author | wenzelm |
Tue, 31 Jul 2012 19:55:04 +0200 | |
changeset 48627 | 3ef76d545aaf |
parent 46821 | ff6b0c1087f2 |
child 48891 | c0eafbd55de3 |
permissions | -rw-r--r-- |
41777 | 1 |
(* Title: ZF/ArithSimp.thy |
9548 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 2000 University of Cambridge |
|
4 |
*) |
|
5 |
||
13328 | 6 |
header{*Arithmetic with simplification*} |
7 |
||
46820 | 8 |
theory ArithSimp |
15481 | 9 |
imports Arith |
16417 | 10 |
uses "~~/src/Provers/Arith/cancel_numerals.ML" |
15481 | 11 |
"~~/src/Provers/Arith/combine_numerals.ML" |
12 |
"arith_data.ML" |
|
13 |
begin |
|
13259 | 14 |
|
13356 | 15 |
subsection{*Difference*} |
13259 | 16 |
|
14046 | 17 |
lemma diff_self_eq_0 [simp]: "m #- m = 0" |
13259 | 18 |
apply (subgoal_tac "natify (m) #- natify (m) = 0") |
19 |
apply (rule_tac [2] natify_in_nat [THEN nat_induct], auto) |
|
20 |
done |
|
21 |
||
22 |
(**Addition is the inverse of subtraction**) |
|
23 |
||
24 |
(*We need m:nat even if we replace the RHS by natify(m), for consider e.g. |
|
46820 | 25 |
n=2, m=omega; then n + (m-n) = 2 + (0-2) = 2 \<noteq> 0 = natify(m).*) |
26 |
lemma add_diff_inverse: "[| n \<le> m; m:nat |] ==> n #+ (m#-n) = m" |
|
13259 | 27 |
apply (frule lt_nat_in_nat, erule nat_succI) |
28 |
apply (erule rev_mp) |
|
13784 | 29 |
apply (rule_tac m = m and n = n in diff_induct, auto) |
13259 | 30 |
done |
31 |
||
46820 | 32 |
lemma add_diff_inverse2: "[| n \<le> m; m:nat |] ==> (m#-n) #+ n = m" |
13259 | 33 |
apply (frule lt_nat_in_nat, erule nat_succI) |
34 |
apply (simp (no_asm_simp) add: add_commute add_diff_inverse) |
|
35 |
done |
|
36 |
||
37 |
(*Proof is IDENTICAL to that of add_diff_inverse*) |
|
46820 | 38 |
lemma diff_succ: "[| n \<le> m; m:nat |] ==> succ(m) #- n = succ(m#-n)" |
13259 | 39 |
apply (frule lt_nat_in_nat, erule nat_succI) |
40 |
apply (erule rev_mp) |
|
13784 | 41 |
apply (rule_tac m = m and n = n in diff_induct) |
13259 | 42 |
apply (simp_all (no_asm_simp)) |
43 |
done |
|
44 |
||
45 |
lemma zero_less_diff [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
46 |
"[| m: nat; n: nat |] ==> 0 < (n #- m) \<longleftrightarrow> m<n" |
13784 | 47 |
apply (rule_tac m = m and n = n in diff_induct) |
13259 | 48 |
apply (simp_all (no_asm_simp)) |
49 |
done |
|
50 |
||
51 |
||
52 |
(** Difference distributes over multiplication **) |
|
53 |
||
54 |
lemma diff_mult_distrib: "(m #- n) #* k = (m #* k) #- (n #* k)" |
|
55 |
apply (subgoal_tac " (natify (m) #- natify (n)) #* natify (k) = (natify (m) #* natify (k)) #- (natify (n) #* natify (k))") |
|
56 |
apply (rule_tac [2] m = "natify (m) " and n = "natify (n) " in diff_induct) |
|
57 |
apply (simp_all add: diff_cancel) |
|
58 |
done |
|
59 |
||
60 |
lemma diff_mult_distrib2: "k #* (m #- n) = (k #* m) #- (k #* n)" |
|
61 |
apply (simp (no_asm) add: mult_commute [of k] diff_mult_distrib) |
|
62 |
done |
|
63 |
||
64 |
||
13356 | 65 |
subsection{*Remainder*} |
13259 | 66 |
|
67 |
(*We need m:nat even with natify*) |
|
46820 | 68 |
lemma div_termination: "[| 0<n; n \<le> m; m:nat |] ==> m #- n < m" |
13259 | 69 |
apply (frule lt_nat_in_nat, erule nat_succI) |
70 |
apply (erule rev_mp) |
|
71 |
apply (erule rev_mp) |
|
13784 | 72 |
apply (rule_tac m = m and n = n in diff_induct) |
13259 | 73 |
apply (simp_all (no_asm_simp) add: diff_le_self) |
74 |
done |
|
75 |
||
76 |
(*for mod and div*) |
|
46820 | 77 |
lemmas div_rls = |
78 |
