| author | berghofe | 
| Mon, 23 Oct 2006 00:51:16 +0200 | |
| changeset 21087 | 3e56528a39f7 | 
| parent 20217 | 25b068a99d2b | 
| child 21502 | 7f3ea2b3bab6 | 
| permissions | -rw-r--r-- | 
| 8924 | 1 | (* Title: HOL/SetInterval.thy | 
| 2 | ID: $Id$ | |
| 13735 | 3 | Author: Tobias Nipkow and Clemens Ballarin | 
| 14485 | 4 | Additions by Jeremy Avigad in March 2004 | 
| 8957 | 5 | Copyright 2000 TU Muenchen | 
| 8924 | 6 | |
| 13735 | 7 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 8924 | 8 | *) | 
| 9 | ||
| 14577 | 10 | header {* Set intervals *}
 | 
| 11 | ||
| 15131 | 12 | theory SetInterval | 
| 15140 | 13 | imports IntArith | 
| 15131 | 14 | begin | 
| 8924 | 15 | |
| 16 | constdefs | |
| 15045 | 17 |   lessThan    :: "('a::ord) => 'a set"	("(1{..<_})")
 | 
| 18 |   "{..<u} == {x. x<u}"
 | |
| 8924 | 19 | |
| 11609 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 20 |   atMost      :: "('a::ord) => 'a set"	("(1{.._})")
 | 
| 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 21 |   "{..u} == {x. x<=u}"
 | 
| 8924 | 22 | |
| 15045 | 23 |   greaterThan :: "('a::ord) => 'a set"	("(1{_<..})")
 | 
| 24 |   "{l<..} == {x. l<x}"
 | |
| 8924 | 25 | |
| 11609 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 26 |   atLeast     :: "('a::ord) => 'a set"	("(1{_..})")
 | 
| 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 wenzelm parents: 
10214diff
changeset | 27 |   "{l..} == {x. l<=x}"
 | 
| 8924 | 28 | |
| 15045 | 29 |   greaterThanLessThan :: "['a::ord, 'a] => 'a set"  ("(1{_<..<_})")
 | 
| 30 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 13735 | 31 | |
| 15045 | 32 |   atLeastLessThan :: "['a::ord, 'a] => 'a set"      ("(1{_..<_})")
 | 
| 33 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 13735 | 34 | |
| 15045 | 35 |   greaterThanAtMost :: "['a::ord, 'a] => 'a set"    ("(1{_<.._})")
 | 
| 36 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 13735 | 37 | |
| 38 |   atLeastAtMost :: "['a::ord, 'a] => 'a set"        ("(1{_.._})")
 | |
| 39 |   "{l..u} == {l..} Int {..u}"
 | |
| 40 | ||
| 15048 | 41 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 42 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 43 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 44 | |
| 14418 | 45 | syntax | 
| 46 |   "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3UN _<=_./ _)" 10)
 | |
| 47 |   "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3UN _<_./ _)" 10)
 | |
| 48 |   "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3INT _<=_./ _)" 10)
 | |
| 49 |   "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3INT _<_./ _)" 10)
 | |
| 50 | ||
| 51 | syntax (input) | |
| 52 |   "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" 10)
 | |
| 53 |   "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _<_./ _)" 10)
 | |
| 54 |   "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" 10)
 | |
| 55 |   "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" 10)
 | |
| 56 | ||
| 57 | syntax (xsymbols) | |
| 14846 | 58 |   "@UNION_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
 | 
| 59 |   "@UNION_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
 | |
| 60 |   "@INTER_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ \<le> _\<^esub>)/ _)" 10)
 | |
| 61 |   "@INTER_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>(00\<^bsub>_ < _\<^esub>)/ _)" 10)
 | |
| 14418 | 62 | |
| 63 | translations | |
| 64 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 65 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 66 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 67 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 68 | |
| 69 | ||
| 14485 | 70 | subsection {* Various equivalences *}
 | 
| 13735 | 71 | |
| 13850 | 72 | lemma lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 73 | by (simp add: lessThan_def) | |
| 13735 | 74 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 75 | lemma Compl_lessThan [simp]: | 
| 13735 | 76 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 77 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 78 | done | 
| 79 | ||
