| author | paulson |
| Mon, 21 Sep 2015 19:52:13 +0100 | |
| changeset 61204 | 3e491e34a62e |
| parent 61169 | 4de9ff3ea29a |
| child 61260 | e6f03fae14d5 |
| permissions | -rw-r--r-- |
| 60420 | 1 |
section \<open>Bounded Continuous Functions\<close> |
| 60421 | 2 |
|
| 59453 | 3 |
theory Bounded_Continuous_Function |
4 |
imports Integration |
|
5 |
begin |
|
6 |
||
| 60421 | 7 |
subsection \<open>Definition\<close> |
| 59453 | 8 |
|
| 60421 | 9 |
definition bcontfun :: "('a::topological_space \<Rightarrow> 'b::metric_space) set"
|
10 |
where "bcontfun = {f. continuous_on UNIV f \<and> bounded (range f)}"
|
|
| 59453 | 11 |
|
| 60421 | 12 |
typedef ('a, 'b) bcontfun = "bcontfun :: ('a::topological_space \<Rightarrow> 'b::metric_space) set"
|
| 59453 | 13 |
by (auto simp: bcontfun_def intro: continuous_intros simp: bounded_def) |
14 |
||
15 |
lemma bcontfunE: |
|
16 |
assumes "f \<in> bcontfun" |
|
17 |
obtains y where "continuous_on UNIV f" "\<And>x. dist (f x) u \<le> y" |
|
18 |
using assms unfolding bcontfun_def |
|
19 |
by (metis (lifting) bounded_any_center dist_commute mem_Collect_eq rangeI) |
|
20 |
||
21 |
lemma bcontfunE': |
|
22 |
assumes "f \<in> bcontfun" |
|
23 |
obtains y where "continuous_on UNIV f" "\<And>x. dist (f x) undefined \<le> y" |
|
24 |
using assms bcontfunE |
|
25 |
by metis |
|
26 |
||
| 60421 | 27 |
lemma bcontfunI: "continuous_on UNIV f \<Longrightarrow> (\<And>x. dist (f x) u \<le> b) \<Longrightarrow> f \<in> bcontfun" |
| 59453 | 28 |
unfolding bcontfun_def |
29 |
by (metis (lifting, no_types) bounded_def dist_commute mem_Collect_eq rangeE) |
|
30 |
||
| 60421 | 31 |
lemma bcontfunI': "continuous_on UNIV f \<Longrightarrow> (\<And>x. dist (f x) undefined \<le> b) \<Longrightarrow> f \<in> bcontfun" |
| 59453 | 32 |
using bcontfunI by metis |
33 |
||
34 |
lemma continuous_on_Rep_bcontfun[intro, simp]: "continuous_on T (Rep_bcontfun x)" |
|
35 |
using Rep_bcontfun[of x] |
|
36 |
by (auto simp: bcontfun_def intro: continuous_on_subset) |
|
37 |
||
38 |
instantiation bcontfun :: (topological_space, metric_space) metric_space |
|
39 |
begin |
|
40 |
||
| 60421 | 41 |
definition dist_bcontfun :: "('a, 'b) bcontfun \<Rightarrow> ('a, 'b) bcontfun \<Rightarrow> real"
|
42 |
where "dist_bcontfun f g = (SUP x. dist (Rep_bcontfun f x) (Rep_bcontfun g x))" |
|
| 59453 | 43 |
|
| 60421 | 44 |
definition open_bcontfun :: "('a, 'b) bcontfun set \<Rightarrow> bool"
|
45 |
where "open_bcontfun S = (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" |
|
| 59453 | 46 |
|
47 |
lemma dist_bounded: |
|
| 60421 | 48 |
fixes f :: "('a, 'b) bcontfun"
|
| 59453 | 49 |
shows "dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> dist f g" |
50 |
proof - |
|
| 60421 | 51 |
have "Rep_bcontfun f \<in> bcontfun" by (rule Rep_bcontfun) |
| 59453 | 52 |
from bcontfunE'[OF this] obtain y where y: |
53 |
"continuous_on UNIV (Rep_bcontfun f)" |
|
54 |
"\<And>x. dist (Rep_bcontfun f x) undefined \<le> y" |
|
55 |
by auto |
|
| 60421 | 56 |
have "Rep_bcontfun g \<in> bcontfun" by (rule Rep_bcontfun) |
| 59453 | 57 |
from bcontfunE'[OF this] obtain z where z: |
58 |
"continuous_on UNIV (Rep_bcontfun g)" |
|
59 |
"\<And>x. dist (Rep_bcontfun g x) undefined \<le> z" |
|
60 |
by auto |
|
| 60421 | 61 |
show ?thesis |
62 |
