| author | wenzelm | 
| Mon, 02 Oct 2017 13:45:36 +0200 | |
| changeset 66748 | 3efac90a11a7 | 
| parent 63432 | ba7901e94e7b | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Domain.thy | 
| 15741 | 2 | Author: Brian Huffman | 
| 3 | *) | |
| 4 | ||
| 62175 | 5 | section \<open>Domain package\<close> | 
| 15741 | 6 | |
| 7 | theory Domain | |
| 41285 | 8 | imports Representable Domain_Aux | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46947diff
changeset | 9 | keywords | 
| 63432 | 10 | "lazy" "unsafe" and | 
| 11 | "domaindef" "domain_isomorphism" "domain" :: thy_decl | |
| 15741 | 12 | begin | 
| 13 | ||
| 40504 | 14 | default_sort "domain" | 
| 15 | ||
| 62175 | 16 | subsection \<open>Representations of types\<close> | 
| 40504 | 17 | |
| 18 | lemma emb_prj: "emb\<cdot>((prj\<cdot>x)::'a) = cast\<cdot>DEFL('a)\<cdot>x"
 | |
| 19 | by (simp add: cast_DEFL) | |
| 20 | ||
| 21 | lemma emb_prj_emb: | |
| 22 | fixes x :: "'a" | |
| 23 |   assumes "DEFL('a) \<sqsubseteq> DEFL('b)"
 | |
| 24 | shows "emb\<cdot>(prj\<cdot>(emb\<cdot>x) :: 'b) = emb\<cdot>x" | |
| 25 | unfolding emb_prj | |
| 26 | apply (rule cast.belowD) | |
| 27 | apply (rule monofun_cfun_arg [OF assms]) | |
| 28 | apply (simp add: cast_DEFL) | |
| 29 | done | |
| 30 | ||
| 31 | lemma prj_emb_prj: | |
| 32 |   assumes "DEFL('a) \<sqsubseteq> DEFL('b)"
 | |
| 33 | shows "prj\<cdot>(emb\<cdot>(prj\<cdot>x :: 'b)) = (prj\<cdot>x :: 'a)" | |
| 34 | apply (rule emb_eq_iff [THEN iffD1]) | |
| 35 | apply (simp only: emb_prj) | |
| 36 | apply (rule deflation_below_comp1) | |
| 37 | apply (rule deflation_cast) | |
| 38 | apply (rule deflation_cast) | |
| 39 | apply (rule monofun_cfun_arg [OF assms]) | |
| 40 | done | |
| 41 | ||
| 62175 | 42 | text \<open>Isomorphism lemmas used internally by the domain package:\<close> | 
| 40504 | 43 | |
| 44 | lemma domain_abs_iso: | |
| 45 | fixes abs and rep | |
| 46 |   assumes DEFL: "DEFL('b) = DEFL('a)"
 | |
| 47 | assumes abs_def: "(abs :: 'a \<rightarrow> 'b) \<equiv> prj oo emb" | |
| 48 | assumes rep_def: "(rep :: 'b \<rightarrow> 'a) \<equiv> prj oo emb" | |
| 49 | shows "rep\<cdot>(abs\<cdot>x) = x" | |
| 50 | unfolding abs_def rep_def | |
| 51 | by (simp add: emb_prj_emb DEFL) | |
| 52 | ||
| 53 | lemma domain_rep_iso: | |
| 54 | fixes abs and rep | |
| 55 |   assumes DEFL: "DEFL('b) = DEFL('a)"
 | |
| 56 | assumes abs_def: "(abs :: 'a \<rightarrow> 'b) \<equiv> prj oo emb" | |
| 57 | assumes rep_def: "(rep :: 'b \<rightarrow> 'a) \<equiv> prj oo emb" | |
| 58 | shows "abs\<cdot>(rep\<cdot>x) = x" | |
| 59 | unfolding abs_def rep_def | |
| 60 | by (simp add: emb_prj_emb DEFL) | |
| 61 | ||
| 62175 | 62 | subsection \<open>Deflations as sets\<close> | 
| 40504 | 63 | |
| 41287 
029a6fc1bfb8
type 'defl' takes a type parameter again (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 64 | definition defl_set :: "'a::bifinite defl \<Rightarrow> 'a set" | 
| 40504 | 65 | where "defl_set A = {x. cast\<cdot>A\<cdot>x = x}"
 | 
| 66 | ||
| 67 | lemma adm_defl_set: "adm (\<lambda>x. x \<in> defl_set A)" | |
| 68 | unfolding defl_set_def by simp | |
| 69 | ||
| 70 | lemma defl_set_bottom: "\<bottom> \<in> defl_set A" | |
| 71 | unfolding defl_set_def by simp | |
| 72 | ||
| 73 | lemma defl_set_cast [simp]: "cast\<cdot>A\<cdot>x \<in> defl_set A" | |
| 74 | unfolding defl_set_def by simp | |
| 75 | ||
| 76 | lemma defl_set_subset_iff: "defl_set A \<subseteq> defl_set B \<longleftrightarrow> A \<sqsubseteq> B" | |