nat_typechecks Ord_transrec_type apply_funtype |
|
13259 | 79 |
div_termination [THEN ltD] |
80 |
nat_into_Ord not_lt_iff_le [THEN iffD1] |
|
81 |
||
46820 | 82 |
lemma raw_mod_type: "[| m:nat; n:nat |] ==> raw_mod (m, n) \<in> nat" |
13259 | 83 |
apply (unfold raw_mod_def) |
84 |
apply (rule Ord_transrec_type) |
|
85 |
apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
46820 | 86 |
apply (blast intro: div_rls) |
13259 | 87 |
done |
88 |
||
46820 | 89 |
lemma mod_type [TC,iff]: "m mod n \<in> nat" |
13259 | 90 |
apply (unfold mod_def) |
91 |
apply (simp (no_asm) add: mod_def raw_mod_type) |
|
92 |
done |
|
93 |
||
94 |
||
46820 | 95 |
(** Aribtrary definitions for division by zero. Useful to simplify |
13259 | 96 |
certain equations **) |
97 |
||
98 |
lemma DIVISION_BY_ZERO_DIV: "a div 0 = 0" |
|
99 |
apply (unfold div_def) |
|
100 |
apply (rule raw_div_def [THEN def_transrec, THEN trans]) |
|
101 |
apply (simp (no_asm_simp)) |
|
102 |
done (*NOT for adding to default simpset*) |
|
103 |
||
104 |
lemma DIVISION_BY_ZERO_MOD: "a mod 0 = natify(a)" |
|
105 |
apply (unfold mod_def) |
|
106 |
apply (rule raw_mod_def [THEN def_transrec, THEN trans]) |
|
107 |
apply (simp (no_asm_simp)) |
|
108 |
done (*NOT for adding to default simpset*) |
|
109 |
||
110 |
lemma raw_mod_less: "m<n ==> raw_mod (m,n) = m" |
|
111 |
apply (rule raw_mod_def [THEN def_transrec, THEN trans]) |
|
112 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD]) |
|
113 |
done |
|
114 |
||
46820 | 115 |
lemma mod_less [simp]: "[| m<n; n \<in> nat |] ==> m mod n = m" |
13259 | 116 |
apply (frule lt_nat_in_nat, assumption) |
117 |
apply (simp (no_asm_simp) add: mod_def raw_mod_less) |
|
118 |
done |
|
119 |
||
120 |
lemma raw_mod_geq: |
|
46820 | 121 |
"[| 0<n; n \<le> m; m:nat |] ==> raw_mod (m, n) = raw_mod (m#-n, n)" |
13259 | 122 |
apply (frule lt_nat_in_nat, erule nat_succI) |
123 |
apply (rule raw_mod_def [THEN def_transrec, THEN trans]) |
|
13611 | 124 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2], blast) |
13259 | 125 |
done |
126 |
||
127 |
||
46820 | 128 |
lemma mod_geq: "[| n \<le> m; m:nat |] ==> m mod n = (m#-n) mod n" |
13259 | 129 |
apply (frule lt_nat_in_nat, erule nat_succI) |
130 |
apply (case_tac "n=0") |
|
131 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
132 |
apply (simp add: mod_def raw_mod_geq nat_into_Ord [THEN Ord_0_lt_iff]) |
|
133 |
done |
|
134 |
||
135 |
||
13356 | 136 |
subsection{*Division*} |
13259 | 137 |
|
46820 | 138 |
lemma raw_div_type: "[| m:nat; n:nat |] ==> raw_div (m, n) \<in> nat" |
13259 | 139 |
apply (unfold raw_div_def) |
140 |
apply (rule Ord_transrec_type) |
|
141 |
apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
46820 | 142 |
apply (blast intro: div_rls) |
13259 | 143 |
done |
144 |
||
46820 | 145 |
lemma div_type [TC,iff]: "m div n \<in> nat" |
13259 | 146 |
apply (unfold div_def) |
147 |
apply (simp (no_asm) add: div_def raw_div_type) |
|
148 |
done |
|
149 |
||
150 |
lemma raw_div_less: "m<n ==> raw_div (m,n) = 0" |
|
151 |
apply (rule raw_div_def [THEN def_transrec, THEN trans]) |
|
152 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD]) |
|
153 |
done |
|
154 |
||
46820 | 155 |
lemma div_less [simp]: "[| m<n; n \<in> nat |] ==> m div n = 0" |
13259 | 156 |
apply (frule lt_nat_in_nat, assumption) |
157 |
apply (simp (no_asm_simp) add: div_def raw_div_less) |
|
158 |
done |
|
159 |
||
