n = 0" | 
| 380 | by (simp add: zero_enat_def less_eq_enat_def split: enat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 381 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 382 | lemma infinity_ileE [elim!]: "\<infinity> \<le> enat m \<Longrightarrow> R" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 383 | by (simp add: zero_enat_def less_eq_enat_def split: enat.splits) | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 384 | |
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 385 | lemma infinity_ilessE [elim!]: "\<infinity> < enat m \<Longrightarrow> R" | 
| 27110 | 386 | by simp | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 387 | |
| 43919 | 388 | lemma not_iless0 [simp]: "\<not> n < (0\<Colon>enat)" | 
| 389 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | |
| 27110 | 390 | |
| 43919 | 391 | lemma i0_less [simp]: "(0\<Colon>enat) < n \<longleftrightarrow> n \<noteq> 0" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 392 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 393 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 394 | lemma eSuc_ile_mono [simp]: "eSuc n \<le> eSuc m \<longleftrightarrow> n \<le> m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 395 | by (simp add: eSuc_def less_eq_enat_def split: enat.splits) | 
| 27110 | 396 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 397 | lemma eSuc_mono [simp]: "eSuc n < eSuc m \<longleftrightarrow> n < m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 398 | by (simp add: eSuc_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 399 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 400 | lemma ile_eSuc [simp]: "n \<le> eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 401 | by (simp add: eSuc_def less_eq_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 402 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 403 | lemma not_eSuc_ilei0 [simp]: "\<not> eSuc n \<le> 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 404 | by (simp add: zero_enat_def eSuc_def less_eq_enat_def split: enat.splits) | 
| 27110 | 405 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 406 | lemma i0_iless_eSuc [simp]: "0 < eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 407 | by (simp add: zero_enat_def eSuc_def less_enat_def split: enat.splits) | 
| 27110 | 408 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 409 | lemma iless_eSuc0[simp]: "(n < eSuc 0) = (n = 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 410 | by (simp add: zero_enat_def eSuc_def less_enat_def split: enat.split) | 
| 41853 | 411 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 412 | lemma ileI1: "m < n \<Longrightarrow> eSuc m \<le> n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 413 | by (simp add: eSuc_def less_eq_enat_def less_enat_def split: enat.splits) | 
| 27110 | 414 | |
| 43924 | 415 | lemma Suc_ile_eq: "enat (Suc m) \<le> n \<longleftrightarrow> enat m < n" | 
| 27110 | 416 | by (cases n) auto | 
| 417 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 418 | lemma iless_Suc_eq [simp]: "enat m < eSuc n \<longleftrightarrow> enat m \<le> n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 419 | by (auto simp add: eSuc_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 420 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 421 | lemma imult_infinity: "(0::enat) < n \<Longrightarrow> \<infinity> * n = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 422 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 41853 | 423 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 424 | lemma imult_infinity_right: "(0::enat) < n \<Longrightarrow> n * \<infinity> = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 425 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 41853 | 426 | |
| 43919 | 427 | lemma enat_0_less_mult_iff: "(0 < (m::enat) * n) = (0 < m \<and> 0 < n)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 428 | by (simp only: i0_less imult_is_0, simp) | 