| 13850 | 80 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 81 | by auto | |
| 13735 | 82 | |
| 13850 | 83 | lemma greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 84 | by (simp add: greaterThan_def) | |
| 13735 | 85 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 86 | lemma Compl_greaterThan [simp]: | 
| 13735 | 87 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 13850 | 88 | apply (simp add: greaterThan_def atMost_def le_def, auto) | 
| 13735 | 89 | done | 
| 90 | ||
| 13850 | 91 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 92 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 93 | apply (rule double_complement) | 
| 13735 | 94 | done | 
| 95 | ||
| 13850 | 96 | lemma atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 97 | by (simp add: atLeast_def) | |
| 13735 | 98 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 99 | lemma Compl_atLeast [simp]: | 
| 13735 | 100 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 13850 | 101 | apply (simp add: lessThan_def atLeast_def le_def, auto) | 
| 13735 | 102 | done | 
| 103 | ||
| 13850 | 104 | lemma atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 105 | by (simp add: atMost_def) | |
| 13735 | 106 | |
| 14485 | 107 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 108 | by (blast intro: order_antisym) | |
| 13850 | 109 | |
| 110 | ||
| 14485 | 111 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 112 | |
| 113 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 114 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 115 | by (blast intro: order_trans) | 
| 13850 | 116 | |
| 117 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 118 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 119 | by (blast intro: order_antisym order_trans) | 
| 120 | ||
| 121 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 122 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 123 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 124 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 125 | done | 
| 126 | ||
| 127 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 128 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 129 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 130 | apply (erule equalityE) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 131 | apply (simp_all add: greaterThan_subset_iff) | 
| 13850 | 132 | done | 
| 133 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 134 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 135 | by (blast intro: order_trans) | 
| 136 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 137 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 138 | by (blast intro: order_antisym order_trans) | 
| 139 | ||
| 140 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 141 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 142 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 143 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 144 | done | 
| 145 | ||
| 146 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 147 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 148 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 149 | apply (erule equalityE) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | apply (simp_all add: lessThan_subset_iff) | 
| 13735 | 151 | done | 
| 152 | ||
| 153 | ||
| 13850 | 154 | subsection {*Two-sided intervals*}
 | 
| 13735 | 155 | |
| 156 | lemma greaterThanLessThan_iff [simp]: | |
| 15045 | 157 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 158 | by (simp add: greaterThanLessThan_def) | 
| 159 | ||
| 160 | lemma atLeastLessThan_iff [simp]: | |
| 15045 | 161 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 162 | by (simp add: atLeastLessThan_def) | 
| 163 | ||
| 164 | lemma greaterThanAtMost_iff [simp]: | |
| 15045 | 165 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 166 | by (simp add: greaterThanAtMost_def) | 
| 167 | ||
| 168 | lemma atLeastAtMost_iff [simp]: | |
| 169 |   "(i : {l..u}) = (l <= i & i <= u)"
 | |
| 170 | by (simp add: atLeastAtMost_def) | |
| 171 | ||
| 14577 | 172 | text {* The above four lemmas could be declared as iffs.