46820 | 160 |
lemma raw_div_geq: "[| 0<n; n \<le> m; m:nat |] ==> raw_div(m,n) = succ(raw_div(m#-n, n))" |
161 |
apply (subgoal_tac "n \<noteq> 0") |
|
13259 | 162 |
prefer 2 apply blast |
163 |
apply (frule lt_nat_in_nat, erule nat_succI) |
|
164 |
apply (rule raw_div_def [THEN def_transrec, THEN trans]) |
|
46820 | 165 |
apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2] ) |
13259 | 166 |
done |
167 |
||
168 |
lemma div_geq [simp]: |
|
46820 | 169 |
"[| 0<n; n \<le> m; m:nat |] ==> m div n = succ ((m#-n) div n)" |
13259 | 170 |
apply (frule lt_nat_in_nat, erule nat_succI) |
171 |
apply (simp (no_asm_simp) add: div_def raw_div_geq) |
|
172 |
done |
|
173 |
||
174 |
declare div_less [simp] div_geq [simp] |
|
175 |
||
176 |
||
177 |
(*A key result*) |
|
178 |
lemma mod_div_lemma: "[| m: nat; n: nat |] ==> (m div n)#*n #+ m mod n = m" |
|
179 |
apply (case_tac "n=0") |
|
180 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
181 |
apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
182 |
apply (erule complete_induct) |
|
183 |
apply (case_tac "x<n") |
|
184 |
txt{*case x<n*} |
|
185 |
apply (simp (no_asm_simp)) |
|
46820 | 186 |
txt{*case @{term"n \<le> x"}*} |
13259 | 187 |
apply (simp add: not_lt_iff_le add_assoc mod_geq div_termination [THEN ltD] add_diff_inverse) |
188 |
done |
|
189 |
||
190 |
lemma mod_div_equality_natify: "(m div n)#*n #+ m mod n = natify(m)" |
|
191 |
apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ") |
|
46820 | 192 |
apply force |
13259 | 193 |
apply (subst mod_div_lemma, auto) |
194 |
done |
|
195 |
||
196 |
lemma mod_div_equality: "m: nat ==> (m div n)#*n #+ m mod n = m" |
|
197 |
apply (simp (no_asm_simp) add: mod_div_equality_natify) |
|
198 |
done |
|
199 |
||
200 |
||
13356 | 201 |
subsection{*Further Facts about Remainder*} |
202 |
||
203 |
text{*(mainly for mutilated chess board)*} |
|
13259 | 204 |
|
205 |
lemma mod_succ_lemma: |
|
46820 | 206 |
"[| 0<n; m:nat; n:nat |] |
13259 | 207 |
==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))" |
208 |
apply (erule complete_induct) |
|
209 |
apply (case_tac "succ (x) <n") |
|
210 |
txt{* case succ(x) < n *} |
|
211 |
apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self) |
|
212 |
apply (simp add: ltD [THEN mem_imp_not_eq]) |
|
46820 | 213 |
txt{* case @{term"n \<le> succ(x)"} *} |
13259 | 214 |
apply (simp add: mod_geq not_lt_iff_le) |
215 |
apply (erule leE) |
|
216 |
apply (simp (no_asm_simp) add: mod_geq div_termination [THEN ltD] diff_succ) |
|
217 |
txt{*equality case*} |
|
218 |
apply (simp add: diff_self_eq_0) |
|
219 |
done |
|
220 |
||
221 |
lemma mod_succ: |
|
222 |
"n:nat ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))" |
|
223 |
apply (case_tac "n=0") |
|
224 |
apply (simp (no_asm_simp) add: natify_succ DIVISION_BY_ZERO_MOD) |
|
225 |
apply (subgoal_tac "natify (succ (m)) mod n = (if succ (natify (m) mod n) = n then 0 else succ (natify (m) mod n))") |
|
226 |
prefer 2 |
|
227 |
apply (subst natify_succ) |
|
228 |
apply (rule mod_succ_lemma) |
|
229 |
apply (auto simp del: natify_succ simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
230 |
done |
|
231 |
||
232 |
lemma mod_less_divisor: "[| 0<n; n:nat |] ==> m mod n < n" |
|
233 |
apply (subgoal_tac "natify (m) mod n < n") |
|
234 |
apply (rule_tac [2] i = "natify (m) " in complete_induct) |
|
46820 | 235 |
apply (case_tac [3] "x<n", auto) |
236 |
