12787
|
1 |
(* Title: ZF/AC/AC7_AC9.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Krzysztof Grabczewski
|
|
4 |
|
|
5 |
The proofs needed to state that AC7, AC8 and AC9 are equivalent to the previous
|
|
6 |
instances of AC.
|
|
7 |
*)
|
|
8 |
|
|
9 |
theory AC7_AC9 = AC_Equiv:
|
|
10 |
|
|
11 |
(* ********************************************************************** *)
|
|
12 |
(* Lemmas used in the proofs AC7 ==> AC6 and AC9 ==> AC1 *)
|
|
13 |
(* - Sigma_fun_space_not0 *)
|
|
14 |
(* - Sigma_fun_space_eqpoll *)
|
|
15 |
(* ********************************************************************** *)
|
|
16 |
|
|
17 |
lemma Sigma_fun_space_not0: "[| 0\<notin>A; B \<in> A |] ==> (nat->Union(A)) * B \<noteq> 0"
|
|
18 |
by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1])
|
|
19 |
|
|
20 |
lemma inj_lemma:
|
|
21 |
"C \<in> A ==> (\<lambda>g \<in> (nat->Union(A))*C.
|
|
22 |
(\<lambda>n \<in> nat. if(n=0, snd(g), fst(g)`(n #- 1))))
|
|
23 |
\<in> inj((nat->Union(A))*C, (nat->Union(A)) ) "
|
|
24 |
apply (unfold inj_def)
|
|
25 |
apply (rule CollectI)
|
|
26 |
apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto)
|
|
27 |
apply (rule fun_extension, assumption+)
|
|
28 |
apply (drule lam_eqE [OF _ nat_succI], assumption, simp)
|
|
29 |
apply (drule lam_eqE [OF _ nat_0I], simp)
|
|
30 |
done
|
|
31 |
|
|
32 |
lemma Sigma_fun_space_eqpoll:
|
|
33 |
"[| C \<in> A; 0\<notin>A |] ==> (nat->Union(A)) * C \<approx> (nat->Union(A))"
|
|
34 |
apply (rule eqpollI)
|
|
35 |
apply (simp add: lepoll_def)
|
|
36 |
apply (fast intro!: inj_lemma)
|
|
37 |
apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem
|
|
38 |
elim: swap)
|
|
39 |
done
|
|
40 |
|
|
41 |
|
|
42 |
(* ********************************************************************** *)
|
|
43 |
(* AC6 ==> AC7 *)
|
|
44 |
(* ********************************************************************** *)
|
|
45 |
|
|
46 |
lemma AC6_AC7: "AC6 ==> AC7"
|
|
47 |
by (unfold AC6_def AC7_def, blast)
|
|
48 |
|
|
49 |
(* ********************************************************************** *)
|
|
50 |
(* AC7 ==> AC6, Rubin & Rubin p. 12, Theorem 2.8 *)
|
|
51 |
(* The case of the empty family of sets added in order to complete *)
|
|
52 |
(* the proof. *)
|
|
53 |
(* ********************************************************************** *)
|
|
54 |
|
|
55 |
lemma lemma1_1: "y \<in> (\<Pi>B \<in> A. Y*B) ==> (\<lambda>B \<in> A. snd(y`B)) \<in> (\<Pi>B \<in> A. B)"
|
|
56 |
by (fast intro!: lam_type snd_type apply_type)
|
|
57 |
|
|
58 |
lemma lemma1_2:
|
|
59 |
"y \<in> (\<Pi>B \<in> {Y*C. C \<in> A}. B) ==> (\<lambda>B \<in> A. y`(Y*B)) \<in> (\<Pi>B \<in> A. Y*B)"
|
|
60 |
apply (fast intro!: lam_type apply_type)
|
|
61 |
done
|
|
62 |
|
|
63 |
lemma AC7_AC6_lemma1:
|
|
64 |
"(\<Pi>B \<in> {(nat->Union(A))*C. C \<in> A}. B) \<noteq> 0 ==> (\<Pi>B \<in> A. B) \<noteq> 0"
|
|
65 |
by (fast intro!: equals0I lemma1_1 lemma1_2)
|
|
66 |
|
|
67 |
lemma AC7_AC6_lemma2: "0 \<notin> A ==> 0 \<notin> {(nat -> Union(A)) * C. C \<in> A}"
|
|
68 |
by (blast dest: Sigma_fun_space_not0)
|
|
69 |
|
|
70 |
lemma AC7_AC6: "AC7 ==> AC6"
|
|
71 |
apply (unfold AC6_def AC7_def)
|
|
72 |
apply (rule allI)
|
|
73 |
apply (rule impI)
|
|
74 |
apply (case_tac "A=0", simp)
|
|
75 |
apply (rule AC7_AC6_lemma1)
|
|
76 |
apply (erule allE)
|
|
77 |
apply (blast del: notI
|
|
78 |
intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans
|
|
79 |
Sigma_fun_space_eqpoll)
|
|
80 |
done
|
|
81 |
|
|
82 |
|
|
83 |
(* ********************************************************************** *)
|
|
84 |
(* AC1 ==> AC8 *)
|
|
85 |
(* ********************************************************************** *)