unfolding dist_bcontfun_def |
|
| 59453 | 63 |
proof (intro cSUP_upper bdd_aboveI2) |
64 |
fix x |
|
| 60421 | 65 |
have "dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> |
66 |
dist (Rep_bcontfun f x) undefined + dist (Rep_bcontfun g x) undefined" |
|
| 59453 | 67 |
by (rule dist_triangle2) |
| 60421 | 68 |
also have "\<dots> \<le> y + z" |
69 |
using y(2)[of x] z(2)[of x] by (rule add_mono) |
|
| 59453 | 70 |
finally show "dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> y + z" . |
71 |
qed simp |
|
72 |
qed |
|
73 |
||
74 |
lemma dist_bound: |
|
| 60421 | 75 |
fixes f :: "('a, 'b) bcontfun"
|
| 59453 | 76 |
assumes "\<And>x. dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> b" |
77 |
shows "dist f g \<le> b" |
|
78 |
using assms by (auto simp: dist_bcontfun_def intro: cSUP_least) |
|
79 |
||
80 |
lemma dist_bounded_Abs: |
|
| 60421 | 81 |
fixes f g :: "'a \<Rightarrow> 'b" |
| 59453 | 82 |
assumes "f \<in> bcontfun" "g \<in> bcontfun" |
83 |
shows "dist (f x) (g x) \<le> dist (Abs_bcontfun f) (Abs_bcontfun g)" |
|
84 |
by (metis Abs_bcontfun_inverse assms dist_bounded) |
|
85 |
||
86 |
lemma const_bcontfun: "(\<lambda>x::'a. b::'b) \<in> bcontfun" |
|
87 |
by (auto intro: bcontfunI continuous_on_const) |
|
88 |
||
89 |
lemma dist_fun_lt_imp_dist_val_lt: |
|
90 |
assumes "dist f g < e" |
|
91 |
shows "dist (Rep_bcontfun f x) (Rep_bcontfun g x) < e" |
|
92 |
using dist_bounded assms by (rule le_less_trans) |
|
93 |
||
94 |
lemma dist_val_lt_imp_dist_fun_le: |
|
95 |
assumes "\<forall>x. dist (Rep_bcontfun f x) (Rep_bcontfun g x) < e" |
|
96 |
shows "dist f g \<le> e" |
|
| 60421 | 97 |
unfolding dist_bcontfun_def |
| 59453 | 98 |
proof (intro cSUP_least) |
99 |
fix x |
|
100 |
show "dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> e" |
|
101 |
using assms[THEN spec[where x=x]] by (simp add: dist_norm) |
|
| 60421 | 102 |
qed simp |
| 59453 | 103 |
|
104 |
instance |
|
105 |
proof |
|
| 60421 | 106 |
fix f g h :: "('a, 'b) bcontfun"
|
| 59453 | 107 |
show "dist f g = 0 \<longleftrightarrow> f = g" |
108 |
proof |
|
| 60421 | 109 |
have "\<And>x. dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> dist f g" |
110 |
by (rule dist_bounded) |
|
| 59453 | 111 |
also assume "dist f g = 0" |
| 60421 | 112 |
finally show "f = g" |
113 |
by (auto simp: Rep_bcontfun_inject[symmetric] Abs_bcontfun_inverse) |
|
| 59453 | 114 |
qed (auto simp: dist_bcontfun_def SUP_def simp del: Sup_image_eq intro!: cSup_eq) |
115 |
show "dist f g \<le> dist f h + dist g h" |
|
116 |
proof (subst dist_bcontfun_def, safe intro!: cSUP_least) |
|
117 |
fix x |
|
118 |
have "dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> |
|
119 |
dist (Rep_bcontfun f x) (Rep_bcontfun h x) + dist (Rep_bcontfun g x) (Rep_bcontfun h x)" |
|
120 |
by (rule dist_triangle2) |
|
| 60421 | 121 |
also have "dist (Rep_bcontfun f x) (Rep_bcontfun h x) \<le> dist f h" |
122 |
by (rule dist_bounded) |
|
123 |
also have "dist (Rep_bcontfun g x) (Rep_bcontfun h x) \<le> dist g h" |
|
124 |
by (rule dist_bounded) |
|
125 |
finally show "dist (Rep_bcontfun f x) (Rep_bcontfun g x) \<le> dist f h + dist g h" |
|
126 |
by simp |
|
| 59453 | 127 |
qed |
128 |
qed (simp add: open_bcontfun_def) |
|
| 60421 | 129 |
|
| 59453 | 130 |
end |
131 |
||
132 |
lemma closed_Pi_bcontfun: |