txt{* case @{term"n \<le> x"}*} |
|
13259 | 237 |
apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD]) |
238 |
done |
|
239 |
||
240 |
lemma mod_1_eq [simp]: "m mod 1 = 0" |
|
13784 | 241 |
by (cut_tac n = 1 in mod_less_divisor, auto) |
13259 | 242 |
|
243 |
lemma mod2_cases: "b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)" |
|
244 |
apply (subgoal_tac "k mod 2: 2") |
|
245 |
prefer 2 apply (simp add: mod_less_divisor [THEN ltD]) |
|
246 |
apply (drule ltD, auto) |
|
247 |
done |
|
248 |
||
249 |
lemma mod2_succ_succ [simp]: "succ(succ(m)) mod 2 = m mod 2" |
|
250 |
apply (subgoal_tac "m mod 2: 2") |
|
251 |
prefer 2 apply (simp add: mod_less_divisor [THEN ltD]) |
|
252 |
apply (auto simp add: mod_succ) |
|
253 |
done |
|
254 |
||
255 |
lemma mod2_add_more [simp]: "(m#+m#+n) mod 2 = n mod 2" |
|
256 |
apply (subgoal_tac " (natify (m) #+natify (m) #+n) mod 2 = n mod 2") |
|
257 |
apply (rule_tac [2] n = "natify (m) " in nat_induct) |
|
258 |
apply auto |
|
259 |
done |
|
260 |
||
261 |
lemma mod2_add_self [simp]: "(m#+m) mod 2 = 0" |
|
13784 | 262 |
by (cut_tac n = 0 in mod2_add_more, auto) |
13259 | 263 |
|
264 |
||
13356 | 265 |
subsection{*Additional theorems about @{text "\<le>"}*} |
13259 | 266 |
|
46820 | 267 |
lemma add_le_self: "m:nat ==> m \<le> (m #+ n)" |
13259 | 268 |
apply (simp (no_asm_simp)) |
269 |
done |
|
270 |
||
46820 | 271 |
lemma add_le_self2: "m:nat ==> m \<le> (n #+ m)" |
13259 | 272 |
apply (simp (no_asm_simp)) |
273 |
done |
|
274 |
||
275 |
(*** Monotonicity of Multiplication ***) |
|
276 |
||
46820 | 277 |
lemma mult_le_mono1: "[| i \<le> j; j:nat |] ==> (i#*k) \<le> (j#*k)" |
278 |
apply (subgoal_tac "natify (i) #*natify (k) \<le> j#*natify (k) ") |
|
13259 | 279 |
apply (frule_tac [2] lt_nat_in_nat) |
280 |
apply (rule_tac [3] n = "natify (k) " in nat_induct) |
|
281 |
apply (simp_all add: add_le_mono) |
|
282 |
done |
|
283 |
||
46820 | 284 |
(* @{text"\<le>"} monotonicity, BOTH arguments*) |
285 |
lemma mult_le_mono: "[| i \<le> j; k \<le> l; j:nat; l:nat |] ==> i#*k \<le> j#*l" |
|
13259 | 286 |
apply (rule mult_le_mono1 [THEN le_trans], assumption+) |
287 |
apply (subst mult_commute, subst mult_commute, rule mult_le_mono1, assumption+) |
|
288 |
done |
|
289 |
||
290 |
(*strict, in 1st argument; proof is by induction on k>0. |
|
291 |
I can't see how to relax the typing conditions.*) |
|
292 |
lemma mult_lt_mono2: "[| i<j; 0<k; j:nat; k:nat |] ==> k#*i < k#*j" |
|
293 |
apply (erule zero_lt_natE) |
|
294 |
apply (frule_tac [2] lt_nat_in_nat) |
|
295 |
apply (simp_all (no_asm_simp)) |
|
296 |
apply (induct_tac "x") |
|
297 |
apply (simp_all (no_asm_simp) add: add_lt_mono) |
|
298 |
done |
|
299 |
||
300 |
lemma mult_lt_mono1: "[| i<j; 0<k; j:nat; k:nat |] ==> i#*k < j#*k" |
|
301 |
apply (simp (no_asm_simp) add: mult_lt_mono2 mult_commute [of _ k]) |
|
302 |
done |
|
303 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
304 |
lemma add_eq_0_iff [iff]: "m#+n = 0 \<longleftrightarrow> natify(m)=0 & natify(n)=0" |
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
305 |
apply (subgoal_tac "natify (m) #+ natify (n) = 0 \<longleftrightarrow> natify (m) =0 & natify (n) =0") |
13259 | 306 |
apply (rule_tac [2] n = "natify (m) " in natE) |
307 |
apply (rule_tac [4] n = "natify (n) " in natE) |
|
308 |
apply auto |
|
309 |
done |
|
310 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
311 |