| 77 | apply (simp add: defl_set_def subset_eq cast_below_cast [symmetric]) | |
| 78 | apply (auto simp add: cast.belowI cast.belowD) | |
| 79 | done | |
| 80 | ||
| 62175 | 81 | subsection \<open>Proving a subtype is representable\<close> | 
| 40504 | 82 | |
| 62175 | 83 | text \<open>Temporarily relax type constraints.\<close> | 
| 40504 | 84 | |
| 62175 | 85 | setup \<open> | 
| 40504 | 86 | fold Sign.add_const_constraint | 
| 41287 
029a6fc1bfb8
type 'defl' takes a type parameter again (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 87 |   [ (@{const_name defl}, SOME @{typ "'a::pcpo itself \<Rightarrow> udom defl"})
 | 
| 40504 | 88 |   , (@{const_name emb}, SOME @{typ "'a::pcpo \<rightarrow> udom"})
 | 
| 89 |   , (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::pcpo"})
 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 90 |   , (@{const_name liftdefl}, SOME @{typ "'a::pcpo itself \<Rightarrow> udom u defl"})
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 91 |   , (@{const_name liftemb}, SOME @{typ "'a::pcpo u \<rightarrow> udom u"})
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 92 |   , (@{const_name liftprj}, SOME @{typ "udom u \<rightarrow> 'a::pcpo u"}) ]
 | 
| 62175 | 93 | \<close> | 
| 40504 | 94 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 95 | lemma typedef_domain_class: | 
| 40504 | 96 | fixes Rep :: "'a::pcpo \<Rightarrow> udom" | 
| 97 | fixes Abs :: "udom \<Rightarrow> 'a::pcpo" | |
| 41287 
029a6fc1bfb8
type 'defl' takes a type parameter again (cf. b525988432e9)
 huffman parents: 
41285diff
changeset | 98 | fixes t :: "udom defl" | 
| 40504 | 99 | assumes type: "type_definition Rep Abs (defl_set t)" | 
| 100 | assumes below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" | |
| 101 | assumes emb: "emb \<equiv> (\<Lambda> x. Rep x)" | |
| 102 | assumes prj: "prj \<equiv> (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))" | |
| 103 | assumes defl: "defl \<equiv> (\<lambda> a::'a itself. t)" | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 104 | assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom u) \<equiv> u_map\<cdot>emb" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 105 | assumes liftprj: "(liftprj :: udom u \<rightarrow> 'a u) \<equiv> u_map\<cdot>prj" | 
| 41436 | 106 |   assumes liftdefl: "(liftdefl :: 'a itself \<Rightarrow> _) \<equiv> (\<lambda>t. liftdefl_of\<cdot>DEFL('a))"
 | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 107 |   shows "OFCLASS('a, domain_class)"
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 108 | proof | 
| 40504 | 109 | have emb_beta: "\<And>x. emb\<cdot>x = Rep x" | 
| 110 | unfolding emb | |
| 111 | apply (rule beta_cfun) | |
| 40834 
a1249aeff5b6
change cpodef-generated cont_Rep rules to cont2cont format
 huffman parents: 
40830diff
changeset | 112 | apply (rule typedef_cont_Rep [OF type below adm_defl_set cont_id]) | 
| 40504 | 113 | done | 
| 114 | have prj_beta: "\<And>y. prj\<cdot>y = Abs (cast\<cdot>t\<cdot>y)" | |
| 115 | unfolding prj | |
| 116 | apply (rule beta_cfun) | |
| 117 | apply (rule typedef_cont_Abs [OF type below adm_defl_set]) | |
| 118 | apply simp_all | |
| 119 | done | |
| 120 | have prj_emb: "\<And>x::'a. prj\<cdot>(emb\<cdot>x) = x" | |
| 121 | using type_definition.Rep [OF type] | |
| 122 | unfolding prj_beta emb_beta defl_set_def | |
| 123 | by (simp add: type_definition.Rep_inverse [OF type]) | |
| 124 | have emb_prj: "\<And>y. emb\<cdot>(prj\<cdot>y :: 'a) = cast\<cdot>t\<cdot>y" | |
| 125 | unfolding prj_beta emb_beta | |