|
| 60421 | 133 |
fixes I :: "'a::metric_space set" |
134 |
and X :: "'a \<Rightarrow> 'b::complete_space set" |
|
| 59453 | 135 |
assumes "\<And>i. i \<in> I \<Longrightarrow> closed (X i)" |
136 |
shows "closed (Abs_bcontfun ` (Pi I X \<inter> bcontfun))" |
|
137 |
unfolding closed_sequential_limits |
|
138 |
proof safe |
|
139 |
fix f l |
|
140 |
assume seq: "\<forall>n. f n \<in> Abs_bcontfun ` (Pi I X \<inter> bcontfun)" and lim: "f ----> l" |
|
141 |
have lim_fun: "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x. dist (Rep_bcontfun (f n) x) (Rep_bcontfun l x) < e" |
|
142 |
using LIMSEQ_imp_Cauchy[OF lim, simplified Cauchy_def] metric_LIMSEQ_D[OF lim] |
|
| 60421 | 143 |
by (intro uniformly_cauchy_imp_uniformly_convergent[where P="\<lambda>_. True", simplified]) |
| 59453 | 144 |
(metis dist_fun_lt_imp_dist_val_lt)+ |
145 |
show "l \<in> Abs_bcontfun ` (Pi I X \<inter> bcontfun)" |
|
146 |
proof (rule, safe) |
|
147 |
fix x assume "x \<in> I" |
|
| 60421 | 148 |
then have "closed (X x)" |
149 |
using assms by simp |
|
| 59453 | 150 |
moreover have "eventually (\<lambda>xa. Rep_bcontfun (f xa) x \<in> X x) sequentially" |
151 |
proof (rule always_eventually, safe) |
|
152 |
fix i |
|
| 60420 | 153 |
from seq[THEN spec, of i] \<open>x \<in> I\<close> |
| 59453 | 154 |
show "Rep_bcontfun (f i) x \<in> X x" |
155 |
by (auto simp: Abs_bcontfun_inverse) |
|
156 |
qed |
|
157 |
moreover note sequentially_bot |
|
158 |
moreover have "(\<lambda>n. Rep_bcontfun (f n) x) ----> Rep_bcontfun l x" |
|
159 |
using lim_fun by (blast intro!: metric_LIMSEQ_I) |
|
160 |
ultimately show "Rep_bcontfun l x \<in> X x" |
|
161 |
by (rule Lim_in_closed_set) |
|
162 |
qed (auto simp: Rep_bcontfun Rep_bcontfun_inverse) |
|
163 |
qed |
|
164 |
||
| 60421 | 165 |
|
| 60420 | 166 |
subsection \<open>Complete Space\<close> |
| 59453 | 167 |
|
168 |
instance bcontfun :: (metric_space, complete_space) complete_space |
|
169 |
proof |
|
| 60421 | 170 |
fix f :: "nat \<Rightarrow> ('a, 'b) bcontfun"
|
171 |
assume "Cauchy f" -- \<open>Cauchy equals uniform convergence\<close> |
|
| 59453 | 172 |
then obtain g where limit_function: |
173 |
"\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x. dist (Rep_bcontfun (f n) x) (g x) < e" |
|
174 |
using uniformly_convergent_eq_cauchy[of "\<lambda>_. True" |
|
175 |
"\<lambda>n. Rep_bcontfun (f n)"] |
|
| 60421 | 176 |
unfolding Cauchy_def |
177 |
by (metis dist_fun_lt_imp_dist_val_lt) |
|
| 59453 | 178 |
|
| 60421 | 179 |
then obtain N where fg_dist: -- \<open>for an upper bound on @{term g}\<close>
|
| 59453 | 180 |
"\<forall>n\<ge>N. \<forall>x. dist (g x) ( Rep_bcontfun (f n) x) < 1" |
181 |
by (force simp add: dist_commute) |
|
182 |
from bcontfunE'[OF Rep_bcontfun, of "f N"] obtain b where |
|
| 60421 | 183 |
f_bound: "\<forall>x. dist (Rep_bcontfun (f N) x) undefined \<le> b" |
184 |
by force |
|
185 |
have "g \<in> bcontfun" -- \<open>The limit function is bounded and continuous\<close> |
|
| 59453 | 186 |
proof (intro bcontfunI) |
187 |
show "continuous_on UNIV g" |
|
188 |
using bcontfunE[OF Rep_bcontfun] limit_function |
|
| 60421 | 189 |
by (intro continuous_uniform_limit[where f="\<lambda>n. Rep_bcontfun (f n)" and F="sequentially"]) |
190 |
(auto simp add: eventually_sequentially trivial_limit_def dist_norm) |