lemma zero_lt_mult_iff [iff]: "0 < m#*n \<longleftrightarrow> 0 < natify(m) & 0 < natify(n)" |
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
312 |
apply (subgoal_tac "0 < natify (m) #*natify (n) \<longleftrightarrow> 0 < natify (m) & 0 < natify (n) ") |
13259 | 313 |
apply (rule_tac [2] n = "natify (m) " in natE) |
314 |
apply (rule_tac [4] n = "natify (n) " in natE) |
|
315 |
apply (rule_tac [3] n = "natify (n) " in natE) |
|
316 |
apply auto |
|
317 |
done |
|
318 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
319 |
lemma mult_eq_1_iff [iff]: "m#*n = 1 \<longleftrightarrow> natify(m)=1 & natify(n)=1" |
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
320 |
apply (subgoal_tac "natify (m) #* natify (n) = 1 \<longleftrightarrow> natify (m) =1 & natify (n) =1") |
13259 | 321 |
apply (rule_tac [2] n = "natify (m) " in natE) |
322 |
apply (rule_tac [4] n = "natify (n) " in natE) |
|
323 |
apply auto |
|
324 |
done |
|
325 |
||
326 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
327 |
lemma mult_is_zero: "[|m: nat; n: nat|] ==> (m #* n = 0) \<longleftrightarrow> (m = 0 | n = 0)" |
13259 | 328 |
apply auto |
329 |
apply (erule natE) |
|
330 |
apply (erule_tac [2] natE, auto) |
|
331 |
done |
|
332 |
||
333 |
lemma mult_is_zero_natify [iff]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
334 |
"(m #* n = 0) \<longleftrightarrow> (natify(m) = 0 | natify(n) = 0)" |
13259 | 335 |
apply (cut_tac m = "natify (m) " and n = "natify (n) " in mult_is_zero) |
336 |
apply auto |
|
337 |
done |
|
338 |
||
339 |
||
13356 | 340 |
subsection{*Cancellation Laws for Common Factors in Comparisons*} |
13259 | 341 |
|
342 |
lemma mult_less_cancel_lemma: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
343 |
"[| k: nat; m: nat; n: nat |] ==> (m#*k < n#*k) \<longleftrightarrow> (0<k & m<n)" |
13259 | 344 |
apply (safe intro!: mult_lt_mono1) |
345 |
apply (erule natE, auto) |
|
346 |
apply (rule not_le_iff_lt [THEN iffD1]) |
|
347 |
apply (drule_tac [3] not_le_iff_lt [THEN [2] rev_iffD2]) |
|
348 |
prefer 5 apply (blast intro: mult_le_mono1, auto) |
|
349 |
done |
|
350 |
||
351 |
lemma mult_less_cancel2 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
352 |
"(m#*k < n#*k) \<longleftrightarrow> (0 < natify(k) & natify(m) < natify(n))" |
13259 | 353 |
apply (rule iff_trans) |
354 |
apply (rule_tac [2] mult_less_cancel_lemma, auto) |
|
355 |
done |
|
356 |
||
357 |
lemma mult_less_cancel1 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
358 |
"(k#*m < k#*n) \<longleftrightarrow> (0 < natify(k) & natify(m) < natify(n))" |
13259 | 359 |
apply (simp (no_asm) add: mult_less_cancel2 mult_commute [of k]) |
360 |
done |
|
361 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
362 |
lemma mult_le_cancel2 [simp]: "(m#*k \<le> n#*k) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))" |
13259 | 363 |
apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) |
364 |
apply auto |
|
365 |
done |
|
366 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
367 |
lemma mult_le_cancel1 [simp]: "(k#*m \<le> k#*n) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))" |
13259 | 368 |
apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) |
369 |
apply auto |
|
370 |
done |
|
371 |
||
46820 | 372 |
lemma mult_le_cancel_le1: "k \<in> nat ==> k #* m \<le> k \<longleftrightarrow> (0 < k \<longrightarrow> natify(m) \<le> 1)" |
13784 | 373 |
