author | paulson |
Wed, 13 Feb 2002 10:44:07 +0100 | |
changeset 12883 | 3f86b73d592d |
parent 12836 | 5ef96e63fba6 |
child 13339 | 0f89104dd377 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: ZF/ZF.ML |
0 | 2 |
ID: $Id$ |
1461 | 3 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory |
435 | 4 |
Copyright 1994 University of Cambridge |
0 | 5 |
|
6 |
Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
9 |
(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *) |
5137 | 10 |
Goal "[| b:A; a=b |] ==> a:A"; |
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
11 |
by (etac ssubst 1); |
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
12 |
by (assume_tac 1); |
9907 | 13 |
qed "subst_elem"; |
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
14 |
|
2469 | 15 |
|
0 | 16 |
(*** Bounded universal quantifier ***) |
17 |
||
9211 | 18 |
val prems= Goalw [Ball_def] |
19 |
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"; |
|
20 |
by (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ; |
|
21 |
qed "ballI"; |
|
0 | 22 |
|
9211 | 23 |
Goalw [Ball_def] "[| ALL x:A. P(x); x: A |] ==> P(x)"; |
24 |
by (etac (spec RS mp) 1); |
|
25 |
by (assume_tac 1) ; |
|
26 |
qed "bspec"; |
|
0 | 27 |
|
9211 | 28 |
val major::prems= Goalw [Ball_def] |
29 |
"[| ALL x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q"; |
|
30 |
by (rtac (major RS allE) 1); |
|
31 |
by (REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ; |
|
32 |
qed "ballE"; |
|
0 | 33 |
|
34 |
(*Used in the datatype package*) |
|
9180 | 35 |
Goal "[| x: A; ALL x:A. P(x) |] ==> P(x)"; |
36 |
by (REPEAT (ares_tac [bspec] 1)) ; |
|
37 |
qed "rev_bspec"; |
|
0 | 38 |
|
39 |
(*Instantiates x first: better for automatic theorem proving?*) |
|
9180 | 40 |
val major::prems= Goal |
41 |
"[| ALL x:A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q"; |
|
42 |
by (rtac (major RS ballE) 1); |
|
43 |
by (REPEAT (eresolve_tac prems 1)) ; |
|
44 |
qed "rev_ballE"; |
|
0 | 45 |
|
2469 | 46 |
AddSIs [ballI]; |
47 |
AddEs [rev_ballE]; |
|
48 |
||
0 | 49 |
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*) |
50 |
val ball_tac = dtac bspec THEN' assume_tac; |
|
51 |
||
52 |
(*Trival rewrite rule; (ALL x:A.P)<->P holds only if A is nonempty!*) |
|
9180 | 53 |
Goal "(ALL x:A. P) <-> ((EX x. x:A) --> P)"; |
54 |
by (simp_tac (simpset() addsimps [Ball_def]) 1) ; |
|
55 |
qed "ball_triv"; |
|
3425 | 56 |
Addsimps [ball_triv]; |
0 | 57 |
|
58 |
(*Congruence rule for rewriting*) |
|
9211 | 59 |
val prems= Goalw [Ball_def] |
60 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> Ball(A,P) <-> Ball(A',P')"; |
|
61 |
by (simp_tac (FOL_ss addsimps prems) 1) ; |
|
62 |
qed "ball_cong"; |
|
0 | 63 |
|
64 |
(*** Bounded existential quantifier ***) |
|
65 |
||
6287 | 66 |
Goalw [Bex_def] "[| P(x); x: A |] ==> EX x:A. P(x)"; |
67 |
by (Blast_tac 1); |
|