|
| 59453 | 191 |
next |
192 |
fix x |
|
193 |
from fg_dist have "dist (g x) (Rep_bcontfun (f N) x) < 1" |
|
194 |
by (simp add: dist_norm norm_minus_commute) |
|
195 |
with dist_triangle[of "g x" undefined "Rep_bcontfun (f N) x"] |
|
196 |
show "dist (g x) undefined \<le> 1 + b" using f_bound[THEN spec, of x] |
|
197 |
by simp |
|
198 |
qed |
|
199 |
show "convergent f" |
|
|
60017
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents:
59865
diff
changeset
|
200 |
proof (rule convergentI, subst lim_sequentially, safe) |
| 60421 | 201 |
-- \<open>The limit function converges according to its norm\<close> |
202 |
fix e :: real |
|
203 |
assume "e > 0" |
|
204 |
then have "e/2 > 0" by simp |
|
| 59453 | 205 |
with limit_function[THEN spec, of"e/2"] |
206 |
have "\<exists>N. \<forall>n\<ge>N. \<forall>x. dist (Rep_bcontfun (f n) x) (g x) < e/2" |
|
207 |
by simp |
|
208 |
then obtain N where N: "\<forall>n\<ge>N. \<forall>x. dist (Rep_bcontfun (f n) x) (g x) < e / 2" by auto |
|
209 |
show "\<exists>N. \<forall>n\<ge>N. dist (f n) (Abs_bcontfun g) < e" |
|
210 |
proof (rule, safe) |
|
211 |
fix n |
|
212 |
assume "N \<le> n" |
|
213 |
with N show "dist (f n) (Abs_bcontfun g) < e" |
|
214 |
using dist_val_lt_imp_dist_fun_le[of |
|
215 |
"f n" "Abs_bcontfun g" "e/2"] |
|
| 60420 | 216 |
Abs_bcontfun_inverse[OF \<open>g \<in> bcontfun\<close>] \<open>e > 0\<close> by simp |
| 59453 | 217 |
qed |
218 |
qed |
|
219 |
qed |
|
220 |
||
| 60421 | 221 |
|
222 |
subsection \<open>Supremum norm for a normed vector space\<close> |
|
| 59453 | 223 |
|
224 |
instantiation bcontfun :: (topological_space, real_normed_vector) real_vector |
|
225 |
begin |
|
226 |
||
227 |
definition "-f = Abs_bcontfun (\<lambda>x. -(Rep_bcontfun f x))" |
|
228 |
||
229 |
definition "f + g = Abs_bcontfun (\<lambda>x. Rep_bcontfun f x + Rep_bcontfun g x)" |
|
230 |
||
231 |
definition "f - g = Abs_bcontfun (\<lambda>x. Rep_bcontfun f x - Rep_bcontfun g x)" |
|
232 |
||
233 |
definition "0 = Abs_bcontfun (\<lambda>x. 0)" |
|
234 |
||
235 |
definition "scaleR r f = Abs_bcontfun (\<lambda>x. r *\<^sub>R Rep_bcontfun f x)" |
|
236 |
||
237 |
lemma plus_cont: |
|
| 60421 | 238 |
fixes f g :: "'a \<Rightarrow> 'b" |
239 |
assumes f: "f \<in> bcontfun" |
|
240 |
and g: "g \<in> bcontfun" |
|
| 59453 | 241 |
shows "(\<lambda>x. f x + g x) \<in> bcontfun" |
242 |
proof - |
|
243 |
from bcontfunE'[OF f] obtain y where "continuous_on UNIV f" "\<And>x. dist (f x) undefined \<le> y" |
|
244 |
by auto |
|
245 |
moreover |
|
246 |
from bcontfunE'[OF g] obtain z where "continuous_on UNIV g" "\<And>x. dist (g x) undefined \<le> z" |
|
247 |
by auto |
|
248 |
ultimately show ?thesis |
|
249 |
proof (intro bcontfunI) |
|
250 |
fix x |
|
| 60421 | 251 |
have "dist (f x + g x) 0 = dist (f x + g x) (0 + 0)" |
252 |
by simp |
|
253 |
also have "\<dots> \<le> dist (f x) 0 + dist (g x) 0" |
|
254 |
by (rule dist_triangle_add) |
|
| 59453 | 255 |
also have "\<dots> \<le> dist (Abs_bcontfun f) 0 + dist (Abs_bcontfun g) 0" |
256 |
unfolding zero_bcontfun_def using assms |
|
257 |
by (auto intro!: add_mono dist_bounded_Abs const_bcontfun) |
|
| 60421 | 258 |
finally show "dist (f x + g x) 0 \<le> dist (Abs_bcontfun f) 0 + dist (Abs_bcontfun g) 0" . |
| 59453 | 259 |
