| 
1465
 | 
     1  | 
(*  Title:      HOL/subset
  | 
| 
923
 | 
     2  | 
    ID:         $Id$
  | 
| 
1465
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
923
 | 
     4  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Derived rules involving subsets
  | 
| 
 | 
     7  | 
Union and Intersection as lattice operations
  | 
| 
 | 
     8  | 
*)
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
(*** insert ***)
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
qed_goal "subset_insertI" Set.thy "B <= insert a B"
  | 
| 
 | 
    13  | 
 (fn _=> [ (rtac subsetI 1), (etac insertI2 1) ]);
  | 
| 
 | 
    14  | 
  | 
| 
1531
 | 
    15  | 
goal Set.thy "!!x. x ~: A ==> (A <= insert x B) = (A <= B)";
  | 
| 
2893
 | 
    16  | 
by (Blast_tac 1);
  | 
| 
1531
 | 
    17  | 
qed "subset_insert";
  | 
| 
 | 
    18  | 
  | 
| 
923
 | 
    19  | 
(*** Big Union -- least upper bound of a set  ***)
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
val prems = goal Set.thy
  | 
| 
 | 
    22  | 
    "B:A ==> B <= Union(A)";
  | 
| 
 | 
    23  | 
by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1));
  | 
| 
 | 
    24  | 
qed "Union_upper";
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
val [prem] = goal Set.thy
  | 
| 
 | 
    27  | 
    "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C";
  | 
| 
1465
 | 
    28  | 
by (rtac subsetI 1);
  | 
| 
923
 | 
    29  | 
by (REPEAT (eresolve_tac [asm_rl, UnionE, prem RS subsetD] 1));
  | 
| 
 | 
    30  | 
qed "Union_least";
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
(** General union **)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
val prems = goal Set.thy
  | 
| 
 | 
    35  | 
    "a:A ==> B(a) <= (UN x:A. B(x))";
  | 
| 
 | 
    36  | 
by (REPEAT (ares_tac (prems@[UN_I RS subsetI]) 1));
  | 
| 
 | 
    37  | 
qed "UN_upper";
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
val [prem] = goal Set.thy
  | 
| 
 | 
    40  | 
    "[| !!x. x:A ==> B(x)<=C |] ==> (UN x:A. B(x)) <= C";
  | 
| 
1465
 | 
    41  | 
by (rtac subsetI 1);
  | 
| 
923
 | 
    42  | 
by (REPEAT (eresolve_tac [asm_rl, UN_E, prem RS subsetD] 1));
  | 
| 
 | 
    43  | 
qed "UN_least";
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
goal Set.thy "B(a) <= (UN x. B(x))";
  | 
| 
 | 
    46  | 
by (REPEAT (ares_tac [UN1_I RS subsetI] 1));
  | 
| 
 | 
    47  | 
qed "UN1_upper";
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
val [prem] = goal Set.thy "[| !!x. B(x)<=C |] ==> (UN x. B(x)) <= C";
  | 
| 
1465
 | 
    50  | 
by (rtac subsetI 1);
  | 
| 
923
 | 
    51  | 
by (REPEAT (eresolve_tac [asm_rl, UN1_E, prem RS subsetD] 1));
  | 
| 
 | 
    52  | 
qed "UN1_least";
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
(*** Big Intersection -- greatest lower bound of a set ***)
  | 
| 
 | 
    56  | 
  | 
| 
2893
 | 
    57  | 
goal Set.thy "!!B. B:A ==> Inter(A) <= B";
  | 
| 
 | 
    58  | 
by (Blast_tac 1);
  | 
| 
923
 | 
    59  | 
qed "Inter_lower";
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
val [prem] = goal Set.thy
  | 
| 
 | 
    62  | 
    "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)";
  | 
| 
1465
 | 
    63  | 
by (rtac (InterI RS subsetI) 1);
  | 
| 
923
 | 
    64  | 
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
  | 
| 
 | 
    65  | 
qed "Inter_greatest";
