19203
|
1 |
(* Title: HOL/ZF/Zet.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Steven Obua
|
|
4 |
|
|
5 |
Introduces a type 'a zet of ZF representable sets.
|
|
6 |
See "Partizan Games in Isabelle/HOLZF", available from http://www4.in.tum.de/~obua/partizan
|
|
7 |
*)
|
|
8 |
|
|
9 |
theory Zet
|
|
10 |
imports HOLZF
|
|
11 |
begin
|
|
12 |
|
|
13 |
typedef 'a zet = "{A :: 'a set | A f z. inj_on f A \<and> f ` A \<subseteq> explode z}"
|
|
14 |
by blast
|
|
15 |
|
|
16 |
constdefs
|
|
17 |
zin :: "'a \<Rightarrow> 'a zet \<Rightarrow> bool"
|
|
18 |
"zin x A == x \<in> (Rep_zet A)"
|
|
19 |
|
|
20 |
lemma zet_ext_eq: "(A = B) = (! x. zin x A = zin x B)"
|
|
21 |
by (auto simp add: Rep_zet_inject[symmetric] zin_def)
|
|
22 |
|
|
23 |
constdefs
|
|
24 |
zimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a zet \<Rightarrow> 'b zet"
|
|
25 |
"zimage f A == Abs_zet (image f (Rep_zet A))"
|
|
26 |
|
|
27 |
lemma zet_def': "zet = {A :: 'a set | A f z. inj_on f A \<and> f ` A = explode z}"
|
|
28 |
apply (rule set_ext)
|
|
29 |
apply (auto simp add: zet_def)
|
|
30 |
apply (rule_tac x=f in exI)
|
|
31 |
apply auto
|
|
32 |
apply (rule_tac x="Sep z (\<lambda> y. y \<in> (f ` x))" in exI)
|
|
33 |
apply (auto simp add: explode_def Sep)
|
|
34 |
done
|
|
35 |
|
|
36 |
lemma image_Inv_f_f: "inj_on f B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (Inv B f) ` f ` A = A"
|
|
37 |
apply (rule set_ext)
|
|
38 |
apply (auto simp add: Inv_f_f image_def)
|
|
39 |
apply (rule_tac x="f x" in exI)
|
|
40 |
apply (auto simp add: Inv_f_f)
|
|
41 |
done
|
|
42 |
|
|
43 |
lemma image_zet_rep: "A \<in> zet \<Longrightarrow> ? z . g ` A = explode z"
|
|
44 |
apply (auto simp add: zet_def')
|
|
45 |
apply (rule_tac x="Repl z (g o (Inv A f))" in exI)
|
|
46 |
apply (simp add: explode_Repl_eq)
|
|
47 |
apply (subgoal_tac "explode z = f ` A")
|
|
48 |
apply (simp_all add: comp_image_eq image_Inv_f_f)
|
|
49 |
done
|
|
50 |
|
|
51 |
lemma Inv_f_f_mem:
|
|
52 |
assumes "x \<in> A"
|
|
53 |
shows "Inv A g (g x) \<in> A"
|
|
54 |
apply (simp add: Inv_def)
|
|
55 |
apply (rule someI2)
|
22931
|
56 |
using `x \<in> A` apply auto
|
19203
|
57 |
done
|
|
58 |
|
|
59 |
lemma zet_image_mem:
|
|
60 |
assumes Azet: "A \<in> zet"
|
|
61 |
shows "g ` A \<in> zet"
|
|
62 |
proof -
|
|
63 |
from Azet have "? (f :: _ \<Rightarrow> ZF). inj_on f A"
|
|
64 |
by (auto simp add: zet_def')
|
|
65 |
then obtain f where injf: "inj_on (f :: _ \<Rightarrow> ZF) A"
|
|
66 |
by auto
|
|
67 |
let ?w = "f o (Inv A g)"
|
|
68 |
have subset: "(Inv A g) ` (g ` A) \<subseteq> A"
|
|
69 |
by (auto simp add: Inv_f_f_mem)
|
|
70 |
have "inj_on (Inv A g) (g ` A)" by (simp add: inj_on_Inv)
|
|
71 |
then have injw: "inj_on ?w (g ` A)"
|
|
72 |
apply (rule comp_inj_on)
|
|
73 |
apply (rule subset_inj_on[where B=A])
|
|
74 |
apply (auto simp add: subset injf)
|
|
75 |
done
|
|
76 |
show ?thesis
|
|
77 |
apply (simp add: zet_def' comp_image_eq[symmetric])
|
|
78 |
apply (rule exI[where x="?w"])
|
|
79 |
apply (simp add: injw image_zet_rep Azet)