68 |
qed "bexI"; |
|
69 |
||
70 |
(*The best argument order when there is only one x:A*) |
|
71 |
Goalw [Bex_def] "[| x:A; P(x) |] ==> EX x:A. P(x)"; |
|
72 |
by (Blast_tac 1); |
|
73 |
qed "rev_bexI"; |
|
0 | 74 |
|
75 |
(*Not of the general form for such rules; ~EX has become ALL~ *) |
|
9180 | 76 |
val prems= Goal "[| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A. P(x)"; |
77 |
by (rtac classical 1); |
|
78 |
by (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ; |
|
79 |
qed "bexCI"; |
|
0 | 80 |
|
9211 | 81 |
val major::prems= Goalw [Bex_def] |
0 | 82 |
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q \ |
9211 | 83 |
\ |] ==> Q"; |
84 |
by (rtac (major RS exE) 1); |
|
85 |
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ; |
|
86 |
qed "bexE"; |
|
0 | 87 |
|
2469 | 88 |
AddIs [bexI]; |
89 |
AddSEs [bexE]; |
|
90 |
||
0 | 91 |
(*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*) |
9180 | 92 |
Goal "(EX x:A. P) <-> ((EX x. x:A) & P)"; |
93 |
by (simp_tac (simpset() addsimps [Bex_def]) 1) ; |
|
94 |
qed "bex_triv"; |
|
3425 | 95 |
Addsimps [bex_triv]; |
0 | 96 |
|
9211 | 97 |
val prems= Goalw [Bex_def] |
0 | 98 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) \ |
9211 | 99 |
\ |] ==> Bex(A,P) <-> Bex(A',P')"; |
100 |
by (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ; |
|
101 |
qed "bex_cong"; |
|
0 | 102 |
|
2469 | 103 |
Addcongs [ball_cong, bex_cong]; |
104 |
||
105 |
||
0 | 106 |
(*** Rules for subsets ***) |
107 |
||
9211 | 108 |
val prems= Goalw [subset_def] |
109 |
"(!!x. x:A ==> x:B) ==> A <= B"; |
|
110 |
by (REPEAT (ares_tac (prems @ [ballI]) 1)) ; |
|
111 |
qed "subsetI"; |
|
0 | 112 |
|
113 |
(*Rule in Modus Ponens style [was called subsetE] *) |
|
9211 | 114 |
Goalw [subset_def] "[| A <= B; c:A |] ==> c:B"; |
115 |
by (etac bspec 1); |
|
116 |
by (assume_tac 1) ; |
|
117 |
qed "subsetD"; |
|
0 | 118 |
|
119 |
(*Classical elimination rule*) |
|
9211 | 120 |
val major::prems= Goalw [subset_def] |
121 |
"[| A <= B; c~:A ==> P; c:B ==> P |] ==> P"; |
|
122 |
by (rtac (major RS ballE) 1); |
|
123 |
by (REPEAT (eresolve_tac prems 1)) ; |
|
124 |
qed "subsetCE"; |
|
0 | 125 |
|
2469 | 126 |
AddSIs [subsetI]; |
127 |
AddEs [subsetCE, subsetD]; |
|
128 |
||
129 |
||
0 | 130 |
(*Takes assumptions A<=B; c:A and creates the assumption c:B *) |
131 |
val set_mp_tac = dtac subsetD THEN' assume_tac; |
|
132 |
||
133 |
(*Sometimes useful with premises in this order*) |
|
9180 | 134 |
Goal "[| c:A; A<=B |] ==> c:B"; |
135 |
by (Blast_tac 1); |
|
136 |
qed "rev_subsetD"; |
|
0 | 137 |
|
6111 | 138 |
(*Converts A<=B to x:A ==> x:B*) |
139 |
fun impOfSubs th = th RSN (2, rev_subsetD); |
|
140 |
||
9180 | 141 |
Goal "[| A <= B; c ~: B |] ==> c ~: A"; |
142 |
by (Blast_tac 1); |
|
143 |
qed "contra_subsetD"; |
|
1889 | 144 |
|
9180 | 145 |
Goal "[| c ~: B; A <= B |] ==> c ~: A"; |
