author | nipkow |
Fri, 04 Apr 1997 16:33:28 +0200 | |
changeset 2912 | 3fac3e8d5d3e |
parent 1963 | a4abf41134e2 |
child 3837 | d7f033c74b38 |
permissions | -rw-r--r-- |
1459 | 1 |
(* Title: CCL/ccl |
0 | 2 |
ID: $Id$ |
1459 | 3 |
Author: Martin Coen, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
6 |
For ccl.thy. |
|
7 |
*) |
|
8 |
||
9 |
open CCL; |
|
10 |
||
11 |
val ccl_data_defs = [apply_def,fix_def]; |
|
12 |
||
1963 | 13 |
val CCL_ss = set_ss addsimps [po_refl RS P_iff_T]; |
0 | 14 |
|
15 |
(*** Congruence Rules ***) |
|
16 |
||
17 |
(*similar to AP_THM in Gordon's HOL*) |
|
757 | 18 |
qed_goal "fun_cong" CCL.thy "(f::'a=>'b) = g ==> f(x)=g(x)" |
0 | 19 |
(fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); |
20 |
||
21 |
(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) |
|
757 | 22 |
qed_goal "arg_cong" CCL.thy "x=y ==> f(x)=f(y)" |
0 | 23 |
(fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]); |
24 |
||
25 |
goal CCL.thy "(ALL x. f(x) = g(x)) --> (%x.f(x)) = (%x.g(x))"; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
26 |
by (simp_tac (CCL_ss addsimps [eq_iff]) 1); |
0 | 27 |
by (fast_tac (set_cs addIs [po_abstractn]) 1); |
1087 | 28 |
bind_thm("abstractn", standard (allI RS (result() RS mp))); |
0 | 29 |
|
30 |
fun type_of_terms (Const("Trueprop",_) $ |
|
31 |
(Const("op =",(Type ("fun", [t,_]))) $ _ $ _)) = t; |
|
32 |
||
33 |
fun abs_prems thm = |
|
34 |
let fun do_abs n thm (Type ("fun", [_,t])) = do_abs n (abstractn RSN (n,thm)) t |
|
35 |
| do_abs n thm _ = thm |
|
36 |
fun do_prems n [] thm = thm |
|
37 |
| do_prems n (x::xs) thm = do_prems (n+1) xs (do_abs n thm (type_of_terms x)); |
|
38 |
in do_prems 1 (prems_of thm) thm |
|
39 |
end; |
|
40 |
||
41 |
val caseBs = [caseBtrue,caseBfalse,caseBpair,caseBlam,caseBbot]; |
|
42 |
||
43 |
(*** Termination and Divergence ***) |
|
44 |
||
45 |
goalw CCL.thy [Trm_def,Dvg_def] "Trm(t) <-> ~ t = bot"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
46 |
by (rtac iff_refl 1); |
757 | 47 |
qed "Trm_iff"; |
0 | 48 |
|
49 |
goalw CCL.thy [Trm_def,Dvg_def] "Dvg(t) <-> t = bot"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
50 |
by (rtac iff_refl 1); |
757 | 51 |
qed "Dvg_iff"; |
0 | 52 |
|
53 |
(*** Constructors are injective ***) |
|
54 |
||
55 |
val prems = goal CCL.thy |
|
56 |
"[| x=a; y=b; x=y |] ==> a=b"; |
|
57 |
by (REPEAT (SOMEGOAL (ares_tac (prems@[box_equals])))); |
|
757 | 58 |
qed "eq_lemma"; |
0 | 59 |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
60 |
fun mk_inj_rl thy rews s = |
0 | 61 |
let fun mk_inj_lemmas r = ([arg_cong] RL [(r RS (r RS eq_lemma))]); |
62 |
val inj_lemmas = flat (map mk_inj_lemmas rews); |
|
63 |
val tac = REPEAT (ares_tac [iffI,allI,conjI] 1 ORELSE |
|
64 |
eresolve_tac inj_lemmas 1 ORELSE |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
65 |
asm_simp_tac (CCL_ss addsimps rews) 1) |
0 | 66 |
in prove_goal thy s (fn _ => [tac]) |
67 |
end; |
|
68 |
||
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
69 |
val ccl_injs = map (mk_inj_rl CCL.thy caseBs) |
0 | 70 |
["<a,b> = <a',b'> <-> (a=a' & b=b')", |
71 |
"(lam x.b(x) = lam x.b'(x)) <-> ((ALL z.b(z)=b'(z)))"]; |
|
72 |
||
73 |
val pair_inject = ((hd ccl_injs) RS iffD1) RS conjE; |
|
74 |
||
75 |
(*** Constructors are distinct ***) |
|
76 |
||
77 |
local |
|
78 |
fun pairs_of f x [] = [] |
|
79 |
| pairs_of f x (y::ys) = (f x y) :: (f y x) :: (pairs_of f x ys); |