|
|
86 |
|
|
87 |
lemma AC1_AC8_lemma1:
|
|
88 |
"\<forall>B \<in> A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2
|
|
89 |
==> 0 \<notin> { bij(fst(B),snd(B)). B \<in> A }"
|
|
90 |
apply (unfold eqpoll_def, auto)
|
|
91 |
done
|
|
92 |
|
|
93 |
lemma AC1_AC8_lemma2:
|
|
94 |
"[| f \<in> (\<Pi>X \<in> RepFun(A,p). X); D \<in> A |] ==> (\<lambda>x \<in> A. f`p(x))`D \<in> p(D)"
|
|
95 |
apply (simp, fast elim!: apply_type)
|
|
96 |
done
|
|
97 |
|
|
98 |
lemma AC1_AC8: "AC1 ==> AC8"
|
|
99 |
apply (unfold AC1_def AC8_def)
|
|
100 |
apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2)
|
|
101 |
done
|
|
102 |
|
|
103 |
|
|
104 |
(* ********************************************************************** *)
|
|
105 |
(* AC8 ==> AC9 *)
|
|
106 |
(* - this proof replaces the following two from Rubin & Rubin: *)
|
|
107 |
(* AC8 ==> AC1 and AC1 ==> AC9 *)
|
|
108 |
(* ********************************************************************** *)
|
|
109 |
|
|
110 |
lemma AC8_AC9_lemma:
|
|
111 |
"\<forall>B1 \<in> A. \<forall>B2 \<in> A. B1 \<approx> B2
|
|
112 |
==> \<forall>B \<in> A*A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2"
|
|
113 |
by fast
|
|
114 |
|
|
115 |
lemma AC8_AC9: "AC8 ==> AC9"
|
|
116 |
apply (unfold AC8_def AC9_def)
|
|
117 |
apply (intro allI impI)
|
|
118 |
apply (erule allE)
|
|
119 |
apply (erule impE, erule AC8_AC9_lemma, force)
|
|
120 |
done
|
|
121 |
|
|
122 |
|
|
123 |
(* ********************************************************************** *)
|
|
124 |
(* AC9 ==> AC1 *)
|
|
125 |
(* The idea of this proof comes from "Equivalents of the Axiom of Choice" *)
|
|
126 |
(* by Rubin & Rubin. But (x * y) is not necessarily equipollent to *)
|
|
127 |
(* (x * y) Un {0} when y is a set of total functions acting from nat to *)
|
|
128 |
(* Union(A) -- therefore we have used the set (y * nat) instead of y. *)
|
|
129 |
(* ********************************************************************** *)
|
|
130 |
|
|
131 |
lemma snd_lepoll_SigmaI: "b \<in> B \<Longrightarrow> X \<lesssim> B \<times> X"
|
|
132 |
by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll
|
|
133 |
prod_commute_eqpoll)
|
|
134 |
|
|
135 |
lemma nat_lepoll_lemma:
|
|
136 |
"[|0 \<notin> A; B \<in> A|] ==> nat \<lesssim> ((nat \<rightarrow> Union(A)) \<times> B) \<times> nat"
|
|
137 |
by (blast dest: Sigma_fun_space_not0 intro: snd_lepoll_SigmaI)
|
|
138 |
|
|
139 |
lemma AC9_AC1_lemma1:
|
|
140 |
"[| 0\<notin>A; A\<noteq>0;
|
|
141 |
C = {((nat->Union(A))*B)*nat. B \<in> A} Un
|
|
142 |
{cons(0,((nat->Union(A))*B)*nat). B \<in> A};
|
|
143 |
B1 \<in> C; B2 \<in> C |]
|
|
144 |
==> B1 \<approx> B2"
|
|
145 |
by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll
|
|
146 |
nat_cons_eqpoll [THEN eqpoll_trans]
|
|
147 |
prod_eqpoll_cong [OF _ eqpoll_refl]
|
|
148 |
intro: eqpoll_trans eqpoll_sym )
|
|
149 |
|
|
150 |
lemma AC9_AC1_lemma2:
|
|
151 |
"\<forall>B1 \<in> {(F*B)*N. B \<in> A} Un {cons(0,(F*B)*N). B \<in> A}.
|
|
152 |
\<forall>B2 \<in> {(F*B)*N. B \<in> A} Un {cons(0,(F*B)*N). B \<in> A}.
|
|
153 |
f`<B1,B2> \<in> bij(B1, B2)
|
|
154 |
==> (\<lambda>B \<in> A. snd(fst((f`<cons(0,(F*B)*N),(F*B)*N>)`0))) \<in> (\<Pi>X \<in> A. X)"
|
|
155 |
apply (intro lam_type snd_type fst_type)
|
|
156 |
apply (rule apply_type [OF _ consI1])
|
|
157 |
apply (fast intro!: fun_weaken_type bij_is_fun)
|
|
158 |
done
|
|
159 |
|
|
160 |
lemma AC9_AC1: "AC9 ==> AC1"
|
|
161 |
apply (unfold AC1_def AC9_def)
|
|
162 |
apply (intro allI impI)
|
|
163 |
apply (erule allE)
|
|
164 |
apply (case_tac "A~=0")
|
|
165 |
apply (blast dest: AC9_AC1_lemma1 AC9_AC1_lemma2, force)
|
|
166 |
done
|
|
167 |
|
|
168 |
end
|