146 |
by (Blast_tac 1); |
|
147 |
qed "rev_contra_subsetD"; |
|
1889 | 148 |
|
9180 | 149 |
Goal "A <= A"; |
150 |
by (Blast_tac 1); |
|
151 |
qed "subset_refl"; |
|
0 | 152 |
|
2469 | 153 |
Addsimps [subset_refl]; |
154 |
||
9180 | 155 |
Goal "[| A<=B; B<=C |] ==> A<=C"; |
156 |
by (Blast_tac 1); |
|
157 |
qed "subset_trans"; |
|
0 | 158 |
|
435 | 159 |
(*Useful for proving A<=B by rewriting in some cases*) |
9211 | 160 |
Goalw [subset_def,Ball_def] |
161 |
"A<=B <-> (ALL x. x:A --> x:B)"; |
|
162 |
by (rtac iff_refl 1) ; |
|
163 |
qed "subset_iff"; |
|
435 | 164 |
|
0 | 165 |
|
166 |
(*** Rules for equality ***) |
|
167 |
||
168 |
(*Anti-symmetry of the subset relation*) |
|
9180 | 169 |
Goal "[| A <= B; B <= A |] ==> A = B"; |
170 |
by (REPEAT (ares_tac [conjI, extension RS iffD2] 1)) ; |
|
171 |
qed "equalityI"; |
|
0 | 172 |
|
2493 | 173 |
AddIs [equalityI]; |
174 |
||
9180 | 175 |
val [prem] = Goal "(!!x. x:A <-> x:B) ==> A = B"; |
176 |
by (rtac equalityI 1); |
|
177 |
by (REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ; |
|
178 |
qed "equality_iffI"; |
|
0 | 179 |
|
2469 | 180 |
bind_thm ("equalityD1", extension RS iffD1 RS conjunct1); |
181 |
bind_thm ("equalityD2", extension RS iffD1 RS conjunct2); |
|
0 | 182 |
|
9180 | 183 |
val prems = Goal "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"; |
184 |
by (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ; |
|
185 |
qed "equalityE"; |
|
0 | 186 |
|
9180 | 187 |
val major::prems= Goal |
188 |
"[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P"; |
|
189 |
by (rtac (major RS equalityE) 1); |
|
190 |
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ; |
|
191 |
qed "equalityCE"; |
|
0 | 192 |
|
193 |
(*Lemma for creating induction formulae -- for "pattern matching" on p |
|
194 |
To make the induction hypotheses usable, apply "spec" or "bspec" to |
|
195 |
put universal quantifiers over the free variables in p. |
|
196 |
Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*) |
|
9180 | 197 |
val prems = Goal "[| p: A; !!z. z: A ==> p=z --> R |] ==> R"; |
198 |
by (rtac mp 1); |
|
199 |
by (REPEAT (resolve_tac (refl::prems) 1)) ; |
|
200 |
qed "setup_induction"; |
|
0 | 201 |
|
202 |
||
203 |
(*** Rules for Replace -- the derived form of replacement ***) |
|
204 |
||
9211 | 205 |
Goalw [Replace_def] |
206 |
"b : {y. x:A, P(x,y)} <-> (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))"; |
|
207 |
by (rtac (replacement RS iff_trans) 1); |
|
208 |
by (REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1 |
|
209 |
ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ; |
|
210 |
qed "Replace_iff"; |
|
0 | 211 |
|
212 |
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *) |
|
9180 | 213 |
val prems = Goal |
485 | 214 |
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> \ |
9180 | 215 |
\ b : {y. x:A, P(x,y)}"; |