qed (simp add: continuous_on_add) |
260 |
qed |
|
261 |
||
262 |
lemma Rep_bcontfun_plus[simp]: "Rep_bcontfun (f + g) x = Rep_bcontfun f x + Rep_bcontfun g x" |
|
263 |
by (simp add: plus_bcontfun_def Abs_bcontfun_inverse plus_cont Rep_bcontfun) |
|
264 |
||
265 |
lemma uminus_cont: |
|
| 60421 | 266 |
fixes f :: "'a \<Rightarrow> 'b" |
| 59453 | 267 |
assumes "f \<in> bcontfun" |
268 |
shows "(\<lambda>x. - f x) \<in> bcontfun" |
|
269 |
proof - |
|
| 60421 | 270 |
from bcontfunE[OF assms, of 0] obtain y |
271 |
where "continuous_on UNIV f" "\<And>x. dist (f x) 0 \<le> y" |
|
| 59453 | 272 |
by auto |
| 60421 | 273 |
then show ?thesis |
| 59453 | 274 |
proof (intro bcontfunI) |
275 |
fix x |
|
276 |
assume "\<And>x. dist (f x) 0 \<le> y" |
|
| 60421 | 277 |
then show "dist (- f x) 0 \<le> y" |
278 |
by (subst dist_minus[symmetric]) simp |
|
| 59453 | 279 |
qed (simp add: continuous_on_minus) |
280 |
qed |
|
281 |
||
| 60421 | 282 |
lemma Rep_bcontfun_uminus[simp]: "Rep_bcontfun (- f) x = - Rep_bcontfun f x" |
| 59453 | 283 |
by (simp add: uminus_bcontfun_def Abs_bcontfun_inverse uminus_cont Rep_bcontfun) |
284 |
||
285 |
lemma minus_cont: |
|
| 60421 | 286 |
fixes f g :: "'a \<Rightarrow> 'b" |
287 |
assumes f: "f \<in> bcontfun" |
|
288 |
and g: "g \<in> bcontfun" |
|
| 59453 | 289 |
shows "(\<lambda>x. f x - g x) \<in> bcontfun" |
| 60421 | 290 |
using plus_cont [of f "- g"] assms |
291 |
by (simp add: uminus_cont fun_Compl_def) |
|
| 59453 | 292 |
|
| 60421 | 293 |
lemma Rep_bcontfun_minus[simp]: "Rep_bcontfun (f - g) x = Rep_bcontfun f x - Rep_bcontfun g x" |
| 59453 | 294 |
by (simp add: minus_bcontfun_def Abs_bcontfun_inverse minus_cont Rep_bcontfun) |
295 |
||
296 |
lemma scaleR_cont: |
|
| 60421 | 297 |
fixes a :: real |
298 |
and f :: "'a \<Rightarrow> 'b" |
|
| 59453 | 299 |
assumes "f \<in> bcontfun" |
300 |
shows " (\<lambda>x. a *\<^sub>R f x) \<in> bcontfun" |
|
301 |
proof - |
|
| 60421 | 302 |
from bcontfunE[OF assms, of 0] obtain y |
303 |
where "continuous_on UNIV f" "\<And>x. dist (f x) 0 \<le> y" |
|
| 59453 | 304 |
by auto |
| 60421 | 305 |
then show ?thesis |
| 59453 | 306 |
proof (intro bcontfunI) |
| 60421 | 307 |
fix x |
308 |
assume "\<And>x. dist (f x) 0 \<le> y" |
|
|
59554
4044f53326c9
inlined rules to free user-space from technical names
haftmann
parents:
59453
diff
changeset
|
309 |
then show "dist (a *\<^sub>R f x) 0 \<le> abs a * y" |
|
4044f53326c9
inlined rules to free user-space from technical names
haftmann
parents:
59453
diff
changeset
|
310 |
by (metis norm_cmul_rule_thm norm_conv_dist) |
| 59453 | 311 |
qed (simp add: continuous_intros) |
312 |
qed |
|
313 |
||
| 60421 | 314 |
lemma Rep_bcontfun_scaleR[simp]: "Rep_bcontfun (a *\<^sub>R g) x = a *\<^sub>R Rep_bcontfun g x" |
| 59453 | 315 |
by (simp add: scaleR_bcontfun_def Abs_bcontfun_inverse scaleR_cont Rep_bcontfun) |
316 |
||
317 |
instance |
|
| 61169 | 318 |
by standard |
| 60421 | 319 |
(simp_all add: plus_bcontfun_def zero_bcontfun_def minus_bcontfun_def scaleR_bcontfun_def |
320 |
Abs_bcontfun_inverse Rep_bcontfun_inverse Rep_bcontfun algebra_simps |
|
321 |
plus_cont const_bcontfun minus_cont scaleR_cont) |
|
322 |
||
| 59453 | 323 |
end |
324 |
||
325 |
instantiation bcontfun :: (topological_space, real_normed_vector) real_normed_vector |