|
80 |
||
81 |
fun mk_combs ff [] = [] |
|
82 |
| mk_combs ff (x::xs) = (pairs_of ff x xs) @ mk_combs ff xs; |
|
83 |
||
84 |
(* Doesn't handle binder types correctly *) |
|
85 |
fun saturate thy sy name = |
|
86 |
let fun arg_str 0 a s = s |
|
87 |
| arg_str 1 a s = "(" ^ a ^ "a" ^ s ^ ")" |
|
88 |
| arg_str n a s = arg_str (n-1) a ("," ^ a ^ (chr((ord "a")+n-1)) ^ s); |
|
89 |
val sg = sign_of thy; |
|
611 | 90 |
val T = case Sign.const_type sg sy of |
1459 | 91 |
None => error(sy^" not declared") | Some(T) => T; |
0 | 92 |
val arity = length (fst (strip_type T)); |
93 |
in sy ^ (arg_str arity name "") end; |
|
94 |
||
95 |
fun mk_thm_str thy a b = "~ " ^ (saturate thy a "a") ^ " = " ^ (saturate thy b "b"); |
|
96 |
||
97 |
val lemma = prove_goal CCL.thy "t=t' --> case(t,b,c,d,e) = case(t',b,c,d,e)" |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
98 |
(fn _ => [simp_tac CCL_ss 1]) RS mp; |
0 | 99 |
fun mk_lemma (ra,rb) = [lemma] RL [ra RS (rb RS eq_lemma)] RL |
100 |
[distinctness RS notE,sym RS (distinctness RS notE)]; |
|
101 |
in |
|
102 |
fun mk_lemmas rls = flat (map mk_lemma (mk_combs pair rls)); |
|
103 |
fun mk_dstnct_rls thy xs = mk_combs (mk_thm_str thy) xs; |
|
104 |
end; |
|
105 |
||
106 |
||
107 |
val caseB_lemmas = mk_lemmas caseBs; |
|
108 |
||
109 |
val ccl_dstncts = |
|
110 |
let fun mk_raw_dstnct_thm rls s = |
|
111 |
prove_goal CCL.thy s (fn _=> [rtac notI 1,eresolve_tac rls 1]) |
|
112 |
in map (mk_raw_dstnct_thm caseB_lemmas) |
|
113 |
(mk_dstnct_rls CCL.thy ["bot","true","false","pair","lambda"]) end; |
|
114 |
||
115 |
fun mk_dstnct_thms thy defs inj_rls xs = |
|
116 |
let fun mk_dstnct_thm rls s = prove_goalw thy defs s |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
117 |
(fn _ => [simp_tac (CCL_ss addsimps (rls@inj_rls)) 1]) |
0 | 118 |
in map (mk_dstnct_thm ccl_dstncts) (mk_dstnct_rls thy xs) end; |
119 |
||
120 |
fun mkall_dstnct_thms thy defs i_rls xss = flat (map (mk_dstnct_thms thy defs i_rls) xss); |
|
121 |
||
122 |
(*** Rewriting and Proving ***) |
|
123 |
||
124 |
fun XH_to_I rl = rl RS iffD2; |
|
125 |
fun XH_to_D rl = rl RS iffD1; |
|
126 |
val XH_to_E = make_elim o XH_to_D; |
|
127 |
val XH_to_Is = map XH_to_I; |
|
128 |
val XH_to_Ds = map XH_to_D; |
|
129 |
val XH_to_Es = map XH_to_E; |
|
130 |
||
131 |
val ccl_rews = caseBs @ ccl_injs @ ccl_dstncts; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
132 |
val ccl_ss = CCL_ss addsimps ccl_rews; |
0 | 133 |
|
134 |
val ccl_cs = set_cs addSEs (pair_inject::(ccl_dstncts RL [notE])) |
|
135 |
addSDs (XH_to_Ds ccl_injs); |
|
136 |
||
137 |
(****** Facts from gfp Definition of [= and = ******) |
|
138 |
||
139 |
val major::prems = goal Set.thy "[| A=B; a:B <-> P |] ==> a:A <-> P"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
140 |
by (resolve_tac (prems RL [major RS ssubst]) 1); |
757 | 141 |
qed "XHlemma1"; |
0 | 142 |
|
143 |
goal CCL.thy "(P(t,t') <-> Q) --> (<t,t'> : {p.EX t t'.p=<t,t'> & P(t,t')} <-> Q)"; |
|
144 |
by (fast_tac ccl_cs 1); |
|
1087 | 145 |
bind_thm("XHlemma2", result() RS mp); |
0 | 146 |
|
147 |
(*** Pre-Order ***) |
|
148 |
||
149 |
goalw CCL.thy [POgen_def,SIM_def] "mono(%X.POgen(X))"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
150 |
by (rtac monoI 1); |
0 | 151 |
by (safe_tac ccl_cs); |
152 |
by (REPEAT_SOME (resolve_tac [exI,conjI,refl])); |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