 | 
| 173 |   If we do so, a call to blast in Hyperreal/Star.ML, lemma @{text STAR_Int}
 | |
| 174 | seems to take forever (more than one hour). *} | |
| 13735 | 175 | |
| 15554 | 176 | subsubsection{* Emptyness and singletons *}
 | 
| 177 | ||
| 178 | lemma atLeastAtMost_empty [simp]: "n < m ==> {m::'a::order..n} = {}";
 | |
| 179 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def); | |
| 180 | ||
| 181 | lemma atLeastLessThan_empty[simp]: "n \<le> m ==> {m..<n::'a::order} = {}"
 | |
| 182 | by (auto simp add: atLeastLessThan_def) | |
| 183 | ||
| 17719 | 184 | lemma greaterThanAtMost_empty[simp]:"l \<le> k ==> {k<..(l::'a::order)} = {}"
 | 
| 185 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | |
| 186 | ||
| 187 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..(l::'a::order)} = {}"
 | |
| 188 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | |
| 189 | ||
| 15554 | 190 | lemma atLeastAtMost_singleton [simp]: "{a::'a::order..a} = {a}";
 | 
| 17719 | 191 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def); | 
| 14485 | 192 | |
| 193 | subsection {* Intervals of natural numbers *}
 | |
| 194 | ||
| 15047 | 195 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 196 | ||
| 14485 | 197 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 198 | by (simp add: lessThan_def) | |
| 199 | ||
| 200 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 201 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 202 | ||
| 203 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | |
| 204 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 205 | ||
| 206 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | |
| 207 | by blast | |
| 208 | ||
| 15047 | 209 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 210 | ||
| 14485 | 211 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 212 | apply (simp add: greaterThan_def) | |
| 213 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 214 | done | |
| 215 | ||
| 216 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 217 | apply (simp add: greaterThan_def) | |
| 218 | apply (auto elim: linorder_neqE) | |
| 219 | done | |
| 220 | ||
| 221 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 222 | by blast | |
| 223 | ||
| 15047 | 224 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 225 | ||
| 14485 | 226 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 227 | by (unfold atLeast_def UNIV_def, simp) | |
| 228 | ||
| 229 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 230 | apply (simp add: atLeast_def) | |
| 231 | apply (simp add: Suc_le_eq) | |
| 232 | apply (simp add: order_le_less, blast) | |
| 233 | done | |
| 234 | ||
| 235 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 236 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 237 | ||
| 238 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 239 | by blast | |
| 240 | ||
| 15047 | 241 | subsubsection {* The Constant @{term atMost} *}
 | 
| 242 | ||
| 14485 | 243 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 244 | by (simp add: atMost_def) | |
| 245 | ||
| 246 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 247 | apply (simp add: atMost_def) | |
| 248 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 249 | done | |
| 250 | ||
| 251 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 252 | by blast | |
| 253 | ||
| 15047 | 254 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 255 | ||
| 256 | text{*But not a simprule because some concepts are better left in terms
 | |
| 257 |   of @{term atLeastLessThan}*}
 | |
| 258 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | |
| 15042 | 259 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 16041 | 260 | (* | 
| 15047 | 261 | lemma atLeastLessThan0 [simp]: "{m..<0::nat} = {}"
 | 
| 262 | by (simp add: atLeastLessThan_def) | |
| 16041 | 263 | *) | 
| 15047 | 264 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 265 | ||
| 266 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 267 | lemma atLeastLessThanSuc: | |
| 268 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 269 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 270 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 271 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 272 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 273 | (* | 
| 15047 | 274 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 275 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 276 | ||
| 277 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 278 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 279 | *) | 
| 15045 | 280 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 281 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 282 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 283 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 284 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 285 | greaterThanAtMost_def) | 
| 286 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 287 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 288 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 289 | greaterThanLessThan_def) | 
| 290 | ||
| 15554 | 291 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 292 | by (auto simp add: atLeastAtMost_def) | |
| 293 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 294 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 295 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 296 | lemma image_add_atLeastAtMost: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 297 |   "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 298 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 299 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 300 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 301 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 302 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 303 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 304 |     hence "n - k : {i..j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 305 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 306 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 307 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 308 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 309 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 310 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 311 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 312 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 313 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 314 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 315 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 316 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 317 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 318 