| 41853 | 429 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 430 | lemma mono_eSuc: "mono eSuc" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 431 | by (simp add: mono_def) | 
| 41853 | 432 | |
| 433 | ||
| 43919 | 434 | lemma min_enat_simps [simp]: | 
| 43924 | 435 | "min (enat m) (enat n) = enat (min m n)" | 
| 27110 | 436 | "min q 0 = 0" | 
| 437 | "min 0 q = 0" | |
| 43921 | 438 | "min q (\<infinity>::enat) = q" | 
| 439 | "min (\<infinity>::enat) q = q" | |
| 27110 | 440 | by (auto simp add: min_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 441 | |
| 43919 | 442 | lemma max_enat_simps [simp]: | 
| 43924 | 443 | "max (enat m) (enat n) = enat (max m n)" | 
| 27110 | 444 | "max q 0 = q" | 
| 445 | "max 0 q = q" | |
| 43921 | 446 | "max q \<infinity> = (\<infinity>::enat)" | 
| 447 | "max \<infinity> q = (\<infinity>::enat)" | |
| 27110 | 448 | by (simp_all add: max_def) | 
| 449 | ||
| 43924 | 450 | lemma enat_ile: "n \<le> enat m \<Longrightarrow> \<exists>k. n = enat k" | 
| 27110 | 451 | by (cases n) simp_all | 
| 452 | ||
| 43924 | 453 | lemma enat_iless: "n < enat m \<Longrightarrow> \<exists>k. n = enat k" | 
| 27110 | 454 | by (cases n) simp_all | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 455 | |
| 43924 | 456 | lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. enat k < Y j" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 457 | apply (induct_tac k) | 
| 43924 | 458 | apply (simp (no_asm) only: enat_0) | 
| 27110 | 459 | apply (fast intro: le_less_trans [OF i0_lb]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 460 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 461 | apply (drule spec) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 462 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 463 | apply (drule ileI1) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 464 | apply (rule eSuc_enat [THEN subst]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 465 | apply (rule exI) | 
| 27110 | 466 | apply (erule (1) le_less_trans) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 467 | done | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 468 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51717diff
changeset | 469 | instantiation enat :: "{order_bot, order_top}"
 | 
| 29337 | 470 | begin | 
| 471 | ||
| 43919 | 472 | definition bot_enat :: enat where | 
| 473 | "bot_enat = 0" | |
| 29337 | 474 | |
| 43919 | 475 | definition top_enat :: enat where | 
| 476 | "top_enat = \<infinity>" | |
| 29337 | 477 | |
| 478 | instance proof | |
| 43919 | 479 | qed (simp_all add: bot_enat_def top_enat_def) | 
| 29337 | 480 | |
| 481 | end | |
| 482 | ||
| 43924 | 483 | lemma finite_enat_bounded: | 
| 484 | assumes le_fin: "\<And>y. y \<in> A \<Longrightarrow> y \<le> enat n" | |
| 42993 | 485 | shows "finite A" | 
| 486 | proof (rule finite_subset) | |
| 43924 | 487 |   show "finite (enat ` {..n})" by blast
 | 
| 42993 | 488 | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44019diff
changeset | 489 |   have "A \<subseteq> {..enat n}" using le_fin by fastforce
 | 
| 43924 | 490 |   also have "\<dots> \<subseteq> enat ` {..n}"
 | 
| 42993 | 491 | by (rule subsetI) (case_tac x, auto) | 
| 43924 | 492 |   finally show "A \<subseteq> enat ` {..n}" .
 | 
| 42993 | 493 | qed | 
| 494 | ||
| 26089 | 495 | |
| 45775 | 496 | subsection {* Cancellation simprocs *}
 | 
| 497 | ||
| 498 | lemma enat_add_left_cancel: "a + b = a + c \<longleftrightarrow> a = (\<infinity>::enat) \<or> b = c" | |
| 499 | unfolding plus_enat_def by (simp split: enat.split) | |
| 500 | ||
| 501 | lemma enat_add_left_cancel_le: "a + b \<le> a + c \<longleftrightarrow> a = (\<infinity>::enat) \<or> b \<le> c" | |
| 502 | unfolding plus_enat_def by (simp split: enat.split) | |
| 503 | ||
| 504 | lemma enat_add_left_cancel_less: "a + b < a + c \<longleftrightarrow> a \<noteq> (\<infinity>::enat) \<and> b < c" | |
| 505 | unfolding plus_enat_def by (simp split: enat.split) | |