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
val prems = goal Set.thy "a:A ==> (INT x:A. B(x)) <= B(a)";
  | 
| 
1465
 | 
    68  | 
by (rtac subsetI 1);
  | 
| 
923
 | 
    69  | 
by (REPEAT (resolve_tac prems 1 ORELSE etac INT_D 1));
  | 
| 
 | 
    70  | 
qed "INT_lower";
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
val [prem] = goal Set.thy
  | 
| 
 | 
    73  | 
    "[| !!x. x:A ==> C<=B(x) |] ==> C <= (INT x:A. B(x))";
  | 
| 
1465
 | 
    74  | 
by (rtac (INT_I RS subsetI) 1);
  | 
| 
923
 | 
    75  | 
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
  | 
| 
 | 
    76  | 
qed "INT_greatest";
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
goal Set.thy "(INT x. B(x)) <= B(a)";
  | 
| 
2893
 | 
    79  | 
by (Blast_tac 1);
  | 
| 
923
 | 
    80  | 
qed "INT1_lower";
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
val [prem] = goal Set.thy
  | 
| 
 | 
    83  | 
    "[| !!x. C<=B(x) |] ==> C <= (INT x. B(x))";
  | 
| 
1465
 | 
    84  | 
by (rtac (INT1_I RS subsetI) 1);
  | 
| 
923
 | 
    85  | 
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
  | 
| 
 | 
    86  | 
qed "INT1_greatest";
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
(*** Finite Union -- the least upper bound of 2 sets ***)
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
goal Set.thy "A <= A Un B";
  | 
| 
2893
 | 
    91  | 
by (Blast_tac 1);
  | 
| 
923
 | 
    92  | 
qed "Un_upper1";
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
goal Set.thy "B <= A Un B";
  | 
| 
2893
 | 
    95  | 
by (Blast_tac 1);
  | 
| 
923
 | 
    96  | 
qed "Un_upper2";
  | 
| 
 | 
    97  | 
  | 
| 
2893
 | 
    98  | 
goal Set.thy "!!C. [| A<=C;  B<=C |] ==> A Un B <= C";
  | 
| 
 | 
    99  | 
by (Blast_tac 1);
  | 
| 
923
 | 
   100  | 
qed "Un_least";
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
(*** Finite Intersection -- the greatest lower bound of 2 sets *)
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
goal Set.thy "A Int B <= A";
  | 
| 
2893
 | 
   105  | 
by (Blast_tac 1);
  | 
| 
923
 | 
   106  | 
qed "Int_lower1";
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
goal Set.thy "A Int B <= B";
  | 
| 
2893
 | 
   109  | 
by (Blast_tac 1);
  | 
| 
923
 | 
   110  | 
qed "Int_lower2";
  | 
| 
 | 
   111  | 
  | 
| 
2893
 | 
   112  | 
goal Set.thy "!!C. [| C<=A;  C<=B |] ==> C <= A Int B";
  | 
| 
 | 
   113  | 
by (Blast_tac 1);
  | 
| 
923
 | 
   114  | 
qed "Int_greatest";
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
(*** Set difference ***)
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
qed_goal "Diff_subset" Set.thy "A-B <= (A::'a set)"
  | 
| 
2893
 | 
   119  | 
 (fn _ => [ (Blast_tac 1) ]);
  | 
| 
923
 | 
   120  | 
  | 
| 
 | 
   121  | 
(*** Monotonicity ***)
  | 
| 
 | 
   122  | 
  | 
| 
 | 
   123  | 
val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)";
  | 
| 
 | 
   124  | 
by (rtac Un_least 1);
  | 
| 
 | 
   125  | 
by (rtac (Un_upper1 RS (prem RS monoD)) 1);
  | 
| 
 | 
   126  | 
by (rtac (Un_upper2 RS (prem RS monoD)) 1);
  | 
| 
 | 
   127  | 
qed "mono_Un";
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)";
  | 
| 
 | 
   130  | 
by (rtac Int_greatest 1);
  | 
| 
 | 
   131  | 
by (rtac (Int_lower1 RS (prem RS monoD)) 1);
  | 
| 
 | 
   132  | 
by (rtac (Int_lower2 RS (prem RS monoD)) 1);
  | 
| 
 | 
   133  | 
qed "mono_Int";
  |