216 |
by (rtac (Replace_iff RS iffD2) 1); |
|
217 |
by (REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ; |
|
218 |
qed "ReplaceI"; |
|
0 | 219 |
|
220 |
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) |
|
9180 | 221 |
val prems = Goal |
0 | 222 |
"[| b : {y. x:A, P(x,y)}; \ |
223 |
\ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R \ |
|
9180 | 224 |
\ |] ==> R"; |
225 |
by (rtac (Replace_iff RS iffD1 RS bexE) 1); |
|
226 |
by (etac conjE 2); |
|
227 |
by (REPEAT (ares_tac prems 1)) ; |
|
228 |
qed "ReplaceE"; |
|
0 | 229 |
|
485 | 230 |
(*As above but without the (generally useless) 3rd assumption*) |
9180 | 231 |
val major::prems = Goal |
485 | 232 |
"[| b : {y. x:A, P(x,y)}; \ |
233 |
\ !!x. [| x: A; P(x,b) |] ==> R \ |
|
9180 | 234 |
\ |] ==> R"; |
235 |
by (rtac (major RS ReplaceE) 1); |
|
236 |
by (REPEAT (ares_tac prems 1)) ; |
|
237 |
qed "ReplaceE2"; |
|
485 | 238 |
|
2469 | 239 |
AddIs [ReplaceI]; |
240 |
AddSEs [ReplaceE2]; |
|
241 |
||
9180 | 242 |
val prems = Goal |
0 | 243 |
"[| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \ |
9180 | 244 |
\ Replace(A,P) = Replace(B,Q)"; |
245 |
by (rtac equalityI 1); |
|
246 |
by (REPEAT |
|
247 |
(eresolve_tac ((prems RL [subst, ssubst])@[asm_rl, ReplaceE, spec RS mp]) 1 ORELSE resolve_tac [subsetI, ReplaceI] 1 |
|
248 |
ORELSE (resolve_tac (prems RL [iffD1,iffD2]) 1 THEN assume_tac 2))); |
|
249 |
qed "Replace_cong"; |
|
0 | 250 |
|
2469 | 251 |
Addcongs [Replace_cong]; |
252 |
||
0 | 253 |
(*** Rules for RepFun ***) |
254 |
||
9211 | 255 |
Goalw [RepFun_def] "a : A ==> f(a) : {f(x). x:A}"; |
256 |
by (REPEAT (ares_tac [ReplaceI,refl] 1)) ; |
|
257 |
qed "RepFunI"; |
|
0 | 258 |
|
120 | 259 |
(*Useful for coinduction proofs*) |
9180 | 260 |
Goal "[| b=f(a); a : A |] ==> b : {f(x). x:A}"; |
261 |
by (etac ssubst 1); |
|
262 |
by (etac RepFunI 1) ; |
|
263 |
qed "RepFun_eqI"; |
|
0 | 264 |
|
9211 | 265 |
val major::prems= Goalw [RepFun_def] |
0 | 266 |
"[| b : {f(x). x:A}; \ |
267 |
\ !!x.[| x:A; b=f(x) |] ==> P |] ==> \ |
|
9211 | 268 |
\ P"; |
269 |
by (rtac (major RS ReplaceE) 1); |
|
270 |
by (REPEAT (ares_tac prems 1)) ; |
|
271 |
qed "RepFunE"; |
|
0 | 272 |
|
2716 | 273 |
AddIs [RepFun_eqI]; |
2469 | 274 |
AddSEs [RepFunE]; |
275 |
||
9211 | 276 |
val prems= Goalw [RepFun_def] |
277 |
"[| A=B; !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"; |
|
278 |
by (simp_tac (simpset() addsimps prems) 1) ; |
|
279 |
qed "RepFun_cong"; |
|
2469 | 280 |
|
281 |
Addcongs [RepFun_cong]; |
|
0 | 282 |
|
9211 | 283 |
Goalw [Bex_def] "b : {f(x). x:A} <-> (EX x:A. b=f(x))"; |
284 |
by (Blast_tac 1); |
|
285 |
qed "RepFun_iff"; |
|
485 | 286 |
|
5067 | 287 |
Goal "{x. x:A} = A"; |
2877 | 288 |
by (Blast_tac 1); |
2469 | 289 |
qed "triv_RepFun"; |
290 |
||
291 |
Addsimps [RepFun_iff, triv_RepFun]; |
|
0 | 292 |
|
293 |