153 |
by (ALLGOALS (simp_tac ccl_ss)); |
0 | 154 |
by (ALLGOALS (fast_tac set_cs)); |
757 | 155 |
qed "POgen_mono"; |
0 | 156 |
|
157 |
goalw CCL.thy [POgen_def,SIM_def] |
|
158 |
"<t,t'> : POgen(R) <-> t= bot | (t=true & t'=true) | (t=false & t'=false) | \ |
|
159 |
\ (EX a a' b b'.t=<a,b> & t'=<a',b'> & <a,a'> : R & <b,b'> : R) | \ |
|
160 |
\ (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x.<f(x),f'(x)> : R))"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
161 |
by (rtac (iff_refl RS XHlemma2) 1); |
757 | 162 |
qed "POgenXH"; |
0 | 163 |
|
164 |
goal CCL.thy |
|
165 |
"t [= t' <-> t=bot | (t=true & t'=true) | (t=false & t'=false) | \ |
|
166 |
\ (EX a a' b b'.t=<a,b> & t'=<a',b'> & a [= a' & b [= b') | \ |
|
167 |
\ (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x.f(x) [= f'(x)))"; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
168 |
by (simp_tac (ccl_ss addsimps [PO_iff]) 1); |
0 | 169 |
br (rewrite_rule [POgen_def,SIM_def] |
170 |
(POgen_mono RS (PO_def RS def_gfp_Tarski) RS XHlemma1)) 1; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
171 |
by (rtac (iff_refl RS XHlemma2) 1); |
757 | 172 |
qed "poXH"; |
0 | 173 |
|
174 |
goal CCL.thy "bot [= b"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
175 |
by (rtac (poXH RS iffD2) 1); |
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
176 |
by (simp_tac ccl_ss 1); |
757 | 177 |
qed "po_bot"; |
0 | 178 |
|
179 |
goal CCL.thy "a [= bot --> a=bot"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
180 |
by (rtac impI 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
181 |
by (dtac (poXH RS iffD1) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
182 |
by (etac rev_mp 1); |
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
183 |
by (simp_tac ccl_ss 1); |
1087 | 184 |
bind_thm("bot_poleast", result() RS mp); |
0 | 185 |
|
186 |
goal CCL.thy "<a,b> [= <a',b'> <-> a [= a' & b [= b'"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
187 |
by (rtac (poXH RS iff_trans) 1); |
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
188 |
by (simp_tac ccl_ss 1); |
0 | 189 |
by (fast_tac ccl_cs 1); |
757 | 190 |
qed "po_pair"; |
0 | 191 |
|
192 |
goal CCL.thy "lam x.f(x) [= lam x.f'(x) <-> (ALL x. f(x) [= f'(x))"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
193 |
by (rtac (poXH RS iff_trans) 1); |
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
194 |
by (simp_tac ccl_ss 1); |
0 | 195 |
by (REPEAT (ares_tac [iffI,allI] 1 ORELSE eresolve_tac [exE,conjE] 1)); |
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
196 |
by (asm_simp_tac ccl_ss 1); |
0 | 197 |
by (fast_tac ccl_cs 1); |
757 | 198 |
qed "po_lam"; |
0 | 199 |
|
200 |
val ccl_porews = [po_bot,po_pair,po_lam]; |
|
201 |
||
202 |
val [p1,p2,p3,p4,p5] = goal CCL.thy |
|
203 |
"[| t [= t'; a [= a'; b [= b'; !!x y.c(x,y) [= c'(x,y); \ |
|
204 |
\ !!u.d(u) [= d'(u) |] ==> case(t,a,b,c,d) [= case(t',a',b',c',d')"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
205 |
by (rtac (p1 RS po_cong RS po_trans) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
206 |
by (rtac (p2 RS po_cong RS po_trans) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
207 |
by (rtac (p3 RS po_cong RS po_trans) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
208 |
by (rtac (p4 RS po_abstractn RS po_abstractn RS po_cong RS po_trans) 1); |
0 | 209 |
by (res_inst_tac [("f1","%d.case(t',a',b',c',d)")] |