| 126 | by (simp add: type_definition.Abs_inverse [OF type]) | |
| 127 | show "ep_pair (emb :: 'a \<rightarrow> udom) prj" | |
| 61169 | 128 | apply standard | 
| 40504 | 129 | apply (simp add: prj_emb) | 
| 130 | apply (simp add: emb_prj cast.below) | |
| 131 | done | |
| 132 |   show "cast\<cdot>DEFL('a) = emb oo (prj :: udom \<rightarrow> 'a)"
 | |
| 133 | by (rule cfun_eqI, simp add: defl emb_prj) | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 134 | qed (simp_all only: liftemb liftprj liftdefl) | 
| 40504 | 135 | |
| 136 | lemma typedef_DEFL: | |
| 137 | assumes "defl \<equiv> (\<lambda>a::'a::pcpo itself. t)" | |
| 138 |   shows "DEFL('a::pcpo) = t"
 | |
| 139 | unfolding assms .. | |
| 140 | ||
| 62175 | 141 | text \<open>Restore original typing constraints.\<close> | 
| 40504 | 142 | |
| 62175 | 143 | setup \<open> | 
| 40504 | 144 | fold Sign.add_const_constraint | 
| 60753 | 145 |    [(@{const_name defl}, SOME @{typ "'a::domain itself \<Rightarrow> udom defl"}),
 | 
| 146 |     (@{const_name emb}, SOME @{typ "'a::domain \<rightarrow> udom"}),
 | |
| 147 |     (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::domain"}),
 | |
| 148 |     (@{const_name liftdefl}, SOME @{typ "'a::predomain itself \<Rightarrow> udom u defl"}),
 | |
| 149 |     (@{const_name liftemb}, SOME @{typ "'a::predomain u \<rightarrow> udom u"}),
 | |
| 150 |     (@{const_name liftprj}, SOME @{typ "udom u \<rightarrow> 'a::predomain u"})]
 | |
| 62175 | 151 | \<close> | 
| 40504 | 152 | |
| 48891 | 153 | ML_file "Tools/domaindef.ML" | 
| 40504 | 154 | |
| 62175 | 155 | subsection \<open>Isomorphic deflations\<close> | 
| 40504 | 156 | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 157 | definition isodefl :: "('a \<rightarrow> 'a) \<Rightarrow> udom defl \<Rightarrow> bool"
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 158 | where "isodefl d t \<longleftrightarrow> cast\<cdot>t = emb oo d oo prj" | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 159 | |
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 160 | definition isodefl' :: "('a::predomain \<rightarrow> 'a) \<Rightarrow> udom u defl \<Rightarrow> bool"
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 161 | where "isodefl' d t \<longleftrightarrow> cast\<cdot>t = liftemb oo u_map\<cdot>d oo liftprj" | 
| 40504 | 162 | |
| 163 | lemma isodeflI: "(\<And>x. cast\<cdot>t\<cdot>x = emb\<cdot>(d\<cdot>(prj\<cdot>x))) \<Longrightarrow> isodefl d t" | |
| 164 | unfolding isodefl_def by (simp add: cfun_eqI) | |
| 165 | ||
| 166 | lemma cast_isodefl: "isodefl d t \<Longrightarrow> cast\<cdot>t = (\<Lambda> x. emb\<cdot>(d\<cdot>(prj\<cdot>x)))" | |
| 167 | unfolding isodefl_def by (simp add: cfun_eqI) | |
| 168 | ||
| 169 | lemma isodefl_strict: "isodefl d t \<Longrightarrow> d\<cdot>\<bottom> = \<bottom>" | |
| 170 | unfolding isodefl_def | |
| 171 | by (drule cfun_fun_cong [where x="\<bottom>"], simp) | |
| 172 | ||
| 173 | lemma isodefl_imp_deflation: | |
| 174 | fixes d :: "'a \<rightarrow> 'a" | |
| 175 | assumes "isodefl d t" shows "deflation d" | |
| 176 | proof | |
| 177 | note assms [unfolded isodefl_def, simp] | |
| 178 | fix x :: 'a | |
| 179 | show "d\<cdot>(d\<cdot>x) = d\<cdot>x" | |
| 180 | using cast.idem [of t "emb\<cdot>x"] by simp | |
| 181 | show "d\<cdot>x \<sqsubseteq> x" | |
| 182 | using cast.below [of t "emb\<cdot>x"] by simp | |
| 183 | qed | |
| 184 | ||
| 185 | lemma isodefl_ID_DEFL: "isodefl (ID :: 'a \<rightarrow> 'a) DEFL('a)"
 | |
