doc-src/TutorialI/Inductive/inductive.tex
author wenzelm
Thu, 15 Feb 2001 17:18:54 +0100
changeset 11145 3e47692e3a3e
parent 10884 2995639c6a09
child 11147 d848c6693185
permissions -rw-r--r--
eliminate get_def;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10865
18927bcf7aed a new label
paulson
parents: 10762
diff changeset
     1
\chapter{Inductively Defined Sets} \label{chap:inductive}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     2
\index{inductive definition|(}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     3
\index{*inductive|(}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     4
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     5
This chapter is dedicated to the most important definition principle after
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     6
recursive functions and datatypes: inductively defined sets.
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
     7
10327
19214ac381cf inputs Even.tex
paulson
parents: 10242
diff changeset
     8
We start with a simple example: the set of even numbers.
19214ac381cf inputs Even.tex
paulson
parents: 10242
diff changeset
     9
A slightly more complicated example, the
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    10
reflexive transitive closure, is the subject of {\S}\ref{sec:rtc}. In particular,
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    11
some standard induction heuristics are discussed. To demonstrate the
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    12
versatility of inductive definitions, {\S}\ref{sec:CFG} presents a case study
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    13
from the realm of context-free grammars. The chapter closes with a discussion
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    14
of advanced forms of inductive definitions.
10219
eb28637c72ce *** empty log message ***
nipkow
parents:
diff changeset
    15
10884
2995639c6a09 renaming of some files
paulson
parents: 10865
diff changeset
    16
\input{Inductive/even-example}
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents: 10520
diff changeset
    17
\input{Inductive/document/Mutual}
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10219
diff changeset
    18
\input{Inductive/document/Star}
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    19
10371
4015fdd0bcf0 the section command will belong to the new file
paulson
parents: 10327
diff changeset
    20
\section{Advanced inductive definitions}
10884
2995639c6a09 renaming of some files
paulson
parents: 10865
diff changeset
    21
\input{Inductive/advanced-examples}
10371
4015fdd0bcf0 the section command will belong to the new file
paulson
parents: 10327
diff changeset
    22
10520
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10468
diff changeset
    23
\input{Inductive/document/AB}
bb9dfcc87951 *** empty log message ***
nipkow
parents: 10468
diff changeset
    24
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    25
\index{inductive definition|)}
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10225
diff changeset
    26
\index{*inductive|)}