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 319 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 320 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 321 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 322 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 323 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 324 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 325 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 326 | using image_add_atLeastAtMost[where k=1] by simp | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 327 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 328 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 329 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 330 | using image_add_atLeastLessThan[where k=1] by simp | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 331 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 332 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 333 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 334 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 335 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 336 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 337 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 338 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 339 | |
| 14485 | 340 | subsubsection {* Finiteness *}
 | 
| 341 | ||
| 15045 | 342 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 343 | by (induct k) (simp_all add: lessThan_Suc) | 
| 344 | ||
| 345 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 346 | by (induct k) (simp_all add: atMost_Suc) | |
| 347 | ||
| 348 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 349 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 350 | by (simp add: greaterThanLessThan_def) | 
| 351 | ||
| 352 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 353 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 354 | by (simp add: atLeastLessThan_def) | 
| 355 | ||
| 356 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 357 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 358 | by (simp add: greaterThanAtMost_def) | 
| 359 | ||
| 360 | lemma finite_atLeastAtMost [iff]: | |
| 361 |   fixes l :: nat shows "finite {l..u}"
 | |
| 362 | by (simp add: atLeastAtMost_def) | |
| 363 | ||
| 364 | lemma bounded_nat_set_is_finite: | |
| 365 | "(ALL i:N. i < (n::nat)) ==> finite N" | |
| 366 |   -- {* A bounded set of natural numbers is finite. *}
 | |
| 367 | apply (rule finite_subset) | |
| 368 | apply (rule_tac [2] finite_lessThan, auto) | |
| 369 | done | |
| 370 | ||
| 371 | subsubsection {* Cardinality *}
 | |
| 372 | ||
| 15045 | 373 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 374 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 375 | |
| 376 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 377 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 378 | ||
| 15045 | 379 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 380 |   apply (subgoal_tac "card {l..<u} = card {..<u-l}")
 | |
| 14485 | 381 | apply (erule ssubst, rule card_lessThan) | 
| 15045 | 382 |   apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
 | 
| 14485 | 383 | apply (erule subst) | 
| 384 | apply (rule card_image) | |
| 385 | apply (simp add: inj_on_def) | |
| 386 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | |
| 387 | apply (rule_tac x = "x - l" in exI) | |
| 388 | apply arith | |
| 389 | done | |
| 390 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 391 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 392 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 393 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 394 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 395 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 396 | ||
| 15045 | 397 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 398 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 399 | ||
| 400 | subsection {* Intervals of integers *}
 | |
| 401 | ||
| 15045 | 402 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 403 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 404 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 405 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 406 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 407 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 408 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 409 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 410 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 411 | ||
| 412 | subsubsection {* Finiteness *}
 | |
| 413 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 414 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 415 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 416 | apply (unfold image_def lessThan_def) | 
| 417 | apply auto | |
| 418 | apply (rule_tac x = "nat x" in exI) | |
| 419 | apply (auto simp add: zless_nat_conj zless_nat_eq_int_zless [THEN sym]) | |
| 420 | done | |
| 421 | ||
| 15045 | 422 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 14485 | 423 | apply (case_tac "0 \<le> u") | 
| 424 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 425 | apply (rule finite_imageI) | |
| 426 | apply auto | |
| 427 | done | |
| 428 | ||
| 15045 | 429 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 430 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 431 | apply (erule subst) | 
| 432 | apply (rule finite_imageI) | |
| 433 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 434 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 435 | done | 
| 436 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 437 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 438 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 439 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 440 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 441 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 442 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 443 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 444 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 445 | ||
| 446 | subsubsection {* Cardinality *}
 | |
| 447 | ||
| 15045 | 448 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 14485 | 449 | apply (case_tac "0 \<le> u") | 
| 450 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 451 | apply (subst card_image) | |
| 452 | apply (auto simp add: inj_on_def) | |
| 453 | done | |
| 454 | ||
| 15045 | 455 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 456 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 457 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 458 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 459 | apply (erule subst) | 
| 460 | apply (rule card_image) | |