| 186 | unfolding isodefl_def by (simp add: cast_DEFL) | |
| 187 | ||
| 188 | lemma isodefl_LIFTDEFL: | |
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 189 |   "isodefl' (ID :: 'a \<rightarrow> 'a) LIFTDEFL('a::predomain)"
 | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 190 | unfolding isodefl'_def by (simp add: cast_liftdefl u_map_ID) | 
| 40504 | 191 | |
| 192 | lemma isodefl_DEFL_imp_ID: "isodefl (d :: 'a \<rightarrow> 'a) DEFL('a) \<Longrightarrow> d = ID"
 | |
| 193 | unfolding isodefl_def | |
| 194 | apply (simp add: cast_DEFL) | |
| 195 | apply (simp add: cfun_eq_iff) | |
| 196 | apply (rule allI) | |
| 197 | apply (drule_tac x="emb\<cdot>x" in spec) | |
| 198 | apply simp | |
| 199 | done | |
| 200 | ||
| 201 | lemma isodefl_bottom: "isodefl \<bottom> \<bottom>" | |
| 202 | unfolding isodefl_def by (simp add: cfun_eq_iff) | |
| 203 | ||
| 204 | lemma adm_isodefl: | |
| 205 | "cont f \<Longrightarrow> cont g \<Longrightarrow> adm (\<lambda>x. isodefl (f x) (g x))" | |
| 206 | unfolding isodefl_def by simp | |
| 207 | ||
| 208 | lemma isodefl_lub: | |
| 209 | assumes "chain d" and "chain t" | |
| 210 | assumes "\<And>i. isodefl (d i) (t i)" | |
| 211 | shows "isodefl (\<Squnion>i. d i) (\<Squnion>i. t i)" | |
| 41529 | 212 | using assms unfolding isodefl_def | 
| 40504 | 213 | by (simp add: contlub_cfun_arg contlub_cfun_fun) | 
| 214 | ||
| 215 | lemma isodefl_fix: | |
| 216 | assumes "\<And>d t. isodefl d t \<Longrightarrow> isodefl (f\<cdot>d) (g\<cdot>t)" | |
| 217 | shows "isodefl (fix\<cdot>f) (fix\<cdot>g)" | |
| 218 | unfolding fix_def2 | |
| 219 | apply (rule isodefl_lub, simp, simp) | |
| 220 | apply (induct_tac i) | |
| 221 | apply (simp add: isodefl_bottom) | |
| 222 | apply (simp add: assms) | |
| 223 | done | |
| 224 | ||
| 225 | lemma isodefl_abs_rep: | |
| 226 | fixes abs and rep and d | |
| 227 |   assumes DEFL: "DEFL('b) = DEFL('a)"
 | |
| 228 | assumes abs_def: "(abs :: 'a \<rightarrow> 'b) \<equiv> prj oo emb" | |
| 229 | assumes rep_def: "(rep :: 'b \<rightarrow> 'a) \<equiv> prj oo emb" | |
| 230 | shows "isodefl d t \<Longrightarrow> isodefl (abs oo d oo rep) t" | |
| 231 | unfolding isodefl_def | |
| 232 | by (simp add: cfun_eq_iff assms prj_emb_prj emb_prj_emb) | |
| 233 | ||
| 41436 | 234 | lemma isodefl'_liftdefl_of: "isodefl d t \<Longrightarrow> isodefl' d (liftdefl_of\<cdot>t)" | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 235 | unfolding isodefl_def isodefl'_def | 
| 41436 | 236 | by (simp add: cast_liftdefl_of u_map_oo liftemb_eq liftprj_eq) | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 237 | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 238 | lemma isodefl_sfun: | 
| 40504 | 239 | "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow> | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 240 | isodefl (sfun_map\<cdot>d1\<cdot>d2) (sfun_defl\<cdot>t1\<cdot>t2)" | 
| 40504 | 241 | apply (rule isodeflI) | 
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 242 | apply (simp add: cast_sfun_defl cast_isodefl) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 243 | apply (simp add: emb_sfun_def prj_sfun_def) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 244 | apply (simp add: sfun_map_map isodefl_strict) | 
| 40504 | 245 | done | 
| 246 | ||
| 247 | lemma isodefl_ssum: | |
| 248 | "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow> | |
| 249 | isodefl (ssum_map\<cdot>d1\<cdot>d2) (ssum_defl\<cdot>t1\<cdot>t2)" | |
| 250 | apply (rule isodeflI) | |