|
|
80 |
done
|
|
81 |
qed
|
|
82 |
|
|
83 |
lemma Rep_zimage_eq: "Rep_zet (zimage f A) = image f (Rep_zet A)"
|
|
84 |
apply (simp add: zimage_def)
|
|
85 |
apply (subst Abs_zet_inverse)
|
|
86 |
apply (simp_all add: Rep_zet zet_image_mem)
|
|
87 |
done
|
|
88 |
|
|
89 |
lemma zimage_iff: "zin y (zimage f A) = (? x. zin x A & y = f x)"
|
|
90 |
by (auto simp add: zin_def Rep_zimage_eq)
|
|
91 |
|
|
92 |
constdefs
|
|
93 |
zimplode :: "ZF zet \<Rightarrow> ZF"
|
|
94 |
"zimplode A == implode (Rep_zet A)"
|
|
95 |
zexplode :: "ZF \<Rightarrow> ZF zet"
|
|
96 |
"zexplode z == Abs_zet (explode z)"
|
|
97 |
|
|
98 |
lemma Rep_zet_eq_explode: "? z. Rep_zet A = explode z"
|
|
99 |
by (rule image_zet_rep[where g="\<lambda> x. x",OF Rep_zet, simplified])
|
|
100 |
|
|
101 |
lemma zexplode_zimplode: "zexplode (zimplode A) = A"
|
|
102 |
apply (simp add: zimplode_def zexplode_def)
|
|
103 |
apply (simp add: implode_def)
|
|
104 |
apply (subst f_inv_f[where y="Rep_zet A"])
|
|
105 |
apply (auto simp add: Rep_zet_inverse Rep_zet_eq_explode image_def)
|
|
106 |
done
|
|
107 |
|
|
108 |
lemma explode_mem_zet: "explode z \<in> zet"
|
|
109 |
apply (simp add: zet_def')
|
|
110 |
apply (rule_tac x="% x. x" in exI)
|
|
111 |
apply (auto simp add: inj_on_def)
|
|
112 |
done
|
|
113 |
|
|
114 |
lemma zimplode_zexplode: "zimplode (zexplode z) = z"
|
|
115 |
apply (simp add: zimplode_def zexplode_def)
|
|
116 |
apply (subst Abs_zet_inverse)
|
|
117 |
apply (auto simp add: explode_mem_zet implode_explode)
|
|
118 |
done
|
|
119 |
|
|
120 |
lemma zin_zexplode_eq: "zin x (zexplode A) = Elem x A"
|
|
121 |
apply (simp add: zin_def zexplode_def)
|
|
122 |
apply (subst Abs_zet_inverse)
|
|
123 |
apply (simp_all add: explode_Elem explode_mem_zet)
|
|
124 |
done
|
|
125 |
|
|
126 |
lemma comp_zimage_eq: "zimage g (zimage f A) = zimage (g o f) A"
|
|
127 |
apply (simp add: zimage_def)
|
|
128 |
apply (subst Abs_zet_inverse)
|
|
129 |
apply (simp_all add: comp_image_eq zet_image_mem Rep_zet)
|
|
130 |
done
|
|
131 |
|
|
132 |
constdefs
|
|
133 |
zunion :: "'a zet \<Rightarrow> 'a zet \<Rightarrow> 'a zet"
|
|
134 |
"zunion a b \<equiv> Abs_zet ((Rep_zet a) \<union> (Rep_zet b))"
|
|
135 |
zsubset :: "'a zet \<Rightarrow> 'a zet \<Rightarrow> bool"
|
|
136 |
"zsubset a b \<equiv> ! x. zin x a \<longrightarrow> zin x b"
|
|
137 |
|
|
138 |
lemma explode_union: "explode (union a b) = (explode a) \<union> (explode b)"
|
|
139 |
apply (rule set_ext)
|
|
140 |
apply (simp add: explode_def union)
|
|
141 |
done
|
|
142 |
|
|
143 |
lemma Rep_zet_zunion: "Rep_zet (zunion a b) = (Rep_zet a) \<union> (Rep_zet b)"
|
|
144 |
proof -
|
|
145 |
from Rep_zet[of a] have "? f z. inj_on f (Rep_zet a) \<and> f ` (Rep_zet a) = explode z"
|
|
146 |
by (auto simp add: zet_def')
|
|
147 |
then obtain fa za where a:"inj_on fa (Rep_zet a) \<and> fa ` (Rep_zet a) = explode za"
|
|
148 |
by blast
|
|
149 |
from a have fa: "inj_on fa (Rep_zet a)" by blast
|
|
150 |
from a have za: "fa ` (Rep_zet a) = explode za" by blast
|
|
151 |