| 506 | ||
| 507 | ML {*
 | |
| 508 | structure Cancel_Enat_Common = | |
| 509 | struct | |
| 510 | (* copied from src/HOL/Tools/nat_numeral_simprocs.ML *) | |
| 511 |   fun find_first_t _    _ []         = raise TERM("find_first_t", [])
 | |
| 512 | | find_first_t past u (t::terms) = | |
| 513 | if u aconv t then (rev past @ terms) | |
| 514 | else find_first_t (t::past) u terms | |
| 515 | ||
| 51366 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 516 |   fun dest_summing (Const (@{const_name Groups.plus}, _) $ t $ u, ts) =
 | 
| 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 517 | dest_summing (t, dest_summing (u, ts)) | 
| 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 518 | | dest_summing (t, ts) = t :: ts | 
| 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 519 | |
| 45775 | 520 | val mk_sum = Arith_Data.long_mk_sum | 
| 51366 
abdcf1a7cabf
avoid using Arith_Data.dest_sum in extended-nat simprocs (it treats 'x - y' as 'x + - y', which is not valid for enat)
 huffman parents: 
51301diff
changeset | 521 | fun dest_sum t = dest_summing (t, []) | 
| 45775 | 522 | val find_first = find_first_t [] | 
| 523 | val trans_tac = Numeral_Simprocs.trans_tac | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 524 | val norm_ss = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 525 |     simpset_of (put_simpset HOL_basic_ss @{context}
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 526 |       addsimps @{thms ac_simps add_0_left add_0_right})
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 527 | fun norm_tac ctxt = ALLGOALS (simp_tac (put_simpset norm_ss ctxt)) | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 528 | fun simplify_meta_eq ctxt cancel_th th = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 529 | Arith_Data.simplify_meta_eq [] ctxt | 
| 45775 | 530 | ([th, cancel_th] MRS trans) | 
| 531 | fun mk_eq (a, b) = HOLogic.mk_Trueprop (HOLogic.mk_eq (a, b)) | |
| 532 | end | |
| 533 | ||
| 534 | structure Eq_Enat_Cancel = ExtractCommonTermFun | |
| 535 | (open Cancel_Enat_Common | |
| 536 | val mk_bal = HOLogic.mk_eq | |
| 537 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} @{typ enat}
 | |
| 538 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel}
 | |
| 539 | ) | |
| 540 | ||
| 541 | structure Le_Enat_Cancel = ExtractCommonTermFun | |
| 542 | (open Cancel_Enat_Common | |
| 543 |   val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less_eq}
 | |
| 544 |   val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} @{typ enat}
 | |
| 545 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel_le}
 | |
| 546 | ) | |
| 547 | ||
| 548 | structure Less_Enat_Cancel = ExtractCommonTermFun | |
| 549 | (open Cancel_Enat_Common | |
| 550 |   val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less}
 | |
| 551 |   val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} @{typ enat}
 | |
| 552 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel_less}
 | |
| 553 | ) | |
| 554 | *} | |
| 555 | ||
| 556 | simproc_setup enat_eq_cancel | |
| 557 |   ("(l::enat) + m = n" | "(l::enat) = m + n") =
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 558 |   {* fn phi => fn ctxt => fn ct => Eq_Enat_Cancel.proc ctxt (term_of ct) *}
 | 
| 45775 | 559 | |
| 560 | simproc_setup enat_le_cancel | |
| 561 |   ("(l::enat) + m \<le> n" | "(l::enat) \<le> m + n") =
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 562 |   {* fn phi => fn ctxt => fn ct => Le_Enat_Cancel.proc ctxt (term_of ct) *}
 | 
| 45775 | 563 | |
| 564 | simproc_setup enat_less_cancel | |
| 565 |   ("(l::enat) + m < n" | "(l::enat) < m + n") =
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51366diff
changeset | 566 |   {* fn phi => fn ctxt => fn ct => Less_Enat_Cancel.proc ctxt (term_of ct) *}
 | 
| 45775 | 567 | |
| 568 | text {* TODO: add regression tests for these simprocs *}
 | |
| 569 | ||
| 570 | text {* TODO: add simprocs for combining and cancelling numerals *}