| 251 | apply (simp add: cast_ssum_defl cast_isodefl) | |
| 252 | apply (simp add: emb_ssum_def prj_ssum_def) | |
| 253 | apply (simp add: ssum_map_map isodefl_strict) | |
| 254 | done | |
| 255 | ||
| 256 | lemma isodefl_sprod: | |
| 257 | "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow> | |
| 258 | isodefl (sprod_map\<cdot>d1\<cdot>d2) (sprod_defl\<cdot>t1\<cdot>t2)" | |
| 259 | apply (rule isodeflI) | |
| 260 | apply (simp add: cast_sprod_defl cast_isodefl) | |
| 261 | apply (simp add: emb_sprod_def prj_sprod_def) | |
| 262 | apply (simp add: sprod_map_map isodefl_strict) | |
| 263 | done | |
| 264 | ||
| 41297 | 265 | lemma isodefl_prod: | 
| 40504 | 266 | "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow> | 
| 41297 | 267 | isodefl (prod_map\<cdot>d1\<cdot>d2) (prod_defl\<cdot>t1\<cdot>t2)" | 
| 40504 | 268 | apply (rule isodeflI) | 
| 269 | apply (simp add: cast_prod_defl cast_isodefl) | |
| 270 | apply (simp add: emb_prod_def prj_prod_def) | |
| 41297 | 271 | apply (simp add: prod_map_map cfcomp1) | 
| 40504 | 272 | done | 
| 273 | ||
| 274 | lemma isodefl_u: | |
| 41437 | 275 | "isodefl d t \<Longrightarrow> isodefl (u_map\<cdot>d) (u_defl\<cdot>t)" | 
| 40504 | 276 | apply (rule isodeflI) | 
| 41437 | 277 | apply (simp add: cast_u_defl cast_isodefl) | 
| 278 | apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq u_map_map) | |
| 279 | done | |
| 280 | ||
| 281 | lemma isodefl_u_liftdefl: | |
| 282 | "isodefl' d t \<Longrightarrow> isodefl (u_map\<cdot>d) (u_liftdefl\<cdot>t)" | |
| 283 | apply (rule isodeflI) | |
| 284 | apply (simp add: cast_u_liftdefl isodefl'_def) | |
| 40504 | 285 | apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq) | 
| 286 | done | |
| 287 | ||
| 288 | lemma encode_prod_u_map: | |
| 41297 | 289 | "encode_prod_u\<cdot>(u_map\<cdot>(prod_map\<cdot>f\<cdot>g)\<cdot>(decode_prod_u\<cdot>x)) | 
| 40504 | 290 | = sprod_map\<cdot>(u_map\<cdot>f)\<cdot>(u_map\<cdot>g)\<cdot>x" | 
| 291 | unfolding encode_prod_u_def decode_prod_u_def | |
| 292 | apply (case_tac x, simp, rename_tac a b) | |
| 293 | apply (case_tac a, simp, case_tac b, simp, simp) | |
| 294 | done | |
| 295 | ||
| 41297 | 296 | lemma isodefl_prod_u: | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 297 | assumes "isodefl' d1 t1" and "isodefl' d2 t2" | 
| 41297 | 298 | shows "isodefl' (prod_map\<cdot>d1\<cdot>d2) (prod_liftdefl\<cdot>t1\<cdot>t2)" | 
| 41292 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 299 | using assms unfolding isodefl'_def | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 300 | unfolding liftemb_prod_def liftprj_prod_def | 
| 
2b7bc8d9fd6e
use deflations over type 'udom u' to represent predomains;
 huffman parents: 
41290diff
changeset | 301 | by (simp add: cast_prod_liftdefl cfcomp1 encode_prod_u_map sprod_map_map) | 
| 40504 | 302 | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 303 | lemma encode_cfun_map: | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 304 | "encode_cfun\<cdot>(cfun_map\<cdot>f\<cdot>g\<cdot>(decode_cfun\<cdot>x)) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 305 | = sfun_map\<cdot>(u_map\<cdot>f)\<cdot>g\<cdot>x" | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 306 | unfolding encode_cfun_def decode_cfun_def | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 307 | apply (simp add: sfun_eq_iff cfun_map_def sfun_map_def) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 308 | apply (rule cfun_eqI, rename_tac y, case_tac y, simp_all) | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 309 | done | 