(*** Rules for Collect -- forming a subset by separation ***) |
|
294 |
||
295 |
(*Separation is derivable from Replacement*) |
|
9211 | 296 |
Goalw [Collect_def] "a : {x:A. P(x)} <-> a:A & P(a)"; |
297 |
by (Blast_tac 1); |
|
298 |
qed "separation"; |
|
2469 | 299 |
|
300 |
Addsimps [separation]; |
|
0 | 301 |
|
9180 | 302 |
Goal "[| a:A; P(a) |] ==> a : {x:A. P(x)}"; |
303 |
by (Asm_simp_tac 1); |
|
304 |
qed "CollectI"; |
|
305 |
||
306 |
val prems = Goal |
|
307 |
"[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> R |] ==> R"; |
|
308 |
by (rtac (separation RS iffD1 RS conjE) 1); |
|
309 |
by (REPEAT (ares_tac prems 1)) ; |
|
310 |
qed "CollectE"; |
|
0 | 311 |
|
9180 | 312 |
Goal "a : {x:A. P(x)} ==> a:A"; |
313 |
by (etac CollectE 1); |
|
314 |
by (assume_tac 1) ; |
|
315 |
qed "CollectD1"; |
|
0 | 316 |
|
9180 | 317 |
Goal "a : {x:A. P(x)} ==> P(a)"; |
318 |
by (etac CollectE 1); |
|
319 |
by (assume_tac 1) ; |
|
320 |
qed "CollectD2"; |
|
0 | 321 |
|
9211 | 322 |
val prems= Goalw [Collect_def] |
323 |
"[| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)"; |
|
324 |
by (simp_tac (simpset() addsimps prems) 1) ; |
|
325 |
qed "Collect_cong"; |
|
2469 | 326 |
|
327 |
AddSIs [CollectI]; |
|
328 |
AddSEs [CollectE]; |
|
329 |
Addcongs [Collect_cong]; |
|
0 | 330 |
|
331 |
(*** Rules for Unions ***) |
|
332 |
||
2469 | 333 |
Addsimps [Union_iff]; |
334 |
||
0 | 335 |
(*The order of the premises presupposes that C is rigid; A may be flexible*) |
9180 | 336 |
Goal "[| B: C; A: B |] ==> A: Union(C)"; |
337 |
by (Simp_tac 1); |
|
338 |
by (Blast_tac 1) ; |
|
339 |
qed "UnionI"; |
|
0 | 340 |
|
9180 | 341 |
val prems = Goal "[| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R"; |
342 |
by (resolve_tac [Union_iff RS iffD1 RS bexE] 1); |
|
343 |
by (REPEAT (ares_tac prems 1)) ; |
|
344 |
qed "UnionE"; |
|
0 | 345 |
|
346 |
(*** Rules for Unions of families ***) |
|
347 |
(* UN x:A. B(x) abbreviates Union({B(x). x:A}) *) |
|
348 |
||
9211 | 349 |
Goalw [Bex_def] "b : (UN x:A. B(x)) <-> (EX x:A. b : B(x))"; |
350 |
by (Simp_tac 1); |
|
351 |
by (Blast_tac 1) ; |
|
352 |
qed "UN_iff"; |
|
2469 | 353 |
|
354 |
Addsimps [UN_iff]; |
|
485 | 355 |
|
0 | 356 |
(*The order of the premises presupposes that A is rigid; b may be flexible*) |
9180 | 357 |
Goal "[| a: A; b: B(a) |] ==> b: (UN x:A. B(x))"; |
358 |
by (Simp_tac 1); |
|
359 |
by (Blast_tac 1) ; |
|
360 |
qed "UN_I"; |
|
0 | 361 |
|
9180 | 362 |
val major::prems= Goal |
363 |
"[| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R"; |
|
364 |
by (rtac (major RS UnionE) 1); |
|
365 |
by (REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ; |
|
366 |
qed "UN_E"; |
|
0 | 367 |
|
9180 | 368 |
val prems = Goal |
369 |
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (UN x:A. C(x)) = (UN x:B. D(x))"; |
|
370 |
by (simp_tac (simpset() addsimps prems) 1) ; |
|
371 |