by (cut_tac k = k and m = m and n = 1 in mult_le_cancel1, auto) |
13259 | 374 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
375 |
lemma Ord_eq_iff_le: "[| Ord(m); Ord(n) |] ==> m=n \<longleftrightarrow> (m \<le> n & n \<le> m)" |
13259 | 376 |
by (blast intro: le_anti_sym) |
377 |
||
378 |
lemma mult_cancel2_lemma: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
379 |
"[| k: nat; m: nat; n: nat |] ==> (m#*k = n#*k) \<longleftrightarrow> (m=n | k=0)" |
13259 | 380 |
apply (simp (no_asm_simp) add: Ord_eq_iff_le [of "m#*k"] Ord_eq_iff_le [of m]) |
381 |
apply (auto simp add: Ord_0_lt_iff) |
|
382 |
done |
|
383 |
||
384 |
lemma mult_cancel2 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
385 |
"(m#*k = n#*k) \<longleftrightarrow> (natify(m) = natify(n) | natify(k) = 0)" |
13259 | 386 |
apply (rule iff_trans) |
387 |
apply (rule_tac [2] mult_cancel2_lemma, auto) |
|
388 |
done |
|
389 |
||
390 |
lemma mult_cancel1 [simp]: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
391 |
"(k#*m = k#*n) \<longleftrightarrow> (natify(m) = natify(n) | natify(k) = 0)" |
13259 | 392 |
apply (simp (no_asm) add: mult_cancel2 mult_commute [of k]) |
393 |
done |
|
394 |
||
395 |
||
396 |
(** Cancellation law for division **) |
|
397 |
||
398 |
lemma div_cancel_raw: |
|
399 |
"[| 0<n; 0<k; k:nat; m:nat; n:nat |] ==> (k#*m) div (k#*n) = m div n" |
|
13784 | 400 |
apply (erule_tac i = m in complete_induct) |
13259 | 401 |
apply (case_tac "x<n") |
402 |
apply (simp add: div_less zero_lt_mult_iff mult_lt_mono2) |
|
403 |
apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono] |
|
404 |
div_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD]) |
|
405 |
done |
|
406 |
||
407 |
lemma div_cancel: |
|
408 |
"[| 0 < natify(n); 0 < natify(k) |] ==> (k#*m) div (k#*n) = m div n" |
|
46820 | 409 |
apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)" |
13259 | 410 |
in div_cancel_raw) |
411 |
apply auto |
|
412 |
done |
|
413 |
||
414 |
||
13356 | 415 |
subsection{*More Lemmas about Remainder*} |
13259 | 416 |
|
417 |
lemma mult_mod_distrib_raw: |
|
418 |
"[| k:nat; m:nat; n:nat |] ==> (k#*m) mod (k#*n) = k #* (m mod n)" |
|
419 |
apply (case_tac "k=0") |
|
420 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
421 |
apply (case_tac "n=0") |
|
422 |
apply (simp add: DIVISION_BY_ZERO_MOD) |
|
423 |
apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff]) |
|
13784 | 424 |
apply (erule_tac i = m in complete_induct) |
13259 | 425 |
apply (case_tac "x<n") |
426 |
apply (simp (no_asm_simp) add: mod_less zero_lt_mult_iff mult_lt_mono2) |
|
46820 | 427 |
apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono] |
13259 | 428 |
mod_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD]) |
429 |
done |
|
430 |
||
431 |
lemma mod_mult_distrib2: "k #* (m mod n) = (k#*m) mod (k#*n)" |
|
46820 | 432 |
apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)" |
13259 | 433 |
in mult_mod_distrib_raw) |
434 |
apply auto |
|
435 |
done |
|
436 |
||
437 |
lemma mult_mod_distrib: "(m mod n) #* k = (m#*k) mod (n#*k)" |
|
438 |
apply (simp (no_asm) add: mult_commute mod_mult_distrib2) |
|
439 |
done |
|
440 |
||
441 |
lemma mod_add_self2_raw: "n \<in> nat ==> (m #+ n) mod n = m mod n" |
|
442 |
apply (subgoal_tac " (n #+ m) mod n = (n #+ m #- n) mod n") |
|
46820 | 443 |
apply (simp add: add_commute) |
444 |
apply (subst mod_geq [symmetric], auto) |
|
13259 | 445 |
done |