|
326 |
begin |
|
327 |
||
| 60421 | 328 |
definition norm_bcontfun :: "('a, 'b) bcontfun \<Rightarrow> real"
|
329 |
where "norm_bcontfun f = dist f 0" |
|
| 59453 | 330 |
|
331 |
definition "sgn (f::('a,'b) bcontfun) = f /\<^sub>R norm f"
|
|
332 |
||
333 |
instance |
|
334 |
proof |
|
| 60421 | 335 |
fix a :: real |
336 |
fix f g :: "('a, 'b) bcontfun"
|
|
| 59453 | 337 |
show "dist f g = norm (f - g)" |
338 |
by (simp add: norm_bcontfun_def dist_bcontfun_def zero_bcontfun_def |
|
| 60421 | 339 |
Abs_bcontfun_inverse const_bcontfun norm_conv_dist[symmetric] dist_norm) |
| 59453 | 340 |
show "norm (f + g) \<le> norm f + norm g" |
341 |
unfolding norm_bcontfun_def |
|
342 |
proof (subst dist_bcontfun_def, safe intro!: cSUP_least) |
|
343 |
fix x |
|
344 |
have "dist (Rep_bcontfun (f + g) x) (Rep_bcontfun 0 x) \<le> |
|
345 |
dist (Rep_bcontfun f x) 0 + dist (Rep_bcontfun g x) 0" |
|
346 |
by (metis (hide_lams, no_types) Rep_bcontfun_minus Rep_bcontfun_plus diff_0_right dist_norm |
|
347 |
le_less_linear less_irrefl norm_triangle_lt) |
|
348 |
also have "dist (Rep_bcontfun f x) 0 \<le> dist f 0" |
|
349 |
using dist_bounded[of f x 0] |
|
350 |
by (simp add: Abs_bcontfun_inverse const_bcontfun zero_bcontfun_def) |
|
351 |
also have "dist (Rep_bcontfun g x) 0 \<le> dist g 0" using dist_bounded[of g x 0] |
|
352 |
by (simp add: Abs_bcontfun_inverse const_bcontfun zero_bcontfun_def) |
|
353 |
finally show "dist (Rep_bcontfun (f + g) x) (Rep_bcontfun 0 x) \<le> dist f 0 + dist g 0" by simp |
|
354 |
qed |
|
355 |
show "norm (a *\<^sub>R f) = \<bar>a\<bar> * norm f" |
|
356 |
proof - |
|
357 |
have "\<bar>a\<bar> * Sup (range (\<lambda>x. dist (Rep_bcontfun f x) 0)) = |
|
358 |
(SUP i:range (\<lambda>x. dist (Rep_bcontfun f x) 0). \<bar>a\<bar> * i)" |
|
359 |
proof (intro continuous_at_Sup_mono bdd_aboveI2) |
|
360 |
fix x |
|
361 |
show "dist (Rep_bcontfun f x) 0 \<le> norm f" using dist_bounded[of f x 0] |
|
362 |
by (simp add: norm_bcontfun_def norm_conv_dist Abs_bcontfun_inverse zero_bcontfun_def |
|
363 |
const_bcontfun) |
|
364 |
qed (auto intro!: monoI mult_left_mono continuous_intros) |
|
365 |
moreover |
|
| 60421 | 366 |
have "range (\<lambda>x. dist (Rep_bcontfun (a *\<^sub>R f) x) 0) = |
| 59453 | 367 |
(\<lambda>x. \<bar>a\<bar> * x) ` (range (\<lambda>x. dist (Rep_bcontfun f x) 0))" |
368 |
by (auto simp: norm_conv_dist[symmetric]) |
|
369 |
ultimately |
|
370 |
show "norm (a *\<^sub>R f) = \<bar>a\<bar> * norm f" |
|
371 |
by (simp add: norm_bcontfun_def dist_bcontfun_def norm_conv_dist Abs_bcontfun_inverse |
|
372 |
zero_bcontfun_def const_bcontfun SUP_def del: Sup_image_eq) |
|
373 |
qed |
|
374 |
qed (auto simp: norm_bcontfun_def sgn_bcontfun_def) |
|
375 |
||
376 |
end |
|
377 |
||
| 60421 | 378 |
lemma bcontfun_normI: "continuous_on UNIV f \<Longrightarrow> (\<And>x. norm (f x) \<le> b) \<Longrightarrow> f \<in> bcontfun" |
| 59453 | 379 |
unfolding norm_conv_dist |
380 |
by (auto intro: bcontfunI) |
|
381 |
||
382 |
lemma norm_bounded: |
|
| 60421 | 383 |
fixes f :: "('a::topological_space, 'b::real_normed_vector) bcontfun"
|
| 59453 | 384 |
shows "norm (Rep_bcontfun f x) \<le> norm f" |
385 |
using dist_bounded[of f x 0] |
|
386 |
by (simp add: norm_bcontfun_def norm_conv_dist Abs_bcontfun_inverse zero_bcontfun_def |