from Rep_zet[of b] have "? f z. inj_on f (Rep_zet b) \<and> f ` (Rep_zet b) = explode z"
|
|
152 |
by (auto simp add: zet_def')
|
|
153 |
then obtain fb zb where b:"inj_on fb (Rep_zet b) \<and> fb ` (Rep_zet b) = explode zb"
|
|
154 |
by blast
|
|
155 |
from b have fb: "inj_on fb (Rep_zet b)" by blast
|
|
156 |
from b have zb: "fb ` (Rep_zet b) = explode zb" by blast
|
|
157 |
let ?f = "(\<lambda> x. if x \<in> (Rep_zet a) then Opair (fa x) (Empty) else Opair (fb x) (Singleton Empty))"
|
|
158 |
let ?z = "CartProd (union za zb) (Upair Empty (Singleton Empty))"
|
|
159 |
have se: "Singleton Empty \<noteq> Empty"
|
|
160 |
apply (auto simp add: Ext Singleton)
|
|
161 |
apply (rule exI[where x=Empty])
|
|
162 |
apply (simp add: Empty)
|
|
163 |
done
|
|
164 |
show ?thesis
|
|
165 |
apply (simp add: zunion_def)
|
|
166 |
apply (subst Abs_zet_inverse)
|
|
167 |
apply (auto simp add: zet_def)
|
|
168 |
apply (rule exI[where x = ?f])
|
|
169 |
apply (rule conjI)
|
|
170 |
apply (auto simp add: inj_on_def Opair inj_onD[OF fa] inj_onD[OF fb] se se[symmetric])
|
|
171 |
apply (rule exI[where x = ?z])
|
|
172 |
apply (insert za zb)
|
|
173 |
apply (auto simp add: explode_def CartProd union Upair Opair)
|
|
174 |
done
|
|
175 |
qed
|
|
176 |
|
|
177 |
lemma zunion: "zin x (zunion a b) = ((zin x a) \<or> (zin x b))"
|
|
178 |
by (auto simp add: zin_def Rep_zet_zunion)
|
|
179 |
|
|
180 |
lemma zimage_zexplode_eq: "zimage f (zexplode z) = zexplode (Repl z f)"
|
|
181 |
by (simp add: zet_ext_eq zin_zexplode_eq Repl zimage_iff)
|
|
182 |
|
|
183 |
lemma range_explode_eq_zet: "range explode = zet"
|
|
184 |
apply (rule set_ext)
|
|
185 |
apply (auto simp add: explode_mem_zet)
|
|
186 |
apply (drule image_zet_rep)
|
|
187 |
apply (simp add: image_def)
|
|
188 |
apply auto
|
|
189 |
apply (rule_tac x=z in exI)
|
|
190 |
apply auto
|
|
191 |
done
|
|
192 |
|
|
193 |
lemma Elem_zimplode: "(Elem x (zimplode z)) = (zin x z)"
|
|
194 |
apply (simp add: zimplode_def)
|
|
195 |
apply (subst Elem_implode)
|
|
196 |
apply (simp_all add: zin_def Rep_zet range_explode_eq_zet)
|
|
197 |
done
|
|
198 |
|
|
199 |
constdefs
|
|
200 |
zempty :: "'a zet"
|
|
201 |
"zempty \<equiv> Abs_zet {}"
|
|
202 |
|
|
203 |
lemma zempty[simp]: "\<not> (zin x zempty)"
|
|
204 |
by (auto simp add: zin_def zempty_def Abs_zet_inverse zet_def)
|
|
205 |
|
|
206 |
lemma zimage_zempty[simp]: "zimage f zempty = zempty"
|
|
207 |
by (auto simp add: zet_ext_eq zimage_iff)
|
|
208 |
|
|
209 |
lemma zunion_zempty_left[simp]: "zunion zempty a = a"
|
|
210 |
by (simp add: zet_ext_eq zunion)
|
|
211 |
|
|
212 |
lemma zunion_zempty_right[simp]: "zunion a zempty = a"
|
|
213 |
by (simp add: zet_ext_eq zunion)
|
|
214 |
|
|
215 |
lemma zimage_id[simp]: "zimage id A = A"
|
|
216 |
by (simp add: zet_ext_eq zimage_iff)
|
|
217 |
|
|
218 |
lemma zimage_cong[recdef_cong]: "\<lbrakk> M = N; !! x. zin x N \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> zimage f M = zimage g N"
|
|
219 |
by (auto simp add: zet_ext_eq zimage_iff)
|
|
220 |
|
|
221 |
end
|