| 461 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 462 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 463 | done | 
| 464 | ||
| 465 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 466 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | |
| 467 | apply (auto simp add: compare_rls) | |
| 468 | done | |
| 469 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 470 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 14485 | 471 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 472 | ||
| 15045 | 473 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 14485 | 474 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 475 | ||
| 476 | ||
| 13850 | 477 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 478 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 479 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 480 | |
| 14577 | 481 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 482 | |
| 14577 | 483 | text {* Singletons and open intervals *}
 | 
| 13735 | 484 | |
| 485 | lemma ivl_disj_un_singleton: | |
| 15045 | 486 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 487 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 488 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 489 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 490 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 491 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 492 | by auto | 
| 13735 | 493 | |
| 14577 | 494 | text {* One- and two-sided intervals *}
 | 
| 13735 | 495 | |
| 496 | lemma ivl_disj_un_one: | |
| 15045 | 497 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 498 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 499 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 500 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 501 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 502 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 503 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 504 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 505 | by auto | 
| 13735 | 506 | |
| 14577 | 507 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 508 | |
| 509 | lemma ivl_disj_un_two: | |
| 15045 | 510 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 511 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 512 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 513 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 514 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 515 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 516 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 517 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 518 | by auto | 
| 13735 | 519 | |
| 520 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two | |
| 521 | ||
| 14577 | 522 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 523 | |
| 14577 | 524 | text {* Singletons and open intervals *}
 | 
| 13735 | 525 | |
| 526 | lemma ivl_disj_int_singleton: | |
| 15045 | 527 |   "{l::'a::order} Int {l<..} = {}"
 | 
| 528 |   "{..<u} Int {u} = {}"
 | |
| 529 |   "{l} Int {l<..<u} = {}"
 | |
| 530 |   "{l<..<u} Int {u} = {}"
 | |
| 531 |   "{l} Int {l<..u} = {}"
 | |
| 532 |   "{l..<u} Int {u} = {}"
 | |
| 13735 | 533 | by simp+ | 
| 534 | ||
| 14577 | 535 | text {* One- and two-sided intervals *}
 | 
| 13735 | 536 | |
| 537 | lemma ivl_disj_int_one: | |
| 15045 | 538 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 539 |   "{..<l} Int {l..<u} = {}"
 | |
| 540 |   "{..l} Int {l<..u} = {}"
 | |
| 541 |   "{..<l} Int {l..u} = {}"
 | |
| 542 |   "{l<..u} Int {u<..} = {}"
 | |
| 543 |   "{l<..<u} Int {u..} = {}"
 | |
| 544 |   "{l..u} Int {u<..} = {}"
 | |
| 545 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 546 | by auto | 
| 13735 | 547 | |
| 14577 | 548 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 549 | |
| 550 | lemma ivl_disj_int_two: | |
| 15045 | 551 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 552 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 553 |   "{l..<m} Int {m..<u} = {}"
 | |
| 554 |   "{l..m} Int {m<..<u} = {}"
 | |
| 555 |   "{l<..<m} Int {m..u} = {}"
 | |
| 556 |   "{l<..m} Int {m<..u} = {}"
 | |
| 557 |   "{l..<m} Int {m..u} = {}"
 | |
| 558 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 559 | by auto | 
| 13735 | 560 | |
| 561 | lemmas ivl_disj_int = ivl_disj_int_singleton ivl_disj_int_one ivl_disj_int_two | |
| 562 | ||
| 15542 | 563 | subsubsection {* Some Differences *}
 | 
| 564 | ||
| 565 | lemma ivl_diff[simp]: | |
| 566 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 567 | by(auto) | |
| 568 | ||
| 569 | ||
| 570 | subsubsection {* Some Subset Conditions *}
 | |
| 571 | ||
| 572 | lemma ivl_subset[simp]: | |
| 573 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | |
| 574 | apply(auto simp:linorder_not_le) | |
| 575 | apply(rule ccontr) | |
| 576 | apply(insert linorder_le_less_linear[of i n]) | |
| 577 | apply(clarsimp simp:linorder_not_le) | |
| 578 | apply(fastsimp) | |
| 579 | done | |
| 580 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 581 | |
| 15042 | 582 | subsection {* Summation indexed over intervals *}
 | 
| 583 | ||
| 584 | syntax | |
| 585 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 586 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 587 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 588 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 589 | syntax (xsymbols) | 
| 590 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 591 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 592 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 593 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 594 | syntax (HTML output) | 
| 595 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 596 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 597 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 598 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 599 | syntax (latex_sum output) | 
| 15052 | 600 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 601 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 602 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 603 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 604 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 605 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 606 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 607 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 608 | |
| 15048 | 609 | translations | 
| 610 |   "\<Sum>x=a..b. t" == "setsum (%x. t) {a..b}"
 | |
| 611 |   "\<Sum>x=a..<b. t" == "setsum (%x. t) {a..<b}"
 | |
| 16052 | 612 |   "\<Sum>i\<le>n. t" == "setsum (\<lambda>i. t) {..n}"
 | 
| 15048 | 613 |   "\<Sum>i<n. t" == "setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 614 | |