qed "UN_cong"; |
|
2469 | 372 |
|
373 |
(*No "Addcongs [UN_cong]" because UN is a combination of constants*) |
|
374 |
||
375 |
(* UN_E appears before UnionE so that it is tried first, to avoid expensive |
|
376 |
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge |
|
377 |
the search space.*) |
|
378 |
AddIs [UnionI]; |
|
379 |
AddSEs [UN_E]; |
|
380 |
AddSEs [UnionE]; |
|
381 |
||
382 |
||
383 |
(*** Rules for Inter ***) |
|
384 |
||
385 |
(*Not obviously useful towards proving InterI, InterD, InterE*) |
|
9211 | 386 |
Goalw [Inter_def,Ball_def] |
387 |
"A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)"; |
|
388 |
by (Simp_tac 1); |
|
389 |
by (Blast_tac 1) ; |
|
390 |
qed "Inter_iff"; |
|
435 | 391 |
|
2469 | 392 |
(* Intersection is well-behaved only if the family is non-empty! *) |
9180 | 393 |
val prems = Goal |
394 |
"[| !!x. x: C ==> A: x; EX c. c:C |] ==> A : Inter(C)"; |
|
395 |
by (simp_tac (simpset() addsimps [Inter_iff]) 1); |
|
396 |
by (blast_tac (claset() addIs prems) 1) ; |
|
397 |
qed "InterI"; |
|
2469 | 398 |
|
399 |
(*A "destruct" rule -- every B in C contains A as an element, but |
|
400 |
A:B can hold when B:C does not! This rule is analogous to "spec". *) |
|
9211 | 401 |
Goalw [Inter_def] "[| A : Inter(C); B : C |] ==> A : B"; |
402 |
by (Blast_tac 1); |
|
403 |
qed "InterD"; |
|
2469 | 404 |
|
405 |
(*"Classical" elimination rule -- does not require exhibiting B:C *) |
|
9211 | 406 |
val major::prems= Goalw [Inter_def] |
407 |
"[| A : Inter(C); B~:C ==> R; A:B ==> R |] ==> R"; |
|
408 |
by (rtac (major RS CollectD2 RS ballE) 1); |
|
409 |
by (REPEAT (eresolve_tac prems 1)) ; |
|
410 |
qed "InterE"; |
|
2469 | 411 |
|
412 |
AddSIs [InterI]; |
|
2716 | 413 |
AddEs [InterD, InterE]; |
0 | 414 |
|
415 |
(*** Rules for Intersections of families ***) |
|
416 |
(* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *) |
|
417 |
||
9211 | 418 |
Goalw [Inter_def] "b : (INT x:A. B(x)) <-> (ALL x:A. b : B(x)) & (EX x. x:A)"; |
419 |
by (Simp_tac 1); |
|
420 |
by (Best_tac 1) ; |
|
421 |
qed "INT_iff"; |
|
485 | 422 |
|
9180 | 423 |
val prems = Goal |
424 |
"[| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))"; |
|
425 |
by (blast_tac (claset() addIs prems) 1); |
|
426 |
qed "INT_I"; |
|
0 | 427 |
|
9180 | 428 |
Goal "[| b : (INT x:A. B(x)); a: A |] ==> b : B(a)"; |
429 |
by (Blast_tac 1); |
|
430 |
qed "INT_E"; |
|
0 | 431 |
|
9180 | 432 |
val prems = Goal |
433 |
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (INT x:A. C(x)) = (INT x:B. D(x))"; |
|
434 |
by (simp_tac (simpset() addsimps prems) 1) ; |
|
435 |
qed "INT_cong"; |
|
2469 | 436 |
|
437 |
(*No "Addcongs [INT_cong]" because INT is a combination of constants*) |
|
435 | 438 |
|
0 | 439 |
|
440 |
(*** Rules for Powersets ***) |
|
441 |
||
9180 | 442 |
Goal "A <= B ==> A : Pow(B)"; |
443 |
by (etac (Pow_iff RS iffD2) 1) ; |