|
387 |
const_bcontfun) |
|
388 |
||
389 |
lemma norm_bound: |
|
| 60421 | 390 |
fixes f :: "('a::topological_space, 'b::real_normed_vector) bcontfun"
|
| 59453 | 391 |
assumes "\<And>x. norm (Rep_bcontfun f x) \<le> b" |
392 |
shows "norm f \<le> b" |
|
393 |
using dist_bound[of f 0 b] assms |
|
394 |
by (simp add: norm_bcontfun_def norm_conv_dist Abs_bcontfun_inverse zero_bcontfun_def |
|
395 |
const_bcontfun) |
|
396 |
||
397 |
||
| 60421 | 398 |
subsection \<open>Continuously Extended Functions\<close> |
399 |
||
400 |
definition clamp :: "'a::euclidean_space \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
| 59453 | 401 |
"clamp a b x = (\<Sum>i\<in>Basis. (if x\<bullet>i < a\<bullet>i then a\<bullet>i else if x\<bullet>i \<le> b\<bullet>i then x\<bullet>i else b\<bullet>i) *\<^sub>R i)" |
402 |
||
| 60421 | 403 |
definition ext_cont :: "('a::euclidean_space \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> ('a, 'b) bcontfun"
|
| 59453 | 404 |
where "ext_cont f a b = Abs_bcontfun ((\<lambda>x. f (clamp a b x)))" |
405 |
||
406 |
lemma ext_cont_def': |
|
407 |
"ext_cont f a b = Abs_bcontfun (\<lambda>x. |
|
408 |
f (\<Sum>i\<in>Basis. (if x\<bullet>i < a\<bullet>i then a\<bullet>i else if x\<bullet>i \<le> b\<bullet>i then x\<bullet>i else b\<bullet>i) *\<^sub>R i))" |
|
| 60421 | 409 |
unfolding ext_cont_def clamp_def .. |
| 59453 | 410 |
|
411 |
lemma clamp_in_interval: |
|
412 |
assumes "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i" |
|
413 |
shows "clamp a b x \<in> cbox a b" |
|
414 |
unfolding clamp_def |
|
415 |
using box_ne_empty(1)[of a b] assms by (auto simp: cbox_def) |
|
416 |
||
417 |
lemma dist_clamps_le_dist_args: |
|
| 60421 | 418 |
fixes x :: "'a::euclidean_space" |
| 59453 | 419 |
assumes "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i" |
420 |
shows "dist (clamp a b y) (clamp a b x) \<le> dist y x" |
|
421 |
proof - |
|
| 60421 | 422 |
from box_ne_empty(1)[of a b] assms have "(\<forall>i\<in>Basis. a \<bullet> i \<le> b \<bullet> i)" |
423 |
by (simp add: cbox_def) |
|
424 |
then have "(\<Sum>i\<in>Basis. (dist (clamp a b y \<bullet> i) (clamp a b x \<bullet> i))\<^sup>2) \<le> |
|
425 |
(\<Sum>i\<in>Basis. (dist (y \<bullet> i) (x \<bullet> i))\<^sup>2)" |
|
426 |
by (auto intro!: setsum_mono simp: clamp_def dist_real_def abs_le_square_iff[symmetric]) |
|
427 |
then show ?thesis |
|
428 |
by (auto intro: real_sqrt_le_mono |
|
429 |
simp: euclidean_dist_l2[where y=x] euclidean_dist_l2[where y="clamp a b x"] setL2_def) |
|
| 59453 | 430 |
qed |
431 |
||
432 |
lemma clamp_continuous_at: |
|
| 60421 | 433 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::metric_space" |
434 |
and x :: 'a |
|
| 59453 | 435 |
assumes "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i" |
| 60421 | 436 |
and f_cont: "continuous_on (cbox a b) f" |
| 59453 | 437 |
shows "continuous (at x) (\<lambda>x. f (clamp a b x))" |
| 60421 | 438 |
unfolding continuous_at_eps_delta |
439 |
proof safe |
|
440 |
fix x :: 'a |
|
441 |
fix e :: real |
|
442 |
assume "e > 0" |
|
443 |
moreover have "clamp a b x \<in> cbox a b" |
|
444 |
by (simp add: clamp_in_interval assms) |
|
445 |
moreover note f_cont[simplified continuous_on_iff] |
|
| 59453 | 446 |
ultimately |
447 |
obtain d where d: "0 < d" |