| 15052 | 615 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 616 | summation over intervals: | 
| 15052 | 617 | \begin{center}
 | 
| 618 | \begin{tabular}{lll}
 | |
| 15056 | 619 | Old & New & \LaTeX\\ | 
| 620 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 621 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 622 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 623 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 624 | \end{tabular}
 | 
| 625 | \end{center}
 | |
| 15056 | 626 | The left column shows the term before introduction of the new syntax, | 
| 627 | the middle column shows the new (default) syntax, and the right column | |
| 628 | shows a special syntax. The latter is only meaningful for latex output | |
| 629 | and has to be activated explicitly by setting the print mode to | |
| 630 | \texttt{latex\_sum} (e.g.\ via \texttt{mode=latex\_sum} in
 | |
| 631 | antiquotations). It is not the default \LaTeX\ output because it only | |
| 632 | works well with italic-style formulae, not tt-style. | |
| 15052 | 633 | |
| 634 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 635 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 636 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 637 | special form for @{term"{..<n}"}. *}
 | |
| 638 | ||
| 15542 | 639 | text{* This congruence rule should be used for sums over intervals as
 | 
| 640 | the standard theorem @{text[source]setsum_cong} does not work well
 | |
| 641 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | |
| 642 | the context. *} | |
| 643 | ||
| 644 | lemma setsum_ivl_cong: | |
| 645 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 646 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 647 | by(rule setsum_cong, simp_all) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 648 | |
| 16041 | 649 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 650 | on intervals are not? *) | |
| 651 | ||
| 16052 | 652 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 653 | by (simp add:atMost_Suc add_ac) | |
| 654 | ||
| 16041 | 655 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 656 | by (simp add:lessThan_Suc add_ac) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 657 | |
| 15911 | 658 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 659 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 660 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 661 | ||
| 15911 | 662 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 663 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 664 | by (auto simp:add_ac atLeastLessThanSuc) | |
| 16041 | 665 | (* | 
| 15561 | 666 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 667 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 668 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 16041 | 669 | *) | 
| 15539 | 670 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 671 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 672 | by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un) | |
| 673 | ||
| 674 | lemma setsum_diff_nat_ivl: | |
| 675 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 676 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 677 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 678 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 679 | apply (simp add: add_ac) | |
| 680 | done | |
| 681 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 682 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 683 | |
| 15539 | 684 | lemma setsum_shift_bounds_nat_ivl: | 
| 685 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 686 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 687 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 688 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 689 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 690 | apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 691 | apply (simp add:image_add_atLeastAtMost o_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 692 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 693 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 694 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 695 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 696 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k=1,simplified]) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 697 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 698 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 699 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 700 | by (simp add:setsum_shift_bounds_nat_ivl[where k=1,simplified]) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 701 | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 702 | lemma setsum_head: | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 703 | fixes n :: nat | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 704 | assumes mn: "m <= n" | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 705 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 706 | proof - | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 707 | from mn | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 708 |   have "{m..n} = {m} \<union> {m<..n}"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 709 | by (auto intro: ivl_disj_un_singleton) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 710 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 711 | by (simp add: atLeast0LessThan) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 712 | also have "\<dots> = ?rhs" by simp | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 713 | finally show ?thesis . | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 714 | qed | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 715 | |
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 716 | lemma setsum_head_upt: | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 717 | fixes m::nat | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 718 | assumes m: "0 < m" | 
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 719 |   shows "(\<Sum>x<m. P x) = P 0 + (\<Sum>x\<in>{1..<m}. P x)"
 | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 720 | proof - | 
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 721 |   have "(\<Sum>x<m. P x) = (\<Sum>x\<in>{0..<m}. P x)" 
 | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 722 | by (simp add: atLeast0LessThan) | 
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 723 | also | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 724 | from m | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 725 |   have "\<dots> = (\<Sum>x\<in>{0..m - 1}. P x)"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 726 | by (cases m) (auto simp add: atLeastLessThanSuc_atLeastAtMost) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 727 | also | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 728 |   have "\<dots> = P 0 + (\<Sum>x\<in>{0<..m - 1}. P x)"