|
444 |
qed "PowI"; |
|
0 | 445 |
|
9180 | 446 |
Goal "A : Pow(B) ==> A<=B"; |
447 |
by (etac (Pow_iff RS iffD1) 1) ; |
|
448 |
qed "PowD"; |
|
0 | 449 |
|
12836 | 450 |
AddIffs [Pow_iff]; |
2469 | 451 |
|
0 | 452 |
|
453 |
(*** Rules for the empty set ***) |
|
454 |
||
455 |
(*The set {x:0.False} is empty; by foundation it equals 0 |
|
456 |
See Suppes, page 21.*) |
|
9180 | 457 |
Goal "a ~: 0"; |
458 |
by (cut_facts_tac [foundation] 1); |
|
459 |
by (best_tac (claset() addDs [equalityD2]) 1) ; |
|
460 |
qed "not_mem_empty"; |
|
2469 | 461 |
|
462 |
bind_thm ("emptyE", not_mem_empty RS notE); |
|
463 |
||
464 |
Addsimps [not_mem_empty]; |
|
465 |
AddSEs [emptyE]; |
|
0 | 466 |
|
9180 | 467 |
Goal "0 <= A"; |
468 |
by (Blast_tac 1); |
|
469 |
qed "empty_subsetI"; |
|
2469 | 470 |
|
471 |
Addsimps [empty_subsetI]; |
|
0 | 472 |
|
9180 | 473 |
val prems = Goal "[| !!y. y:A ==> False |] ==> A=0"; |
474 |
by (blast_tac (claset() addDs prems) 1) ; |
|
475 |
qed "equals0I"; |
|
0 | 476 |
|
9180 | 477 |
Goal "A=0 ==> a ~: A"; |
478 |
by (Blast_tac 1); |
|
479 |
qed "equals0D"; |
|
0 | 480 |
|
5467 | 481 |
AddDs [equals0D, sym RS equals0D]; |
5265
9d1d4c43c76d
Disjointness reasoning by AddEs [equals0E, sym RS equals0E]
paulson
parents:
5242
diff
changeset
|
482 |
|
9180 | 483 |
Goal "a:A ==> A ~= 0"; |
484 |
by (Blast_tac 1); |
|
485 |
qed "not_emptyI"; |
|
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
486 |
|
9180 | 487 |
val [major,minor]= Goal "[| A ~= 0; !!x. x:A ==> R |] ==> R"; |
488 |
by (rtac ([major, equals0I] MRS swap) 1); |
|
489 |
by (swap_res_tac [minor] 1); |
|
490 |
by (assume_tac 1) ; |
|
491 |
qed "not_emptyE"; |
|
825
76d9575950f2
Added Krzysztof's theorems subst_elem, not_emptyI, not_emptyE
lcp
parents:
775
diff
changeset
|
492 |
|
0 | 493 |
|
748 | 494 |
(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***) |
495 |
||
496 |
val cantor_cs = FOL_cs (*precisely the rules needed for the proof*) |
|
497 |
addSIs [ballI, CollectI, PowI, subsetI] addIs [bexI] |
|
498 |
addSEs [CollectE, equalityCE]; |
|
499 |
||
500 |
(*The search is undirected; similar proof attempts may fail. |
|
501 |
b represents ANY map, such as (lam x:A.b(x)): A->Pow(A). *) |
|
9180 | 502 |
Goal "EX S: Pow(A). ALL x:A. b(x) ~= S"; |
503 |
by (best_tac cantor_cs 1); |
|
504 |
qed "cantor"; |
|
748 | 505 |
|
9907 | 506 |
(*Lemma for the inductive definition in theory Zorn*) |
9180 | 507 |
Goal "Y : Pow(Pow(A)) ==> Union(Y) : Pow(A)"; |
508 |
by (Blast_tac 1); |
|
509 |
qed "Union_in_Pow"; |
|
1902
e349b91cf197
Added function for storing default claset in theory.
berghofe
parents:
1889
diff
changeset
|
510 |
|
9907 | 511 |
Goal "(!!x. x:A ==> P(x)) == Trueprop (ALL x:A. P(x))"; |
11766 | 512 |
by (simp_tac (simpset () addsimps [Ball_def, thm "atomize_all", thm "atomize_imp"]) 1); |
513 |
qed "atomize_ball"; |