210 |
(p5 RS po_abstractn RS po_cong RS po_trans) 1); |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
211 |
by (rtac po_refl 1); |
757 | 212 |
qed "case_pocong"; |
0 | 213 |
|
214 |
val [p1,p2] = goalw CCL.thy ccl_data_defs |
|
215 |
"[| f [= f'; a [= a' |] ==> f ` a [= f' ` a'"; |
|
216 |
by (REPEAT (ares_tac [po_refl,case_pocong,p1,p2 RS po_cong] 1)); |
|
757 | 217 |
qed "apply_pocong"; |
0 | 218 |
|
219 |
||
220 |
val prems = goal CCL.thy "~ lam x.b(x) [= bot"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
221 |
by (rtac notI 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
222 |
by (dtac bot_poleast 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
223 |
by (etac (distinctness RS notE) 1); |
757 | 224 |
qed "npo_lam_bot"; |
0 | 225 |
|
226 |
val eq1::eq2::prems = goal CCL.thy |
|
227 |
"[| x=a; y=b; x[=y |] ==> a[=b"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
228 |
by (rtac (eq1 RS subst) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
229 |
by (rtac (eq2 RS subst) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
230 |
by (resolve_tac prems 1); |
757 | 231 |
qed "po_lemma"; |
0 | 232 |
|
233 |
goal CCL.thy "~ <a,b> [= lam x.f(x)"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
234 |
by (rtac notI 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
235 |
by (rtac (npo_lam_bot RS notE) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
236 |
by (etac (case_pocong RS (caseBlam RS (caseBpair RS po_lemma))) 1); |
0 | 237 |
by (REPEAT (resolve_tac [po_refl,npo_lam_bot] 1)); |
757 | 238 |
qed "npo_pair_lam"; |
0 | 239 |
|
240 |
goal CCL.thy "~ lam x.f(x) [= <a,b>"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
241 |
by (rtac notI 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
242 |
by (rtac (npo_lam_bot RS notE) 1); |
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
243 |
by (etac (case_pocong RS (caseBpair RS (caseBlam RS po_lemma))) 1); |
0 | 244 |
by (REPEAT (resolve_tac [po_refl,npo_lam_bot] 1)); |
757 | 245 |
qed "npo_lam_pair"; |
0 | 246 |
|
247 |
fun mk_thm s = prove_goal CCL.thy s (fn _ => |
|
248 |
[rtac notI 1,dtac case_pocong 1,etac rev_mp 5, |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
249 |
ALLGOALS (simp_tac ccl_ss), |
0 | 250 |
REPEAT (resolve_tac [po_refl,npo_lam_bot] 1)]); |
251 |
||
252 |
val npo_rls = [npo_pair_lam,npo_lam_pair] @ map mk_thm |
|
253 |
["~ true [= false", "~ false [= true", |
|
254 |
"~ true [= <a,b>", "~ <a,b> [= true", |
|
255 |
"~ true [= lam x.f(x)","~ lam x.f(x) [= true", |
|
256 |
"~ false [= <a,b>", "~ <a,b> [= false", |
|
257 |
"~ false [= lam x.f(x)","~ lam x.f(x) [= false"]; |
|
258 |
||
259 |
(* Coinduction for [= *) |
|
260 |
||
261 |
val prems = goal CCL.thy "[| <t,u> : R; R <= POgen(R) |] ==> t [= u"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
262 |
by (rtac (PO_def RS def_coinduct RS (PO_iff RS iffD2)) 1); |
0 | 263 |
by (REPEAT (ares_tac prems 1)); |
757 | 264 |
qed "po_coinduct"; |
0 | 265 |
|
266 |
fun po_coinduct_tac s i = res_inst_tac [("R",s)] po_coinduct i; |
|
267 |
||
268 |
(*************** EQUALITY *******************) |
|
269 |
||
270 |
goalw CCL.thy [EQgen_def,SIM_def] "mono(%X.EQgen(X))"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
271 |
by (rtac monoI 1); |
0 | 272 |
by (safe_tac set_cs); |
273 |
by (REPEAT_SOME (resolve_tac [exI,conjI,refl])); |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