446 |
||
447 |
lemma mod_add_self2 [simp]: "(m #+ n) mod n = m mod n" |
|
448 |
apply (cut_tac n = "natify (n) " in mod_add_self2_raw) |
|
449 |
apply auto |
|
450 |
done |
|
451 |
||
452 |
lemma mod_add_self1 [simp]: "(n#+m) mod n = m mod n" |
|
453 |
apply (simp (no_asm_simp) add: add_commute mod_add_self2) |
|
454 |
done |
|
455 |
||
456 |
lemma mod_mult_self1_raw: "k \<in> nat ==> (m #+ k#*n) mod n = m mod n" |
|
457 |
apply (erule nat_induct) |
|
458 |
apply (simp_all (no_asm_simp) add: add_left_commute [of _ n]) |
|
459 |
done |
|
460 |
||
461 |
lemma mod_mult_self1 [simp]: "(m #+ k#*n) mod n = m mod n" |
|
462 |
apply (cut_tac k = "natify (k) " in mod_mult_self1_raw) |
|
463 |
apply auto |
|
464 |
done |
|
465 |
||
466 |
lemma mod_mult_self2 [simp]: "(m #+ n#*k) mod n = m mod n" |
|
467 |
apply (simp (no_asm) add: mult_commute mod_mult_self1) |
|
468 |
done |
|
469 |
||
470 |
(*Lemma for gcd*) |
|
471 |
lemma mult_eq_self_implies_10: "m = m#*n ==> natify(n)=1 | m=0" |
|
472 |
apply (subgoal_tac "m: nat") |
|
46820 | 473 |
prefer 2 |
13259 | 474 |
apply (erule ssubst) |
46820 | 475 |
apply simp |
13259 | 476 |
apply (rule disjCI) |
477 |
apply (drule sym) |
|
478 |
apply (rule Ord_linear_lt [of "natify(n)" 1]) |
|
46820 | 479 |
apply simp_all |
480 |
apply (subgoal_tac "m #* n = 0", simp) |
|
13259 | 481 |
apply (subst mult_natify2 [symmetric]) |
482 |
apply (simp del: mult_natify2) |
|
483 |
apply (drule nat_into_Ord [THEN Ord_0_lt, THEN [2] mult_lt_mono2], auto) |
|
484 |
done |
|
485 |
||
486 |
lemma less_imp_succ_add [rule_format]: |
|
46820 | 487 |
"[| m<n; n: nat |] ==> \<exists>k\<in>nat. n = succ(m#+k)" |
13259 | 488 |
apply (frule lt_nat_in_nat, assumption) |
489 |
apply (erule rev_mp) |
|
490 |
apply (induct_tac "n") |
|
491 |
apply (simp_all (no_asm) add: le_iff) |
|
492 |
apply (blast elim!: leE intro!: add_0_right [symmetric] add_succ_right [symmetric]) |
|
493 |
done |
|
494 |
||
495 |
lemma less_iff_succ_add: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
496 |
"[| m: nat; n: nat |] ==> (m<n) \<longleftrightarrow> (\<exists>k\<in>nat. n = succ(m#+k))" |
13259 | 497 |
by (auto intro: less_imp_succ_add) |
498 |
||
14055 | 499 |
lemma add_lt_elim2: |
500 |
"\<lbrakk>a #+ d = b #+ c; a < b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c < d" |
|
46820 | 501 |
by (drule less_imp_succ_add, auto) |
14055 | 502 |
|
503 |
lemma add_le_elim2: |
|
46820 | 504 |
"\<lbrakk>a #+ d = b #+ c; a \<le> b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c \<le> d" |
505 |
by (drule less_imp_succ_add, auto) |
|
14055 | 506 |
|
13356 | 507 |
|
508 |
subsubsection{*More Lemmas About Difference*} |
|
13259 | 509 |
|
510 |
lemma diff_is_0_lemma: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
511 |
"[| m: nat; n: nat |] ==> m #- n = 0 \<longleftrightarrow> m \<le> n" |
13784 | 512 |
apply (rule_tac m = m and n = n in diff_induct, simp_all) |
13259 | 513 |
done |
514 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
515 |
lemma diff_is_0_iff: "m #- n = 0 \<longleftrightarrow> natify(m) \<le> natify(n)" |
13259 | 516 |
by (simp add: diff_is_0_lemma [symmetric]) |
517 |
||
518 |
lemma nat_lt_imp_diff_eq_0: |
|
519 |
"[| a:nat; b:nat; a<b |] ==> a #- b = 0" |
|
46820 | 520 |
by (simp add: diff_is_0_iff le_iff) |
13259 | 521 |
|
14055 | 522 |
lemma raw_nat_diff_split: |
46820 | 523 |
"[| a:nat; b:nat |] ==> |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