|
448 |
"\<And>x'. x' \<in> cbox a b \<Longrightarrow> dist x' (clamp a b x) < d \<Longrightarrow> dist (f x') (f (clamp a b x)) < e" |
|
449 |
by force |
|
450 |
show "\<exists>d>0. \<forall>x'. dist x' x < d \<longrightarrow> |
|
451 |
dist (f (clamp a b x')) (f (clamp a b x)) < e" |
|
452 |
by (auto intro!: d clamp_in_interval assms dist_clamps_le_dist_args[THEN le_less_trans]) |
|
453 |
qed |
|
454 |
||
455 |
lemma clamp_continuous_on: |
|
| 60421 | 456 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::metric_space" |
| 59453 | 457 |
assumes "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i" |
| 60421 | 458 |
and f_cont: "continuous_on (cbox a b) f" |
| 59453 | 459 |
shows "continuous_on UNIV (\<lambda>x. f (clamp a b x))" |
460 |
using assms |
|
461 |
by (auto intro: continuous_at_imp_continuous_on clamp_continuous_at) |
|
462 |
||
463 |
lemma clamp_bcontfun: |
|
| 60421 | 464 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
| 59453 | 465 |
assumes "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i" |
| 60421 | 466 |
and continuous: "continuous_on (cbox a b) f" |
| 59453 | 467 |
shows "(\<lambda>x. f (clamp a b x)) \<in> bcontfun" |
468 |
proof - |
|
| 60421 | 469 |
have "bounded (f ` (cbox a b))" |
470 |
by (rule compact_continuous_image[OF continuous compact_cbox[of a b], THEN compact_imp_bounded]) |
|
471 |
then obtain c where f_bound: "\<forall>x\<in>f ` cbox a b. norm x \<le> c" |
|
472 |
by (auto simp add: bounded_pos) |
|
| 59453 | 473 |
show "(\<lambda>x. f (clamp a b x)) \<in> bcontfun" |
474 |
proof (intro bcontfun_normI) |
|
475 |
fix x |
|
| 60421 | 476 |
show "norm (f (clamp a b x)) \<le> c" |
477 |
using clamp_in_interval[OF assms(1), of x] f_bound |
|
478 |
by (simp add: ext_cont_def) |
|
| 59453 | 479 |
qed (simp add: clamp_continuous_on assms) |
480 |
qed |
|
481 |
||
482 |
lemma integral_clamp: |
|
483 |
"integral {t0::real..clamp t0 t1 x} f =
|
|
484 |
(if x < t0 then 0 else if x \<le> t1 then integral {t0..x} f else integral {t0..t1} f)"
|
|
485 |
by (auto simp: clamp_def) |
|
486 |
||
487 |
||
488 |
declare [[coercion Rep_bcontfun]] |
|
489 |
||
490 |
lemma ext_cont_cancel[simp]: |
|
| 60421 | 491 |
fixes x a b :: "'a::euclidean_space" |
| 59453 | 492 |
assumes x: "x \<in> cbox a b" |
| 60421 | 493 |
and "continuous_on (cbox a b) f" |
| 59453 | 494 |
shows "ext_cont f a b x = f x" |
495 |
using assms |
|
496 |
unfolding ext_cont_def |
|
497 |
proof (subst Abs_bcontfun_inverse[OF clamp_bcontfun]) |
|
498 |
show "f (clamp a b x) = f x" |
|
499 |
using x unfolding clamp_def mem_box |
|
500 |
by (intro arg_cong[where f=f] euclidean_eqI[where 'a='a]) (simp add: not_less) |
|
501 |
qed (auto simp: cbox_def) |
|
502 |
||
503 |
lemma ext_cont_cong: |
|
504 |
assumes "t0 = s0" |
|
| 60421 | 505 |
and "t1 = s1" |
506 |
and "\<And>t. t \<in> (cbox t0 t1) \<Longrightarrow> f t = g t" |
|
507 |
and "continuous_on (cbox t0 t1) f" |
|
508 |
and "continuous_on (cbox s0 s1) g" |
|
509 |
and ord: "\<And>i. i \<in> Basis \<Longrightarrow> t0 \<bullet> i \<le> t1 \<bullet> i" |
|
| 59453 | 510 |
shows "ext_cont f t0 t1 = ext_cont g s0 s1" |
511 |
unfolding assms ext_cont_def |
|
512 |
using assms clamp_in_interval[OF ord] |
|
513 |
by (subst Rep_bcontfun_inject[symmetric]) simp |
|
514 |
||
515 |
end |