 | |
| 571 | ||
| 27110 | 572 | subsection {* Well-ordering *}
 | 
| 26089 | 573 | |
| 43924 | 574 | lemma less_enatE: | 
| 575 | "[| n < enat m; !!k. n = enat k ==> k < m ==> P |] ==> P" | |
| 26089 | 576 | by (induct n) auto | 
| 577 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 578 | lemma less_infinityE: | 
| 43924 | 579 | "[| n < \<infinity>; !!k. n = enat k ==> P |] ==> P" | 
| 26089 | 580 | by (induct n) auto | 
| 581 | ||
| 43919 | 582 | lemma enat_less_induct: | 
| 583 | assumes prem: "!!n. \<forall>m::enat. m < n --> P m ==> P n" shows "P n" | |
| 26089 | 584 | proof - | 
| 43924 | 585 | have P_enat: "!!k. P (enat k)" | 
| 26089 | 586 | apply (rule nat_less_induct) | 
| 587 | apply (rule prem, clarify) | |
| 43924 | 588 | apply (erule less_enatE, simp) | 
| 26089 | 589 | done | 
| 590 | show ?thesis | |
| 591 | proof (induct n) | |
| 592 | fix nat | |
| 43924 | 593 | show "P (enat nat)" by (rule P_enat) | 
| 26089 | 594 | next | 
| 43921 | 595 | show "P \<infinity>" | 
| 26089 | 596 | apply (rule prem, clarify) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 597 | apply (erule less_infinityE) | 
| 43924 | 598 | apply (simp add: P_enat) | 
| 26089 | 599 | done | 
| 600 | qed | |
| 601 | qed | |
| 602 | ||
| 43919 | 603 | instance enat :: wellorder | 
| 26089 | 604 | proof | 
| 27823 | 605 | fix P and n | 
| 43919 | 606 | assume hyp: "(\<And>n\<Colon>enat. (\<And>m\<Colon>enat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" | 
| 607 | show "P n" by (blast intro: enat_less_induct hyp) | |
| 26089 | 608 | qed | 
| 609 | ||
| 42993 | 610 | subsection {* Complete Lattice *}
 | 
| 611 | ||
| 54415 | 612 | text {* TODO: enat as order topology? *}
 | 
| 613 | ||
| 43919 | 614 | instantiation enat :: complete_lattice | 
| 42993 | 615 | begin | 
| 616 | ||
| 43919 | 617 | definition inf_enat :: "enat \<Rightarrow> enat \<Rightarrow> enat" where | 
| 56777 | 618 | "inf_enat = min" | 
| 42993 | 619 | |
| 43919 | 620 | definition sup_enat :: "enat \<Rightarrow> enat \<Rightarrow> enat" where | 
| 56777 | 621 | "sup_enat = max" | 
| 42993 | 622 | |
| 43919 | 623 | definition Inf_enat :: "enat set \<Rightarrow> enat" where | 
| 56777 | 624 |   "Inf_enat A = (if A = {} then \<infinity> else (LEAST x. x \<in> A))"
 | 
| 42993 | 625 | |
| 43919 | 626 | definition Sup_enat :: "enat set \<Rightarrow> enat" where | 
| 56777 | 627 |   "Sup_enat A = (if A = {} then 0 else if finite A then Max A else \<infinity>)"
 | 
| 628 | instance | |
| 629 | proof | |
| 43919 | 630 | fix x :: "enat" and A :: "enat set" | 
| 42993 | 631 |   { assume "x \<in> A" then show "Inf A \<le> x"
 | 
| 43919 | 632 | unfolding Inf_enat_def by (auto intro: Least_le) } | 
| 42993 | 633 |   { assume "\<And>y. y \<in> A \<Longrightarrow> x \<le> y" then show "x \<le> Inf A"
 | 
| 43919 | 634 | unfolding Inf_enat_def | 
| 42993 | 635 |       by (cases "A = {}") (auto intro: LeastI2_ex) }
 | 
| 636 |   { assume "x \<in> A" then show "x \<le> Sup A"
 | |
| 43919 | 637 | unfolding Sup_enat_def by (cases "finite A") auto } | 
| 42993 | 638 |   { assume "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" then show "Sup A \<le> x"
 | 
| 43924 | 639 | unfolding Sup_enat_def using finite_enat_bounded by auto } | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51717diff
changeset | 640 | qed (simp_all add: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51717diff
changeset | 641 | inf_enat_def sup_enat_def bot_enat_def top_enat_def Inf_enat_def Sup_enat_def) | 
| 42993 | 642 | end | 
| 643 | ||
| 43978 | 644 | instance enat :: complete_linorder .. | 
| 27110 | 645 | |
| 646 | subsection {* Traditional theorem names *}
 | |
| 647 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 648 | lemmas enat_defs = zero_enat_def one_enat_def eSuc_def | 
| 43919 | 649 | plus_enat_def less_eq_enat_def less_enat_def | 
| 27110 | 650 | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 651 | end |