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 310 | |
| 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 311 | lemma isodefl_cfun: | 
| 40830 | 312 | assumes "isodefl (u_map\<cdot>d1) t1" and "isodefl d2 t2" | 
| 313 | shows "isodefl (cfun_map\<cdot>d1\<cdot>d2) (sfun_defl\<cdot>t1\<cdot>t2)" | |
| 314 | using isodefl_sfun [OF assms] unfolding isodefl_def | |
| 315 | by (simp add: emb_cfun_def prj_cfun_def cfcomp1 encode_cfun_map) | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 316 | |
| 62175 | 317 | subsection \<open>Setting up the domain package\<close> | 
| 40504 | 318 | |
| 57945 
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
 wenzelm parents: 
48891diff
changeset | 319 | named_theorems domain_defl_simps "theorems like DEFL('a t) = t_defl$DEFL('a)"
 | 
| 59028 | 320 | and domain_isodefl "theorems like isodefl d t ==> isodefl (foo_map$d) (foo_defl$t)" | 
| 57945 
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
 wenzelm parents: 
48891diff
changeset | 321 | |
| 48891 | 322 | ML_file "Tools/Domain/domain_isomorphism.ML" | 
| 323 | ML_file "Tools/Domain/domain_axioms.ML" | |
| 324 | ML_file "Tools/Domain/domain.ML" | |
| 40504 | 325 | |
| 326 | lemmas [domain_defl_simps] = | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 327 | DEFL_cfun DEFL_sfun DEFL_ssum DEFL_sprod DEFL_prod DEFL_u | 
| 41437 | 328 | liftdefl_eq LIFTDEFL_prod u_liftdefl_liftdefl_of | 
| 40504 | 329 | |
| 330 | lemmas [domain_map_ID] = | |
| 41297 | 331 | cfun_map_ID sfun_map_ID ssum_map_ID sprod_map_ID prod_map_ID u_map_ID | 
| 40504 | 332 | |
| 333 | lemmas [domain_isodefl] = | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 334 | isodefl_u isodefl_sfun isodefl_ssum isodefl_sprod | 
| 41436 | 335 | isodefl_cfun isodefl_prod isodefl_prod_u isodefl'_liftdefl_of | 
| 41437 | 336 | isodefl_u_liftdefl | 
| 40504 | 337 | |
| 338 | lemmas [domain_deflation] = | |
| 40592 
f432973ce0f6
move strict function type into main HOLCF; instance cfun :: (predomain, domain) domain
 huffman parents: 
40575diff
changeset | 339 | deflation_cfun_map deflation_sfun_map deflation_ssum_map | 
| 41297 | 340 | deflation_sprod_map deflation_prod_map deflation_u_map | 
| 40504 | 341 | |
| 62175 | 342 | setup \<open> | 
| 40737 
2037021f034f
remove map function names from domain package theory data
 huffman parents: 
40592diff
changeset | 343 | fold Domain_Take_Proofs.add_rec_type | 
| 
2037021f034f
remove map function names from domain package theory data
 huffman parents: 
40592diff
changeset | 344 |     [(@{type_name cfun}, [true, true]),
 | 
| 
2037021f034f
remove map function names from domain package theory data
 huffman parents: 
40592diff
changeset | 345 |      (@{type_name "sfun"}, [true, true]),
 | 
| 
2037021f034f
remove map function names from domain package theory data
 huffman parents: 
40592diff
changeset | 346 |      (@{type_name ssum}, [true, true]),
 | 
| 
2037021f034f
remove map function names from domain package theory data
 huffman parents: 
40592diff
changeset | 347 |      (@{type_name sprod}, [true, true]),
 | 
| 
2037021f034f
remove map function names from domain package theory data
 huffman parents: 
40592diff
changeset | 348 |      (@{type_name prod}, [true, true]),
 | 
| 
2037021f034f
remove map function names from domain package theory data
 huffman parents: 
40592diff
changeset | 349 |      (@{type_name "u"}, [true])]
 | 
| 62175 | 350 | \<close> | 
| 40504 | 351 | |
| 15741 | 352 | end |