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 729 | by (simp add: setsum_head) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 730 | also | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 731 | from m | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 732 |   have "{0<..m - 1} = {1..<m}" 
 | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 733 | by (cases m) (auto simp add: atLeastLessThanSuc_atLeastAtMost) | 
| 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 734 | finally show ?thesis . | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 735 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 736 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 737 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 738 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 739 | lemma geometric_sum: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 740 | "x ~= 1 ==> (\<Sum>i=0..<n. x ^ i) = | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 741 |   (x ^ n - 1) / (x - 1::'a::{field, recpower, division_by_zero})"
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 742 | apply (induct "n", auto) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 743 | apply (rule_tac c = "x - 1" in field_mult_cancel_right_lemma) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 744 | apply (auto simp add: mult_assoc left_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 745 | apply (simp add: right_distrib diff_minus mult_commute power_Suc) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 746 | done | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 747 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 748 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 749 | subsection {* The formula for arithmetic sums *}
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 750 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 751 | lemma gauss_sum: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 752 |   "((1::'a::comm_semiring_1_cancel) + 1)*(\<Sum>i\<in>{1..n}. of_nat i) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 753 | of_nat n*((of_nat n)+1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 754 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 755 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 756 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 757 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 758 | case (Suc n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 759 | then show ?case by (simp add: right_distrib add_assoc mult_ac) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 760 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 761 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 762 | theorem arith_series_general: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 763 |   "((1::'a::comm_semiring_1_cancel) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 764 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 765 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 766 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 767 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 768 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 769 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 770 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 771 | by (rule setsum_addf) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 772 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 773 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 774 | by (simp add: setsum_right_distrib setsum_head_upt mult_ac) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 775 |   also have "(1+1)*\<dots> = (1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 776 | by (simp add: left_distrib right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 777 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 778 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 779 | also from ngt1 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 780 |   have "(1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..n - 1}. ?I i) = ((1+1)*?n*a + d*?I (n - 1)*?I n)"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 781 | by (simp only: mult_ac gauss_sum [of "n - 1"]) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 782 | (simp add: mult_ac of_nat_Suc [symmetric]) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 783 | finally show ?thesis by (simp add: mult_ac add_ac right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 784 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 785 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 786 | hence "n = 1 \<or> n = 0" by auto | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 787 | thus ?thesis by (auto simp: mult_ac right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 788 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 789 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 790 | lemma arith_series_nat: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 791 |   "Suc (Suc 0) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 792 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 793 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 794 |     "((1::nat) + 1) * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 795 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 796 | by (rule arith_series_general) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 797 | thus ?thesis by (auto simp add: of_nat_id) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 798 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 799 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 800 | lemma arith_series_int: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 801 |   "(2::int) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 802 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 803 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 804 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 805 |     "((1::int) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 806 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 807 | by (rule arith_series_general) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 808 | thus ?thesis by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 809 | qed | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 810 | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 811 | lemma sum_diff_distrib: | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 812 | fixes P::"nat\<Rightarrow>nat" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 813 | shows | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 814 | "\<forall>x. Q x \<le> P x \<Longrightarrow> | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 815 | (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 816 | proof (induct n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 817 | case 0 show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 818 | next | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 819 | case (Suc n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 820 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 821 | let ?lhs = "(\<Sum>x<n. P x) - (\<Sum>x<n. Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 822 | let ?rhs = "\<Sum>x<n. P x - Q x" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 823 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 824 | from Suc have "?lhs = ?rhs" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 825 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 826 | from Suc have "?lhs + P n - Q n = ?rhs + (P n - Q n)" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 827 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 828 | from Suc have | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 829 | "(\<Sum>x<n. P x) + P n - ((\<Sum>x<n. Q x) + Q n) = ?rhs + (P n - Q n)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 830 | by (subst diff_diff_left[symmetric], | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 831 | subst diff_add_assoc2) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 832 | (auto simp: diff_add_assoc2 intro: setsum_mono) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 833 | ultimately | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 834 | show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 835 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 836 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 837 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 838 | ML | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 839 | {*
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 840 | val Compl_atLeast = thm "Compl_atLeast"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 841 | val Compl_atMost = thm "Compl_atMost"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 842 | val Compl_greaterThan = thm "Compl_greaterThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 843 | val Compl_lessThan = thm "Compl_lessThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 844 | val INT_greaterThan_UNIV = thm "INT_greaterThan_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 845 | val UN_atLeast_UNIV = thm "UN_atLeast_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 846 | val UN_atMost_UNIV = thm "UN_atMost_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 847 | val UN_lessThan_UNIV = thm "UN_lessThan_UNIV"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 848 | val atLeastAtMost_def = thm "atLeastAtMost_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 849 | val atLeastAtMost_iff = thm "atLeastAtMost_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 850 | val atLeastLessThan_def = thm "atLeastLessThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 851 | val atLeastLessThan_iff = thm "atLeastLessThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 852 | val atLeast_0 = thm "atLeast_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 853 | val atLeast_Suc = thm "atLeast_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 854 | val atLeast_def = thm "atLeast_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 855 | val atLeast_iff = thm "atLeast_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 856 | val atMost_0 = thm "atMost_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 857 | val atMost_Int_atLeast = thm "atMost_Int_atLeast"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 858 | val atMost_Suc = thm "atMost_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 859 | val atMost_def = thm "atMost_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 860 | val atMost_iff = thm "atMost_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 861 | val greaterThanAtMost_def = thm "greaterThanAtMost_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 862 | val greaterThanAtMost_iff = thm "greaterThanAtMost_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 863 | val greaterThanLessThan_def = thm "greaterThanLessThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 864 | val greaterThanLessThan_iff = thm "greaterThanLessThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 865 | val greaterThan_0 = thm "greaterThan_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 866 | val greaterThan_Suc = thm "greaterThan_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 867 | val greaterThan_def = thm "greaterThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 868 | val greaterThan_iff = thm "greaterThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 869 | val ivl_disj_int = thms "ivl_disj_int"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 870 | val ivl_disj_int_one = thms "ivl_disj_int_one"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 871 | val ivl_disj_int_singleton = thms "ivl_disj_int_singleton"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 872 | val ivl_disj_int_two = thms "ivl_disj_int_two"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 873 | val ivl_disj_un = thms "ivl_disj_un"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 874 | val ivl_disj_un_one = thms "ivl_disj_un_one"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 875 | val ivl_disj_un_singleton = thms "ivl_disj_un_singleton"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 876 | val ivl_disj_un_two = thms "ivl_disj_un_two"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 877 | val lessThan_0 = thm "lessThan_0"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 878 | val lessThan_Suc = thm "lessThan_Suc"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 879 | val lessThan_Suc_atMost = thm "lessThan_Suc_atMost"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 880 | val lessThan_def = thm "lessThan_def"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 881 | val lessThan_iff = thm "lessThan_iff"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 882 | val single_Diff_lessThan = thm "single_Diff_lessThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 883 | |
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 884 | val bounded_nat_set_is_finite = thm "bounded_nat_set_is_finite"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 885 | val finite_atMost = thm "finite_atMost"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 886 | val finite_lessThan = thm "finite_lessThan"; | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 887 | *} | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 888 | |
| 8924 | 889 | end |