524 |
(P(a #- b)) \<longleftrightarrow> ((a < b \<longrightarrow>P(0)) & (\<forall>d\<in>nat. a = b #+ d \<longrightarrow> P(d)))" |
13259 | 525 |
apply (case_tac "a < b") |
526 |
apply (force simp add: nat_lt_imp_diff_eq_0) |
|
46820 | 527 |
apply (rule iffI, force, simp) |
13259 | 528 |
apply (drule_tac x="a#-b" in bspec) |
46820 | 529 |
apply (simp_all add: Ordinal.not_lt_iff_le add_diff_inverse) |
13259 | 530 |
done |
531 |
||
14055 | 532 |
lemma nat_diff_split: |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
533 |
"(P(a #- b)) \<longleftrightarrow> |
46820 | 534 |
(natify(a) < natify(b) \<longrightarrow>P(0)) & (\<forall>d\<in>nat. natify(a) = b #+ d \<longrightarrow> P(d))" |
14055 | 535 |
apply (cut_tac P=P and a="natify(a)" and b="natify(b)" in raw_nat_diff_split) |
536 |
apply simp_all |
|
537 |
done |
|
538 |
||
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
539 |
text{*Difference and less-than*} |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
540 |
|
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
541 |
lemma diff_lt_imp_lt: "[|(k#-i) < (k#-j); i\<in>nat; j\<in>nat; k\<in>nat|] ==> j<i" |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
542 |
apply (erule rev_mp) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
543 |
apply (simp split add: nat_diff_split, auto) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
544 |
apply (blast intro: add_le_self lt_trans1) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
545 |
apply (rule not_le_iff_lt [THEN iffD1], auto) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
546 |
apply (subgoal_tac "i #+ da < j #+ d", force) |
46820 | 547 |
apply (blast intro: add_le_lt_mono) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
548 |
done |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
549 |
|
46820 | 550 |
lemma lt_imp_diff_lt: "[|j<i; i\<le>k; k\<in>nat|] ==> (k#-i) < (k#-j)" |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
551 |
apply (frule le_in_nat, assumption) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
552 |
apply (frule lt_nat_in_nat, assumption) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
553 |
apply (simp split add: nat_diff_split, auto) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
554 |
apply (blast intro: lt_asym lt_trans2) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
555 |
apply (blast intro: lt_irrefl lt_trans2) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
556 |
apply (rule not_le_iff_lt [THEN iffD1], auto) |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
557 |
apply (subgoal_tac "j #+ d < i #+ da", force) |
46820 | 558 |
apply (blast intro: add_lt_le_mono) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
559 |
done |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
560 |
|
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
561 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
562 |
lemma diff_lt_iff_lt: "[|i\<le>k; j\<in>nat; k\<in>nat|] ==> (k#-i) < (k#-j) \<longleftrightarrow> j<i" |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
563 |
apply (frule le_in_nat, assumption) |
46820 | 564 |
apply (blast intro: lt_imp_diff_lt diff_lt_imp_lt) |
14060
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
565 |
done |
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents:
14055
diff
changeset
|
566 |
|
9548 | 567 |
end |