274 |
by (ALLGOALS (simp_tac ccl_ss)); |
0 | 275 |
by (ALLGOALS (fast_tac set_cs)); |
757 | 276 |
qed "EQgen_mono"; |
0 | 277 |
|
278 |
goalw CCL.thy [EQgen_def,SIM_def] |
|
279 |
"<t,t'> : EQgen(R) <-> (t=bot & t'=bot) | (t=true & t'=true) | \ |
|
280 |
\ (t=false & t'=false) | \ |
|
281 |
\ (EX a a' b b'.t=<a,b> & t'=<a',b'> & <a,a'> : R & <b,b'> : R) | \ |
|
282 |
\ (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x.<f(x),f'(x)> : R))"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
283 |
by (rtac (iff_refl RS XHlemma2) 1); |
757 | 284 |
qed "EQgenXH"; |
0 | 285 |
|
286 |
goal CCL.thy |
|
287 |
"t=t' <-> (t=bot & t'=bot) | (t=true & t'=true) | (t=false & t'=false) | \ |
|
288 |
\ (EX a a' b b'.t=<a,b> & t'=<a',b'> & a=a' & b=b') | \ |
|
289 |
\ (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x.f(x)=f'(x)))"; |
|
290 |
by (subgoal_tac |
|
291 |
"<t,t'> : EQ <-> (t=bot & t'=bot) | (t=true & t'=true) | (t=false & t'=false) | \ |
|
292 |
\ (EX a a' b b'.t=<a,b> & t'=<a',b'> & <a,a'> : EQ & <b,b'> : EQ) | \ |
|
293 |
\ (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x.<f(x),f'(x)> : EQ))" 1); |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
294 |
by (etac rev_mp 1); |
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
295 |
by (simp_tac (CCL_ss addsimps [EQ_iff RS iff_sym]) 1); |
0 | 296 |
br (rewrite_rule [EQgen_def,SIM_def] |
297 |
(EQgen_mono RS (EQ_def RS def_gfp_Tarski) RS XHlemma1)) 1; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
298 |
by (rtac (iff_refl RS XHlemma2) 1); |
757 | 299 |
qed "eqXH"; |
0 | 300 |
|
301 |
val prems = goal CCL.thy "[| <t,u> : R; R <= EQgen(R) |] ==> t = u"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
302 |
by (rtac (EQ_def RS def_coinduct RS (EQ_iff RS iffD2)) 1); |
0 | 303 |
by (REPEAT (ares_tac prems 1)); |
757 | 304 |
qed "eq_coinduct"; |
0 | 305 |
|
306 |
val prems = goal CCL.thy |
|
307 |
"[| <t,u> : R; R <= EQgen(lfp(%x.EQgen(x) Un R Un EQ)) |] ==> t = u"; |
|
642
0db578095e6a
CCL/Gfp/coinduct2, coinduct3: modified proofs to suppress deep unification
lcp
parents:
611
diff
changeset
|
308 |
by (rtac (EQ_def RS def_coinduct3 RS (EQ_iff RS iffD2)) 1); |
0 | 309 |
by (REPEAT (ares_tac (EQgen_mono::prems) 1)); |
757 | 310 |
qed "eq_coinduct3"; |
0 | 311 |
|
312 |
fun eq_coinduct_tac s i = res_inst_tac [("R",s)] eq_coinduct i; |
|
313 |
fun eq_coinduct3_tac s i = res_inst_tac [("R",s)] eq_coinduct3 i; |
|
314 |
||
315 |
(*** Untyped Case Analysis and Other Facts ***) |
|
316 |
||
317 |
goalw CCL.thy [apply_def] "(EX f.t=lam x.f(x)) --> t = lam x.(t ` x)"; |
|
318 |
by (safe_tac ccl_cs); |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
319 |
by (simp_tac ccl_ss 1); |
1087 | 320 |
bind_thm("cond_eta", result() RS mp); |
0 | 321 |
|
322 |
goal CCL.thy "(t=bot) | (t=true) | (t=false) | (EX a b.t=<a,b>) | (EX f.t=lam x.f(x))"; |
|
323 |
by (cut_facts_tac [refl RS (eqXH RS iffD1)] 1); |
|
324 |
by (fast_tac set_cs 1); |
|
757 | 325 |
qed "exhaustion"; |
0 | 326 |
|
327 |
val prems = goal CCL.thy |
|
328 |
"[| P(bot); P(true); P(false); !!x y.P(<x,y>); !!b.P(lam x.b(x)) |] ==> P(t)"; |
|
329 |
by (cut_facts_tac [exhaustion] 1); |
|
330 |
by (REPEAT_SOME (ares_tac prems ORELSE' eresolve_tac [disjE,exE,ssubst])); |
|
757 | 331 |
qed "term_case"; |
0 | 332 |
|
333 |
fun term_case_tac a i = res_inst_tac [("t",a)] term_case i; |